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Chapter 1

Introduction

Why the strange title? What is the meaning of

“∀ϵ > 0,∃N s.t. ∀n > N, |xn − l| < ϵ” ?

And why do most people find Real Analysis difficult?
I’ll start by trying to answer the third question, and that will take us back

to the other two questions. Real Analysis has been described as “Calculus with
attitude”. The “attitude” is “argumentative”, best summed up in the response
“prove it”. Sometimes in Real Analysis we spend a lot of effort to prove things
that look pretty obvious. It isn’t initially clear why we do this. It only starts to
become clearer when we start to prove things that aren’t at all obvious, or disprove
things that look as though they should be obvious. Unfortunately we don’t get to
that point very quickly. I can give you an example (without proof at this stage):
when you add up a finite number of numbers, the order doesn’t matter, you can
take the numbers in any order and the total is always the same. But this isn’t
always the case with an infinite collection of numbers: the order in which you add
the numbers can make a difference.

So Real Analysis is about trying to be precise and and avoiding appeals to
intuition in proofs. There’s nothing wrong with intuition and drawing diagrams
to illustrate what is happening. But we don’t accept these things as proofs, and
that is where the trouble starts for most people. Precise proofs also require precise
definitions, so that we know what we are trying to prove. We are going to start
by studying sequences of numbers and what it means to say that an infinite se-
quence of numbers converges to a limit. Sequences probably provide the simplest
types of convergence behaviour, so this is a good place to start before getting on
to continuity, differentiation and integration. An infinite sequence is an ordered
list of numbers, one number for each positive integer. We denote the sequence
x1, x2, x3, . . . as (xn). For example, if xn = n

n+1
then x2 = 2

3
.

1



2 CHAPTER 1. INTRODUCTION

In theory you could do a course of Real Analysis before ever encountering
things like differentiation, but that wouldn’t be a good starting point for most
people. So I will assume that you have already had some exposure to Calculus,
and that you have some familiarity with the usual properties and types of numbers:
Integers, Rationals (fractions), and Real Numbers (decimals). The reason Real
Analysis is called Real Analysis is that it is focused on the Real Numbers. By
contrast, Complex Analysis is focused on the Complex Numbers. Paradoxically,
despite its title, many people seem to find Complex Analysis easier than Real
Analysis, perhaps because many of the definitions and proofs are similar to what
they have already seen in Real Analysis, so the methods and attitude are no longer
such a culture shock.

So Real Analysis emphasises precision and that starts with precision in defi-
nitions. If I say that n

n+1
tends to 1 as n tends to ∞, you will probably (I hope)

agree with me, particularly if I illustrate the statement with the picture in Figure
1.1. Here we’ve put the positive integers 1, 2, 3, . . . along the horizontal n-axis,
and represented the corresponding values of n

n+1
by drawing dots at the appro-

priate vertical heights. The picture (suggestively) also shows a horizontal line at
a vertical height of 1 unit. You can see that the dots get closer and closer to the
line as n increases, i.e. as we move our view towards the right-hand side of the
picture. If you went to n > 100, the dots would appear to be on the line, but of
course n

n+1
< 1 for every positive integer n, so the dots are always below the line.

n/(n+ 1)

1

1 2 3 4 5 10 15 20 n

Figure 1.1: n
n+1

tends to 1 as n tends to ∞.

The expression n
n+1

generates a very “smooth” sequence, making it easy to
draw a diagram and see what is happening. But it isn’t so easy with less well-
behaved sequences. Imagine having to deal with 5n2−7n+99

2n2−n+1
. Even that isn’t too

bad but it would require a lot of computation to draw the diagram and be really
convinced that the expression tends to 5/2 as n tends to infinity. Now imagine
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trying the same thing with π(n) log(n)/n, where π(n) is the number of prime
numbers less than n and log(n) is the natural logarithm of n. The behaviour of
π(n) is rather erratic as n increases, and it isn’t obvious whether or not there is
any limiting value of π(n) log(n)/n as n tends to ∞. Even if I tell you it tends
to 1 (and the result is called the prime number theorem), how would we prove it?
What’s needed is a precise definition of convergence for sequences.

A precise definition has to satisfy at least three criteria. First, it must not
use vague terms like “small” and “large” because 10−100 may look small, but
compared with 10−1000 it is enormous. So “small” and “large” are too vague.
Even more vague are terms like “infinity” and “infinitesimal” because we will be
dealing with Real Numbers and no Real Numbers have these attributes (whatever
they may mean). A second criterion is that the definition must accord with our
intuition in normal circumstances. A definition of convergence which asserted
that the sequence formed from n

n+1
did not converge, or converged to 2, would not

be acceptable. Finally, as a third criterion, the definition should provide us with a
way to determine if a sequence does or does not converge to a particular limit.

A way around the problem of “small” positive numbers is to refer to all
positive numbers, which certainly includes all small ones, however you person-
ally choose to define “small”. The same idea works for “large” as well. Fun-
nily enough, although “small” and “large” are fairly meaningless, “smaller” and
“larger” are quite respectable, since we can compare two positive Real Numbers
a and b. If a < b we say that a is smaller than b, and that b is larger than a. While
we will avoid the use of “small” and “large” in proofs and definitions, intuition
is a different matter. So if you find it helpful to think in terms of small and large
numbers (and most of us do), feel free to continue.

Now look again at Figure 1.1. What do we mean when we say the dots get
closer and closer to the line? Suppose we want to get to within 0.01 of the line.
Clearly there will be some point on the horizontal axis, say N , beyond which all
the remaining dots (i.e. the ones to the right of N ) lie within 0.01 of the line.
In algebraic terms we are looking for a value N such that for every n > N the
difference between 1 and n

n+1
is less than 0.01. It is very easy to find such a value

N because the difference between 1 and n
n+1

is just

1− n

n+ 1
=
n+ 1− n

n+ 1
=

1

n+ 1
.

So if we want this difference to be less than 0.01, all we have to do is make sure
that n + 1 > 100. We can take our value N to be anything that ensures that
this is the case for every n > N . For example, we could take N = 99, but
N = 1000 would also do the job. Indeed, if we did take N = 1000 and n > N ,
then the difference between 1 and n

n+1
would be less than 0.001. In the case of

this sequence it seems we can get as close as we like to the line representing the
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limit. More precisely, if we want to get within ϵ of the line (where ϵ > 0), then
we can find a corresponding N , beyond which all the remaining dots lie within ϵ
of the line, i.e. 1

n+1
< ϵ. Clearly N = 1

ϵ
will do this job because if n > N = 1

ϵ

then 1
n
< ϵ and consequently 1

n+1
< ϵ.

Before considering an arbitrary sequence, look at the logical structure of what
we just did in the previous paragraph. We proved that

for every ϵ > 0, there exists some value N such that for every n > N ,
the difference between 1 and n

n+1
is less than ϵ.

The phrases “for every” and “there exists” are known as quantifiers. The sentence
is logically complicated because it contains three quantifiers, and their order is
important. So N can depend on ϵ, and n can depend on N . The definition of
convergence for an arbitrary sequence follows the same pattern. It contains the
same three quantifiers in the same positions. In place of n

n+1
we have the general

term xn of the sequence in question, and in place of 1 we have the proposed limit
l. The difference between l and xn is given by |xn − l|, where I remind you that
|a| denotes the modulus or absolute value of a, which may be defined as

|a| = +
√
a2 =

{
a if a ≥ 0,
−a if a < 0.

Figure 1.2 attempts to illustrate the general situation. We have a sequence
of numbers x1, x2, x3, . . . represented as dots on the diagram. (In the previous
example xn was n

n+1
.) These dots gradually settle around the line at height l as we

move to the right-hand side. The shaded strip has lower boundary at height l − ϵ
and upper boundary at height l + ϵ. From some point N onwards (i.e. for every
n > N ) the points of the sequence lie inside the shaded strip (i.e. |xn − l| < ϵ).
If we were to reduce the value of ϵ, thereby making the shaded strip narrower, we
might reasonably expect to have to move N to the right. Roughly speaking we are
saying that the difference between xn and l can be made as small as we like (i.e.
less than any ϵ > 0) by taking n sufficiently large (i.e. greater than N , for some
N ).

Our definition of what we mean by saying that “xn → l as n → ∞” is that
for any sized strip (characterized by ϵ > 0) there exists a number N such that for
every n > N , |xn − l| < ϵ.

That then is the explanation for the title of this book: “Three quantifiers and a
modulus”. The symbols ∀ and ∃ that appear in the subtitle are just shorthand for
the quantifiers. The symbol ∀ can be read as “for every” or “for all” and it is called
a universal quantifier - in typographic terms it is an A rotated by 180 degrees and
stands for ALL. The symbol ∃ can be read as “there exists” or “there is” and it
is called an existential quantifier - in typographic terms it is an E rotated by 180
degrees and stands for EXISTS. So the string of symbols
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xn

l
l + ϵ

l − ϵ

N n

Figure 1.2: xn tends to l as n tends to ∞.

∀ϵ > 0,∃N s.t. ∀n > N, |xn − l| < ϵ

reads as

for every ϵ > 0, there exists N such that for every n > N , |xn − l| < ϵ.

In either form this is our definition of what we mean by saying:

the sequence xn converges to the limit l as n tends to infinity,

or, in symbols:

xn → l as n→ ∞.

This can also be worded as “xn tends to l as n tends to infinity” and written as
limn→∞ xn = l. If the sequence S is given implicitly without explicit use of n, we
can write limS = l: for example, lim(1

2
, 2
3
, 3
4
, 4
5
, . . .) = 1.

There is no attempt in this definition to attach a meaning to “infinity” and
certainly no acceptance of ∞ as any sort of number. It might have been better to
speak of n getting “arbitrarily large”, although even that is somewhat vague. But
we are stuck with the commonly accepted terminology.

The development of this definition of convergence of a sequence, and related
definitions covering infinite series, continuity and differentiability took a very long
time. Well over 2,000 years ago Greek mathematicians, such as Archimedes, were
already using notions of convergence to obtain formulas for areas and volumes of
geometrical shapes including the circle and the sphere. There were many attempts
over the following two millennia to make the definitions precise. It seems that the
earliest versions of what we use today were given by Bernard Bolzano in the
1810s, but these were not generally used until taken up by Karl Weierstrass in
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the 1870s. The fact it took so long to develop indicates that it is far from easy or
obvious. So if you find it hard, don’t be discouraged.

There is, of course, nothing magic about the symbols used such as ϵ,N, n, xn
and l. Here is the definition in another form:

∀δ > 0,∃M s.t. ∀r > M, |yr − Y | < δ

And this defines what we mean by saying that yr → Y as r → ∞. It is just a
convention to use ϵ for a number that can be imagined to be arbitrarily small and
N for a number imagined to be correspondingly large (but bear in mind we never
attach any mathematical consequences to such imaginings).

We also emphasised that we will be precise in definitions and proofs. But we
will avoid being pedantic. To explain the difference, look again at the definition in
its symbolic form. We wrote ∀ϵ > 0 . . . . We didn’t say that ϵ can be any (positive)
Real Number: that was understood. Similarly, we wrote ∀n > N . . .. We didn’t
say that n has to be a positive Integer: again that was understood because we are
referring to an infinite sequence (xn) where n is restricted to positive Integer val-
ues. What about N , should that be an Integer or will any suitable Real Number
suffice? Actually it doesn’t matter - if you really want an integer value and the
N you have isn’t an integer, just increase N to the next integer above the exist-
ing value. In summary, we won’t be pedantic when using a quantifier when it’s
reasonably obvious to which class of numbers the quantified object must belong.

We will get on to using the definition of convergence of sequences in Chapter
3. But first we will cover some preliminary items. These form our next Chapter
and include the use of quantifiers and how they can make life easier, properties of
the Real Numbers especially the completeness property, proof by induction, and
some useful inequalities.



Chapter 2

Preliminaries

2.1 Notation
Here we collect together the symbols used throughout this book and examples
of their usage. If you got as far as a Calculus course before attempting Real
Analysis, you will probably be familiar with most of these. We start with some
terms borrowed from logic and set theory.

We use curly brackets to denote a set. For example {1, 2, 3} denotes the set
that contains the numbers 1, 2 and 3. If we give this set a name, say S = {1, 2, 3},
then we use the symbol ∈ to denote membership. We could write 2 ∈ S and
read this as saying “2 is a member of S”. We also use strike-through to negate
membership as in 5 ̸∈ S, read as “5 is not a member of S”. Sets aren’t restricted
to numbers. We might write “Everest ∈ set of all mountains”. The members
of a given set are often called its elements. Rather than listing the elements, a
set is often defined by some property that describes its members. For example,
S = {x : x is a prime number and x < 1000} is the set of prime numbers less
than 1000.

If S and T are two sets and every member of S is also a member of T , then we
say that S is a subset of T and write this as S ⊆ T . The symbol ⊆ denotes subset
inclusion. The set without any members is called the empty set and is usually
denoted by ∅. The empty set is a subset of every set, and every set is a subset
of itself. Other subsets of S are called proper subsets, while ∅ and S are called
improper subsets of S.

For two sets S and T , we can form their union S ∪ T , and their intersection
S ∩ T by defining

S ∪ T = {x : x ∈ S or x ∈ T}, S ∩ T = {x : x ∈ S and x ∈ T}.

For example, if S = {1, 2, 3, 4} and T = {3, 4, 5, 6} then S∪T = {1, 2, 3, 4, 5, 6}
and S ∩ T = {3, 4}. If we have a collection C of sets we can similarly form their

7
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union and their intersection:⋃
S∈C

S = {x : x ∈ S for some S ∈ C},
⋂
S∈C

S = {x : x ∈ S for every S ∈ C}.

Some specific sets of numbers have specific symbols to act as their names.
The set of all Natural Numbers is denoted by N, so N = {1, 2, 3, . . .}. Some

people like to include 0 as a Natural Number. I won’t do that, instead I will denote
the set {0, 1, 2, . . .} by the symbol N0. The set of all Integers is denoted by Z. So
Z = {0, 1,−1, 2,−2, . . .}. This means that we can identify the Natural Numbers
as the set of positive Integers. The use of the letter Z comes from the German word
Zahl for number. The set of all Rational Numbers (i.e. fractions, both positive
and negative) is denoted by Q. The letter Q relates to “quotient”, reflecting the
fact that fractions are quotients of integers. These are called Rational Numbers
because they are ratios of Integers. Finally for us, the set of all Real Numbers
(which turns out to be the set of all decimals) is denoted by R. Every Natural
Number is also an Integer, every Integer n can be expressed as a Rational Number
n/1, and every Rational Number has a decimal representation. So we have the
inclusion relationship N ⊆ Z ⊆ Q ⊆ R.

Implication symbols are sometimes useful. We may write x = 2 =⇒ x2 =
4, read as “x = 2 implies x2 = 4” (which is true). But don’t use the symbol
carelessly. It is definitely NOT true that x2 = 4 =⇒ x = 2, since there is also
the possibility that x = −2. Sometimes two statements are equivalent and then
we might use ⇐⇒ , read as “implies and is implied by”, or more succinctly as “if
and only if” (which some authors abbreviate to the horrible “iff”). An example of
correct usage is: x = 2 ⇐⇒ x− 2 = 0.

Another logical symbol is ¬, read as “not:”. It is used to negate the statement
which follows it. For example, x2 = 4 =⇒ ¬(x = 17) (if x2 = 4 then x
certainly isn’t 17). We won’t make extensive use of this symbol but, as we will
see, it can be helpful when negating a complicated statement.

Remaining abbreviations are the universal and existential quantifiers that we
met in the previous chapter: ∀ and ∃. We will play some games with them in the
next section of this chapter. As you may have noticed already we also use s.t. as
an abbreviation for “such that”.

2.2 Sentence negation

Many proofs in analysis are proofs by contradiction - we assume the opposite of
what we are trying to prove (its negation) and then go on to derive a contradiction.
Such a process involves the problem of negating a given sentence. Negating a
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sentence that contains several quantifiers can be a daunting prospect. You need a
cool head, but it can be done systematically. First, the definition.

Definition 2.1. The negation of a sentence S is the sentence ¬S. It is the statement
which is necessarily true if S is false and necessarily false if S is true.

Whether or not S is true or false plays no role in constructing ¬S.

Example 2.1. S = “All swans are white”.
The negation of S is the sentence “Not: all swans are white”, or in acceptable

English “It is false that all swans are white”. Although this is the negation of S,
it is not in its simplest or most useful form. The original sentence begins “All
swans...”, it is saying that “For all swans... such-and-such is true”. To negate this
we have to show that there is a swan for which such-and-such is NOT true. Thus
the negation can be put in the form “There is a swan which is not white”.

Quantifiers may be used to simplify the business of sentence negation. In the
above example S may be written as: ∀x ∈ the set of swans, x ∈ the set of white
objects. The negation says: ∃x ∈ the set of swans s.t. x ̸∈ the set of white objects.

Roughly speaking “∀” becomes “∃” (and vice-versa) while “,” becomes “s.t.”
(and vice-versa) - this depends on careful punctuation - and the statement follow-
ing the quantifier is itself negated. Thus if P (x) is a proposition about a Real
Number x, the sentence “∀x, P (x)” would have negation “∃x s.t. ¬P (x)”.

Similarly “∃x s.t. Q(x)” negates to “∀x,¬Q(x)”. Note that (since ¬¬ P (x) =
P (x)) the negation of a negation simply results in the original sentence - this is
quite a good way of checking that a negation is correct.

The sentence “All swans are black” in NOT the negation of “All swans are
white”, Since while the former is false if the latter is true, the former is not nec-
essarily true if the latter is false. Likewise the sentence “There is a swan which is
black” is not the negation because even if this were false, it would not prove that
all swans were white (there might be blue swans).

Next we try a more complicated mathematical example involving two quanti-
fiers.

Example 2.2. S = ∀x ∈ R,∃y ∈ R s.t. y < x.
To negate such a sentence we apply the rules for dealing with ∀,∃, , , s.t. out-

lined above. The sentence is of the form
“∀x ∈ R, P (x)”, where P (x) = ∃y ∈ R s.t. y < x.
The negation may therefore be written as “∃x ∈ R s.t. ¬P (x)” - of course this

involves us with the sentence “¬P (x)”, i.e. the negation of “P (x)”.
But P (x) = ∃y ∈ R s.t. y < x and applying the rules once again we obtain

¬P (x) = ∀y ∈ R,¬(y < x). Overall therefore we may write the negation of S
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as ∃x ∈ R s.t. ∀y ∈ R,¬(y < x). As a final simplification the final statement
“¬(y < x)” (i.e. “not: y is less than x” or “it is false that y is less than x”) may
be written as “y ≥ x”. We therefore obtain

¬S = ∃x ∈ R s.t. ∀y ∈ R, y ≥ x.

In general we do not have to go through the process of defining an intermedi-
ate proposition P (x), as we did above, provided we can visualise some brackets
inserted in appropriate places. Thus

S = ∀x ∈ R,∃y ∈ R s.t. y < x

¬S = ∃x ∈ R s.t. ¬[∃y ∈ R s.t. y < x]

= ∃x ∈ R s.t. ∀y ∈ R,¬(y < x)

= ∃x ∈ R s.t. ∀y ∈ R, y ≥ x

Here is another example involving three quantifiers.

Example 2.3.

S = ∀ϵ > 0, ∃δ > 0 s.t. ∀x, y satisfying |x− y| < δ, | sinx− sin y| < ϵ.

To negate this we insert brackets (mentally if possible):

S = ∀ϵ > 0, [∃δ > 0 s.t. {∀x, y satisfying |x− y| < δ, | sinx− sin y| < ϵ}].

The negation is then arrived at step-by-step.

¬S = ∃ϵ > 0 s.t. ¬[∃δ > 0 s.t. {∀x, y satisfying |x− y| < δ, | sinx− sin y| < ϵ}]
= ∃ϵ > 0 s.t. ∀δ > 0,¬{∀x, y satisfying |x− y| < δ, | sinx− sin y| < ϵ}
= ∃ϵ > 0 s.t. ∀δ > 0,∃x, y satisfying |x− y| < δ s.t. ¬(| sinx− sin y| < ϵ)

= ∃ϵ > 0 s.t. ∀δ > 0,∃x, y satisfying |x− y| < δ s.t. | sinx− sin y| ≥ ϵ

Note that the original statement really contains an abbreviation. When it says
“∀x, y satisfying . . .” should really say: “∀ pairs (x, y) satisfying . . .”. The nega-
tion should likewise say “∃ a pair (x, y) satisfying . . .”. Such abbreviations are
common.

Example 2.3 also enables us to emphasise another point: the order of the quan-
tifiers matters. The quantity δ in the statement S depends only on ϵ. If we were to
alter the order of quantifiers, placing ∀(x, y) before ∃δ, then δ could vary with x
and y. Tidying up the English a bit, the revised statement T reads as

T = ∀ϵ > 0 and ∀(x, y),∃δ > 0 s.t. if |x− y| < δ, then | sinx− sin y| < ϵ.
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Statement T is a weaker statement than S. You’ll have to wait until we discuss
continuity and the trigonometric functions to see if T and S are true or false.

The purpose of analysis is to rid mathematics of contentious arguments, par-
ticularly those dealing with the concept of infinity. Thus phrases such as “For
a very large x . . .” or “For infinitesimal values of z . . .” are unacceptable. They
are imprecise and we will not use them. Our aim in this book is to build up, in
a rigorously logical fashion, the basic results of Calculus. But we have to start
somewhere. So in our development of the material we will accept as given the ba-
sic axioms of the Real Number system. These are set out in the next section, with
particular attention given to the most significant and unfamiliar of the axioms. We
will also accept normal logical reasoning such as proof by induction and proof by
contradiction. However, to fulfil the aim of eliminating contentious arguments we
will lean over backwards to avoid claiming that any result is “obvious”.

Exercises for Section 2.2

1. Negate this statement: “There exist positive Integers p and q such that
p2 = 2q2.”
This statement is false. It is equivalent to saying that

√
2 is a rational

number. In the next Section we provide a proof that
√
2 is not a rational

number.
2. Negate the following statement P .

P= “For every positive Integer n, there exists an Integer p > n such that p
and p+ 2 are both prime numbers.”
P is known as the twin prime conjecture. We do not know (at the time of
writing) which of P and ¬P is true.

3. Negate the following statement Q.
Q= “There exists a positive Integer D such that for every positive integer
n there exist prime numbers p and q greater than n such that the difference
between p and q is at most D.”
The case D = 2 corresponds to the twin prime conjecture. Whether Q is
true or false was not known until a breakthrough made by Yitang Zhang in
2013 who proved that Q is true, with D = 70 000 000. Subsequently it has
been shown that D can be taken as 246. Hopefully it will eventually get
whittled down to D = 2.
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2.3 Real Numbers
Axioms for the set of Real Numbers, R
A. Field Axioms
R is a field. It has defined within it sum and product operations. If a, b ∈ R then

the sum of a and b is written as a + b and the product is written as ab. These
operations have the following properties.

1. ∀a, b ∈ R, a+ b ∈ R and ab ∈ R (closure)

2. ∀a, b ∈ R, a+ b = b+ a and ab = ba (commutativity)

3. ∀a, b, c ∈ R, a+ (b+ c) = (a+ b) + c and a(bc) = (ab)c (associativity)

4. ∀a, b, c ∈ R, a(b+c) = ab+ac (multiplication is distributive over addition)

5. ∃0 ∈ R s.t. ∀a ∈ R, a+ 0 = a (additive identity)

6. ∃1 ∈ R (1 ̸= 0) s.t. ∀a ∈ R, a1 = a (multiplicative identity)

7. ∀a ∈ R,∃(−a) ∈ R s.t. a+ (−a) = 0 (additive inverse)

8. ∀a ∈ R, (a ̸= 0),∃(a−1) ∈ R s.t. a(a−1) = 1 (multiplicative inverse)

(Any structure satisfying Axioms A1 to A8 is called a field.)

B. Order Axioms
R is an ordered field. It has defined within it an order relation < which satisfies:

1. If a ∈ R then either i) a > 0 (we say a is positive), or ii) a = 0, or iii)
(−a) > 0 (we say a is negative)

2. a > 0, b > 0 =⇒ a+ b > 0

3. a > 0, b > 0 =⇒ ab > 0

N.B. Subtraction is defined by taking a − b to mean a + (−b) and division is
defined by taking a/b to mean a(b−1) (when b ̸= 0). Then a > b is defined to
mean (a − b) > 0. The other order relations <, ≥, ≤ may be defined in terms
of >. So we define a < b to mean that b > a (i.e. (b− a) > 0). We define a ≥ b
to mean that either a > b or a = b, and we define a ≤ b to mean that either a < b
or a = b.

C. The Completeness Axiom
A non-empty collection of Real Numbers, S, which is bounded above, possesses

a least upper bound.
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An explanation of the Completeness Axiom is given below. The field and
order axioms (A and B) are referred to as algebraic axioms, while C is analytical.
From Axioms A and B it is possible to derive all the familiar algebraic results
concerning Real Numbers. For example we can prove that if a > b and b > c then
a > c. It’s easy once you recognise that a > b means (a − b) > 0 and likewise
b > c means that (b− c) > 0. Then by Axiom B2, (a− b) + (b− c) > 0, which
simplifies to (a− c) > 0, and this can be expressed as a > c.

Most people don’t have any great problems with the field axioms once they
have learned that 0 doesn’t have a multiplicative inverse, meaning that you cannot
(must not!) divide by 0. But manipulating inequalities is a more common cause of
errors. The thing to be most careful about is multiplying or dividing an inequality.
If you multiply or divide the inequality a > b by a negative number, you must be
careful to change the sign> to<. The reason is that a > b if and only if −a < −b.
This is easy to prove since a > b means that (a− b) > 0, while −a < −b means
that (−b− (−a)) > 0, and the latter expression simplifies to (a− b) > 0. So both
a > b and −a < −b mean the same thing. It is perhaps easy to recognise that
3 > 2 since 3 lies to the right of 2 on the number line, while −3 < −2 because −3
lies to the left of −2. If we multiply 3 > 2 by 5 we get 15 > 10 which is correct,
but if we multiply by −5 we must change the inequality sign to get −15 < −10.
What is not so easy to recognise is that if we multiply 3 > 2 by x, we cannot say
that 3x > 2x, unless we know that x > 0. Another warning is that if you multiply
a > b by 0, then you certainly don’t get 0 > 0 or 0 < 0!!! The moral is to be very
careful.

Sometimes we need to “reciprocate” inequalities. By this I mean that if a > b
then, provided that ab > 0, we may divide by ab and deduce that 1

b
> 1

a
. But the

proviso is vitally important because if ab < 0 then 1
b
< 1

a
. An easy mistake to

make can leave you 100% wrong! Be very, very careful. We’ll come back to how
inequalities are used in analysis, and they are used a lot. But before that we will
have a closer look at the Completeness Axiom, which may well convey absolutely
nothing to you unless you have seen it before.

2.3.1 The Completeness Axiom
You met the Natural Numbers N = {1, 2, 3, . . .} when you first learned to count.
Subsequently you will have been taught about fractions and about negative num-
bers. Each of the latter two classes of numbers arises from consideration of simple
equations.

The equation x + 3 = 5 has the solution x = 2, which lies in N. However,
the similar looking equation x + 5 = 3 has no solution in N. This points the
need for negative numbers, and zero. Such considerations lead us to the Integers:
Z = {. . . ,−2,−1, 0, 1, 2, . . .}. Similarly, equations such as 5x = 3 point the
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need for the Rational Numbers (fractions), Q. It is not hard to see that the set of
Rational Numbers satisfies all of the axioms A and B set out above. But, as we
will show, Axiom C is not satisfied by the set of Rational Numbers. The purpose
of Axiom C is to enable us to study the concept of a limit. Although it is not
immediately obvious, this axiom ensures that we have enough numbers at our
disposal to talk sensibly about limits - this would be impossible if we restricted
ourselves to the Rational Numbers.

Let us look at the step from the Rational Numbers to the Real Numbers. Again
we consider equations - for example x2 = 2. This has no solution if we require x
to be a Rational Number, a fact that was established by the Pythagoreans around
2,500 years ago.

Theorem 2.1. The positive square root of 2 cannot be expressed as the ratio of
two Natural Numbers. So

√
2 ̸∈ Q. We say that

√
2 is irrational.

[Note that irrational refers to a number not being a ratio of two Integers, rather
than the more common English usage of the word as a synonym for “crazy”.]

Proof. (Proof by contradiction.) The claim that
√
2 is irrational can be expressed

as: ∀p, q ∈ N, (p/q)2 ̸= 2. The negation of this sentence (expressing the claim that√
2 is a Rational Number) is: ∃p, q ∈ N s.t. (p/q)2 = 2. If this latter statement

were true then we could certainly ensure that p and q have no common factors,
simply by cancelling. So the strategy is to take the sentence

S : ∃p, q ∈ N (without common factors) s.t. (p/q)2 = 2

and show that it leads to a contradiction.
Suppose that x2 = 2 and that x = p/q for Natural Numbers (positive integers)

p and q that have no common factors, i.e. they are fully cancelled. Then x2 =
p2/q2 and so p2 = x2q2 = 2q2. Since 2q2 is divisible by 2, so is p2 and so therefore
is p. Hence p = 2r where r is some integer. It follows that 4r2 = 2q2 or 2r2 = q2.
It now follows that q is divisible by 2. Hence both p and q have a common factor,
namely 2, and so p/q is not fully cancelled. But this is a contradiction. Thus our
initial assumption is false and x cannot be a Rational Number if x2 = 2.

Solution of such equations require the creation of a further set of numbers. Of
course we can get closer and closer to

√
2 by considering the sequence of rounded

down decimal approximations 1, 1.4, 1.41, 1.414, . . .. Each of these is a Rational
Number, for example 1.41 = 141/100. An algebraist might identify the new type
of number,

√
2, with the defining sequence, (1, 1.4, 1.41, 1.414, . . .). Similarly

they might identity π (which also turns out to be irrational), with the sequence
(3, 3.1, 3.14, . . .).
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Consider the sequence ( n
n+1

) = (1
2
, 2
3
, 3
4
, 4
5
, . . .). We feel we ought to be able

to write lim(1
2
, 2
3
, 3
4
, 4
5
, . . .) = 1 and, with a suitable definition of “lim”, we have

seen in the Introduction that we can do precisely this. But equally well we ought
to be able to write lim(1, 1.4, 1.41, 1.414, ...) =

√
2. However to write down such

a statement we need to be able to talk about
√
2 - that is to say we need a system of

numbers which doesn’t have a gap at precisely the point where we would expect
to find

√
2. Similarly we need π and all the other irrational numbers. Without

them no sensible theory of limits is going to be possible. In this sense, the set Q
of Rational Numbers is incomplete.

Informally, we can see that Q is very “incomplete” by considering decimal
expansions. If we consider a fraction p/q with p and q Natural Numbers, the
decimal expansion of p/q is obtained by dividing p by q. The possible remainders
at each step in the division are 0, 1, . . . , q− 1. At some stage past the point where
all remaining carry-down digits are zeros in the division, you will encounter a
remainder that has occurred previously, and at that point the decimal expansion
will start to recur. In fact the length of the recurring section can be at most q
because there are only q possible remainders. If the recurring section is simply
a string of zeros, then we say that the decimal terminates. Including terminating
decimals as recurring decimals that just happen to have an unending string of
zeros, every Rational Number has a recurring decimal expansion. You might like
to obtain the decimal expansion of 3/7 by division to see how, what we have just
described in general, works in practice.

So every Rational Number has a recurring decimal expansion. Conversely, and
again informally, every recurring decimal expansion corresponds to a Rational
Number. For example, suppose x = 15.715343434 . . . with the “34” recurring.
Since the recurring section is of length 2, we multiply by 102 to get 100x =
1571.5343434 . . .. Now place x below 100x and line up the decimal points:

100x = 1571.5343434 . . .

x = 15.7153434 . . .

Now subtract x from 100x so that the recurring section cancels out. We get 99x =
1571.534 − 15.715, and this gives x = (1571534 − 15715)/99000, which is a
Rational Number. It is not hard to see how to generalise this example to deal with
any recurring decimal.

Why did I say informally in the previous two paragraphs? The problem is that
an infinite decimal expansion is really an infinite sum. For example, 1.111 . . .
really represents 1 + 1

10
+ 1

100
+ 1

1000
+ . . . and we haven’t yet obtained the rules

for dealing with such sums. So at this stage the above arguments are informal
and illustrative, rather than definitive. Nevertheless they strongly suggest that
“most” decimals do not represent Rational Numbers because “most” decimals do
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not recur. Imagine writing down infinitely long decimals at random, it seems
pretty unlikely that you’d get recurrence (I said this was informal!).

The problem with infinite decimals not being respectable at this stage means
that we mustn’t start by identifying the Real Numbers as the set of all decimals.
So instead we simply define the Real Numbers as a set that obeys Axioms A, B
and C. The flaw in the decimal approach is that it is imprecise, while the flaw in
the axiomatic approach is that there might be no set which satisfies all the axioms.
Fortunately it is possible to construct R. Starting with N, whose basic properties
we assume, we can construct Z, then Q, and finally R. An outline of this process
is given in Appendix A. We don’t do it here and now because we want to get on to
Analysis and not take a detour through the construction of R. But at each stage all
the appropriate properties can be verified, so that we arrive at a system of numbers
which satisfies axioms A, B and C. It can also be shown that this set of numbers
is essentially unique.

Honesty compels me to mention a further problem with the axiomatic ap-
proach - Axioms A, B and C do not explicitly mention the subsets N,Z or Q.
Strictly speaking we should show how to identify these subsets of R using the
axioms. Again this can be done and we indicate the process in Appendix B.

Now we will take a closer look at Axiom C (completeness). We start with the
definition of an upper bound, which is needed to make sense of Axiom C.

Definition 2.2. If S is a non-empty set of Real Numbers and A is a number such
that for every x ∈ S, x ≤ A, then we say that S is bounded above by A and that
A is an upper bound of the set S.

Example 2.4. The finite set {1, 6,−7, 81
2
, π, e} is bounded above by 99. It is also

bounded above by 81
2
. (e is Euler’s number, its value to 3 decimal places is 2.718.)

Example 2.5. The set {1, 1
2
, 1
4
, 1
8
, . . .} is bounded above by 2. It is also bounded

above by 1.

Example 2.6. The set {1
2
, 2
3
, 3
4
, 4
5
, . . .} is bounded above by 2. It is also bounded

above by 1.

In the first two examples above the sets have maximum elements. It is clear
that an upper bound cannot be lower than the maximum element. In the third
case, however, the set has no maximum element. Nevertheless the numbers do get
closer and closer to 1, and it looks fairly obvious that no number less than 1 would
qualify as an upper bound for the set. In such a case we say that 1 is a least upper
bound or supremum of the set. Abbreviations are l.u.b., or sup.

The precise definition of what we mean by saying that the set S has least upper
bound B is as follows.
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Definition 2.3. If S is a non-empty set of Real Numbers and B is a number such
that

1. ∀x ∈ S, x ≤ B,

2. ∀ϵ > 0,∃y ∈ S s.t. y > B − ϵ.

then we say that B is a least upper bound or supremum of the set S, and write
B = sup(S).

Condition 1 of this definition says thatB is an upper bound of S, and condition
2 says that no smaller number, B − ϵ, is an upper bound of S.

If a set has a maximum element B then this element will be the least upper
bound because it will satisfy both conditions 1 and 2.

Example 2.7. Prove that 1 is a least upper bound of {1
2
, 3
4
, 7
8
, 15
16
, . . .}.

Solution. We note that the set consists of all numbers of the form 1 − 1
2n

for
n = 1, 2, 3, . . ..

1. Since 1
2n

> 0, it follows that 1 − 1
2n

< 1 for all n = 1, 2, 3, . . .. Hence
condition (1) is verified.

2. Choose ϵ > 0. Take a value of n for which 2n > 1
ϵ
. Then 1

2n
< ϵ, and so

1− 1
2n
> 1− ϵ. Taking y = 1− 1

2n
, condition (2) is also verified.

If you are exceptionally argumentative (good, you are getting the hang of Real
Analysis) you might ask how we can be sure that we can choose a positive Integer
n for which 2n > 1

ϵ
. We can start to answer this by proving that for n ≥ 1,

2n > n. This can be done by induction. I’m assuming that you have seen some
use of induction in your previous mathematics courses, but in case you are a bit
rusty or troubled by it we will take a brief refresher in Section 2.4 below.

In this case, use of induction is particularly simple. We want to prove that
2n > n for every positive Integer n. For n = 1 it is certainly true that 21 > 1
because 21 = 2. Now assume that for a particular integer k ≥ 1 we know that
2k > k. Then 2k+1 > 2k = k + k ≥ k + 1. So, by induction, it follows that
2n > n for every positive integer n.

Having established that, hopefully to your satisfaction, if we can find a positive
integer n such that n > 1

ϵ
, it will follow that 2n > 1

ϵ
. The assertion that for every

ϵ > 0 there exists a positive integer n such that n > 1
ϵ

is equivalent to what is
known as the Axiom of Archimedes. There are lots of equivalent ways to phrase
this axiom, one of which is to say that given any Real Number x there is a Natural
Number (i.e. a positive integer) n such that n > x. In other words, N is not
bounded above. If x is negative or zero then x < 1 and if x > 0 it is equivalent to
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our version by taking ϵ = 1
x
. So is it true? Of course it is true. It is a consequence

of the Completeness Axiom and so we don’t need to include it as an additional
axiom. Here’s the proof.

Theorem 2.2 (The Archimedean Axiom). The set of Natural Numbers N is not
bounded above.

Proof. (By contradiction.) Suppose that N is bounded above and therefore, by
the Completeness Axiom, it has a least upper bound B. There must exist a value
n ∈ N such that n > B − 1. But then n+ 1 ∈ N and n+ 1 > B, a contradiction.
We conclude that N is not bounded above (we say N is unbounded above).

We can now interpret Axiom C. It asserts that if the set S is bounded above,
then it has a least upper bound. Of course the least upper bound may be irrational
as in the case of the set {1, 1.4, 1.41, 1.414, . . .} of rounded down decimals ap-
proximating

√
2. If we restricted ourselves to the Rational Numbers then this set

would have no least upper bound. Any Rational Number greater than
√
2 would

be an upper bound, but there would be no least such Rational Number. We would
have a most undesirable gap just where

√
2 should be.

To sum up, Axiom C ensures we have a number system which is suitable for
the development of a rigorous and coherent theory of limiting processes. Amongst
other things it ensures that every positive number has a positive square root, a pos-
itive cube root, a positive 4th root, and so on; a proof of this is given in Appendix
C. We will use the axiom to show (amongst other things) that any increasing se-
quence of numbers which is bounded above necessarily converges. We can then
use this result to establish conditions for the convergence of series in general, and
the properties of standard power series for sin, cos, exp, log, etc.

Exercises for Section 2.3
1. [This is a “fun” question - no-one is ever likely to ask you to do this again.]

Using the axioms for R, prove that ∀a, b ∈ R, (−a)(−b) = ab. [Consider
(−a)(−b)− ab = (−a)(−b)− ab+ (−a)b− (−a)b.]

2. Suppose that n is a positive Integer. Prove that n2 is divisible by 3 (i.e with
remainder 0) if and only if n is divisible by 3.

3. Prove that
√
3 is irrational.

4. Why is this a false statement: “if n is a positive Integer then n2 is divisible
by 4 if and only if n is divisible by 4”?

5. Suppose that x is an irrational number. Prove that 1
x

is irrational. Prove
also that if a, b are Rational Numbers with b ̸= 0, then z = a + bx is
irrational.
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6. Obtain the decimal expansion of the Rational Number 3/7.
7. Find positive Integers p and q such that p/q = 27.53272727 · · · = 27.5327.

Here the 27 recurs indefinitely as indicated by the bar over the recurring
section.

8. What’s the length of the recurring section in the decimal expansion of
1/17?

9. Find the least upper bound of the set S = {1
2
, 2
3
, 3
4
, 4
5
, . . .} and prove that it

is the least upper bound.
10. Find the least upper bound of the set T = {−1

2
,−2

3
,−3

4
,−4

5
, . . .} and

prove that it is the least upper bound.
11. Suppose that a, b ∈ R and that a < b. Prove that there is a Rational

Number r between a and b. [Hint: use the Archimedean Axiom to establish
that there is some positive integer q such that q(b− a) > 1.]

12. Suppose that a, b ∈ R and that a < b. Prove that there is an irrational
number z between a and b. [Hint: use the previous result to get an interval
with Rational end points between a and b and then find an easy irrational
number in this interval.]

2.4 The Method of Induction
Here we will give an informal description of the method of induction. The method
relies on properties of the Natural Numbers and has been likened to climbing a
ladder. First you prove that you can get on the first rung. Then you prove that
from any rung you can climb to the next rung. The conclusion is that you can
reach any rung. In mathematical terms we assume that we have some statement
P (n) about the Natural Number n and we wish to prove that P (n) is true for each
n. The statement P (n) corresponds to the nth rung on the ladder. So we first
prove that P (1) is true (we have got onto the first rung). (Of course if P (1) isn’t
true then P (n) isn’t true for each Natural Number n and we have to revise what
we are trying to prove.) Assuming we can prove that P (1) is true, we then assume
that P (k) is true for an arbitrary Natural Number k and prove (on this assumption)
that P (k+1) is true. This proves that from any rung you can get to the next rung.
The conclusion is that P (n) holds true for every Natural Number n.

Example 2.8. Prove that 1 + 2 + . . .+ n = n(n+ 1)/2 for every n = 1, 2, . . ..
Solution. We start by giving the sum on the left-hand side a name such as T (n) so
that we have to prove the claim that T (n) = n(n+1)/2 for each Natural Number
n. First we prove that T (1) = (1 × 2)/2, and this is very easy since both T (1)
and (1× 2)/2 equal 1. Then we assume that T (k) = k(k+1)/2 for some Natural
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Number k. We want to prove the corresponding statement when k is replaced by
k + 1, i.e. we want to prove that T (k + 1) = (k + 1)(k + 2)/2. Assuming that
T (k) = k(k + 1)/2 we can add (k + 1) to both sides to get

T (k + 1) = T (k) + (k + 1) = k(k + 1)/2 + (k + 1) = (k + 1)(k + 2)/2,

and this is what we wanted to prove. So we conclude, by induction, that T (n) =
n(n+ 1)/2 for every Natural Number n.

Example 2.9. Prove that 8n − 7n+ 6 is divisible by 7 for every n = 1, 2, . . ..
Solution. First we check the statement for n = 1. If n = 1 then 8n − 7n + 4 =
8 − 7 + 6 = 7. So the statement is certainly true for n = 1. Now assume that
8k − 7k + 6 is divisible by 7 for some positive integer k. If we multiply this by
8, it will remain divisible by 7. So 8k+1 − 56k + 48 is divisible by 7. Now add
49k − 49, which is clearly divisible by 7, to obtain that 8k+1 − 7k − 1 is divisible
by 7, i.e. 8k+1 − 7(k + 1) + 6 is divisible by 7. It follows, by induction, that
8n − 7n+ 6 is divisible by 7 for every n = 1, 2, . . ..

Although we described induction as starting with n = 1, it is legitimate to
start with a larger value, and sometimes this is necessary.

Example 2.10. Prove that (1.1)n > n if n ≥ 39 (where n ∈ N).
Solution. First we check that (1.1)39 > 39, which it is (use a calculator). Next
assume that (1.1)k > k for some integer k ≥ 39. Multiplying this by 1.1 gives
(1.1)k+1 > (1.1)×k = k+ k

10
≥ k+ 39

10
> k+1. The result follows by induction.

In Appendix B we show how the set of Natural Numbers N can be identified
as a subset of the set of Real Numbers R. This enables us to put the principle of
Induction on a firm footing within our axiomatic approach to the properties of R.

Exercises for Section 2.4
1. Use induction to prove that

∑n
i=1 i

2 = n(n+1)(2n+1)/6 for each positive
Integer n. [Here

∑n
i=1 xi is shorthand for x1+x2+. . .+xn, so that

∑n
i=1 i

2

means 12 + 22 + . . .+ n2.]
2. Prove that n! > 10n if n ≥ 25.
3. [Here is a “fun” question.] Find the error in the following “proof” that

everyone in a room has the same birthday. Here is the “proof”:
The proposition is that all n people in the room have the same birthday.
This is obviously true if n = 1 as there is only one person with one birthday
in the room. Now suppose that whenever there are k people in the room,
they all have the same birthday. We want to prove this is true for k + 1
people. So take a room of k + 1 people and send one person outside (call
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this person X). By the inductive supposition, the remaining k people all
have the same birthday, say day d. Now invite X back into the room and
send another person out (call this person Y, and note that Y has birthday
d). There are again k people in the room and k− 1 have birthday d, so, by
the inductive supposition all the people in the room (now including person
X) have birthday d. Invite person Y back into the room and we find that
all k + 1 people in the room have birthday d. So, by induction, whenever
there are n people in the room, they all have the same birthday.

2.5 Inequalities
The set of symbols below the title of this book contains three quantifiers and a
modulus, but also three inequality signs. Inequalities play a vital role in Real
Analysis, whole books are devoted to them. And it is perhaps something of a
surprise that from weakness (inequalities) comes strength (precision). It really is
the combination of quantifiers and inequalities that is so effective.

Let’s start with a few reminders and it helps to think about Real Numbers
represented along a straight line, often called the Real Line. So a < b means that
a is to the left of b, a fact that can also be expressed as b > a, meaning that b is to
the right of a. As examples we have 1 < 2, 3 > 1, − 1 < 3, − 2 > −7. The
symbols ≤ and ≥ allow the possibility of equality. So it is true that 1 ≤ 2 and also
that 1 ≤ 1. If a ≤ b and b ≤ a then a = b.

If you add (or subtract) the same thing on both sides of an inequality, it remains
true. So if a < b then a + c < b + c. But you must be much more careful with
multiplication (and division). We already mentioned this problem in Section 2.3,
but it deserves re-emphasis. If a < b AND c > 0 then ac < bc, but if c < 0 you
must reverse the inequality to get ac > bc. For example, if we start with 2 < 3
and multiply by −5 the resulting two numbers are −10 and −15, and −10 > −15.
This looks obvious when the multiplier is clearly negative, but when it is a variable
such as c, you must check if it is positive or negative. And if it is zero, of course
ac = bc = 0.

An inequality involving a modulus sign such as |x| < 3 is equivalent to saying
that if x is positive (or zero) we must have x < 3, while if x is negative we must
have −3 < x. So we get

|x| < 3 ⇐⇒ −3 < x < 3.

There is nothing magic about x or 3. You will have seen the inequality |xn−l| < ϵ
and this is equivalent to saying that −ϵ < xn − l < ϵ. By adding l to each term,
this can also be expressed as l − ϵ < xn < l + ϵ.

|xn − l| < ϵ ⇐⇒ −ϵ < xn − l < ϵ ⇐⇒ l − ϵ < xn < l + ϵ.
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Inequalities involving modulus signs need to be handled with care, particularly
if you feel an urge to get rid of the modulus signs. For example, it is true that
1 < | − 2|, but certainly not true that 1 < −2. This looks obvious, but such
mistakes are much easier to make with complicated algebraic expressions where it
is not obvious whether they are positive or negative (or even 0). So modulus signs
should be removed with care and not discarded willy-nilly because you simply
don’t like the look of them.

Enough of the sermonising for now. A result used extensively in Real Analy-
sis, with which you may not already be familiar is the so-called triangle inequality.

Theorem 2.3. If x, y ∈ R then∣∣|x| − |y|
∣∣ ≤ |x± y| ≤ |x|+ |y|.

The aspect we shall use most frequently is |x + y| ≤ |x| + |y|, and this is called
the triangle inequality.

Proof. (a) We have

|x+ y|2 = (x+ y)2

= x2 + 2xy + y2

= |x|2 + 2xy + |y|2

≤ |x|2 + 2|x||y|+ |y|2

= (|x|+ |y|)2.

Since |x+ y| and |x|+ |y| are both non-negative this gives

|x+ y| ≤ |x|+ |y|.

(b) Replacing y by −y above, we obtain

|x− y| ≤ |x|+ | − y|
= |x|+ |y|.

So |x± y| ≤ |x|+ |y|.

(c) Replacing y by x− y in part (b) we obtain

|x− (x− y)| ≤ |x|+ |x− y|.

Consequently |y| ≤ |x|+ |x− y| and this can be written as

|y| − |x| ≤ |x− y|. (2.1)
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Since this hold for all x, y ∈ R we may exchange x and y to obtain

|x| − |y| ≤ |y − x| = |x− y|. (2.2)

From 2.1 and 2.2 it follows that∣∣|x| − |y|
∣∣ ≤ |x− y|,

and replacing y by −y once again we also have∣∣|x| − |y|
∣∣ ≤ |x+ y|.

Thus we obtain ∣∣|x| − |y|
∣∣ ≤ |x± y|.

The result follows.

The name “triangle inequality” arises from considering a triangle with sides
given by vectors x, y and x+ y. The length of a vector x is denoted by |x|. The
length of the side given by x+ y cannot exceed the total of the lengths of the
other two sides, so |x+ y| ≤ |x|+ |y|. If you don’t know anything about vectors,
you can safely ignore this explanation of the name.

Sometimes people get confused by strings of equality and
inequality signs positioned vertically as shown here to the
right. The terms a, b, c, d stand for more complicated math-
ematical expressions. The conclusion from this string is that
a < d. It reads that a < b, b = c and c ≤ d. It should not
be read as saying that a = c. It is really the same as writing
a < b = c ≤ d on one line, but it has been broken vertically
for convenience.

a < b

= c

≤ d

Warning.
Do not mix inequalities that point in opposite direc-
tions like the example on the right here. If a < b and
b > c, that tells you nothing about the relationship
between a and c. So don’t do it.

This is horrible:
a < b

> c

Exercises for Section 2.5
1. Suppose that x and y are positive Real Numbers. Prove that√

xy ≤ (x + y)/2. [
√
xy is called the geometric mean of x and y, while

(x+y)/2 is called the arithmetic mean. So the result says that the geomet-
ric mean is at most the arithmetic mean.] What is the condition on x and y
that is both necessary and sufficient for

√
xy to be equal to (x+ y)/2?
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2. [A “fun” question] Mr. Fixit, the demon mathematics teacher, gets advance
notice of his pupils’ mathematics scores in a national examination. He is
upset to see that both Class X and Class Y have lower (arithmetic) mean
scores than last year. He hastily moves pupil P from Class X to Class Y.
Both mean scores are now better than last year and his performance bonus
is secure. Can you explain?



Chapter 3

Sequences

3.1 Important items
In this section we collect together the salient points from our preliminary discus-
sion and remind you of some useful algebraic results.

Theorem 3.1 (The triangle inequality). If x, y ∈ R then∣∣|x| − |y|
∣∣ ≤ |x± y| ≤ |x|+ |y|.

Definition 3.1. If S is a set of real numbers and A is a constant such that for every
x ∈ S, x ≤ A, then we say that S is bounded above by A and that A is an upper
bound of the set S.

Definition 3.2. If S is a set of numbers and B is a constant such that

1. ∀x ∈ S, x ≤ B,

2. ∀ϵ > 0, ∃y ∈ S s.t. y > B − ϵ.

then we say that B is a least upper bound or supremum of the set S. We write
B = supS. Condition 1 says that B is an upper bound of S, and condition 2 says
that no smaller number B − ϵ is an upper bound of S.

Axiom C. (The Completeness Axiom)
A non-empty collection of real numbers, S, which is bounded above, possesses a
least upper bound.

The Binomial Theorem
If n ∈ N and a, b ∈ R then

(a+ b)n = an + nan−1b+
n(n− 1)

2!
an−2b2 +

n(n− 1)(n− 2

3!
an−3b3 + . . .+ bn.

25
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This can be written as

(a+ b)n =

(
n

0

)
an +

(
n

1

)
an−1b+

(
n

2

)
an−2b2 +

(
n

3

)
an−3b3 + . . .+

(
n

n

)
bn

=
n∑

r=0

(
n

r

)
an−rbr,

where
(
n

r

)
=

n!

(n− r)!r!
is the number of ways of choosing r objects from n

objects, so that
(
n

r

)
is read as “n choose r”. The Binomial Theorem can be

proved by induction.

Geometric Series
If a ∈ R and n ∈ N then the expression 1 + a + a2 + a3 + . . . + an =

∑n
r=0 a

r

is called a geometric series with ratio a (meaning that each term in the sum is a
times its predecessor) and length n + 1. If a = 1 then the sum reduces to n + 1.
For a ̸= 1 a formula for the sum can be obtained as follows. Put S =

∑n
r=0 a

r and
then aS =

∑n
r=0 a

r+1. Write these in full, line up equal powers of a and subtract:

S = 1 + a+ a2 + a3 + . . .+ an

aS = a+ a2 + a3 + . . .+ an + an+1

so S − aS = 1− an+1.

Hence (1− a)S = 1− an+1, which gives S =
1− an+1

1− a
. Thus for a ̸= 1 we have

n∑
r=0

ar = 1 + a+ a2 + a3 + . . .+ an =
1− an+1

1− a
.
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3.2 Bounds
A similar concept to “bounded above” is “bounded below”.

Definition 3.3. If S is a set of numbers and A is a constant such that for every
x ∈ S, x ≥ A, then we say that S is bounded below by A and that A is a lower
bound of the set S.

Definition 3.4. If S is a set of numbers bounded above and bounded below then
we say that S is bounded.

Definition 3.5. If S is a set of numbers and A is a constant such that

1. ∀x ∈ S, x ≥ A,

2. ∀ϵ > 0, ∃y ∈ S s.t. y < A+ ϵ.

then we say that A is a greatest lower bound (g.l.b.) or infimum (inf) of the set S.
We write A = inf S. Condition 1 says that A is a lower bound of S, and condition
2 says that no larger number A+ ϵ is a lower bound of S.

Theorem 3.2. If S is a set of numbers which is bounded below, then S has a
greatest lower bound.

Proof. We use Axiom C. We define S ′ = {x : −x ∈ S}. Since S is bounded
below, ∃A s.t. ∀x ∈ S, x ≥ A. Therefore for each x ∈ S,−x ≤ −A. It follows
that S ′ is bounded above by −A. Hence, by the Completeness Axiom, S ′ has a
least upper bound B. We show that −B is a greatest lower bound of S.

1. We have that for all x′ ∈ S ′, x′ ≤ B. Therefore for all x′ ∈ S ′,−B ≤ −x′.
That is, ∀x ∈ S,−B ≤ x.

2. Choose ϵ > 0. We have that ∃y′ ∈ S ′ s.t. y′ > B − ϵ. Define y = −y′.
Then y ∈ S and −y > B − ϵ. That is, y < −B + ϵ.

From (1) and (2) it follows that −B is a greatest lower bound of S.

Theorem 3.3. A least upper bound is unique. In other words, if S is a set of
numbers bounded above and A,B are least upper bounds of S, then A = B.
Similarly a greatest lower bound is unique.

Proof. Suppose S is a set of numbers bounded above and thatA,B are least upper
bounds and A ̸= B. We may assume A < B. From the definition of a least upper
bound. we have
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1. ∀x ∈ S, x ≤ A.

2. ∀ϵ > 0, ∃y ∈ S s.t. y > B − ϵ.

SinceA < B we have (B−A) > 0. In (2) put ϵ = (B−A). Then ∃y ∈ S s.t. y >
B − (B − A) = A. But this contradicts (1). It follows that A = B.

The proof for greatest lower bound is similar.

Definition 3.6. Suppose we have an ordered collection of numbers xn, one asso-
ciated with each positive integer n:

x1, x2, x3, . . . , xn, . . .

Such a collection, arranged in order of increasing n, is called a sequence of
numbers. Such a sequence would be denoted by (xn). The individual numbers
x1, x2, . . . are called the terms of the sequence.

Warning! In everyday English the words “sequence” and “series” are pretty well
interchangeable. But in mathematics they mean something completely different.
A (mathematical) sequence is an ordered list, but a (mathematical) series is what
you get by adding up the terms in a sequence of numbers. We will deal with series
after we have dealt with sequences. Be careful not to confuse the two.

Examples of sequences:

1. (n) = (1, 2, 3, . . . , n, . . .).

2. ( 1
n2 ) = (1, 1

4
, 1
9
, . . . , 1

n2 , . . .).

3. ( (−1)n

n!
) = (−1, 1

2
,−1

6
, 1
24
, . . . , (−1)n

n!
, . . .).

4. (5) = (5, 5, 5, . . . , 5, . . .).

5. ( z
n

n
) = (z, z

2

2
, z

3

3
, . . . , z

n

n
, . . .).

Note. The sequence (1, 1
2
, 1
4
, 1
8
, . . .) is not the same sequence as (1

2
, 1, 1

4
, 1
8
, . . .)

since we pay attention to the order in which the terms are written down. Of course
the set of numbers is the same in both cases.

Definition 3.7. Suppose (xn) is a sequence of real numbers. Let S be the set
of numbers {x1, x2, x3, . . .}. If S is bounded above by A then we say that the
sequence (xn) is bounded above by A. If B is the least upper bound of S then we
say B is the least upper bound or supremum of (xn). We may write B = sup(xn).
Similarly, we define boundedness below, boundedness, and the concept of inf(xn),
in terms of the underlying set S.
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Exercises for Section 3.2

1. Find the greatest lower bound of the sequence
(

n
n2+1

)
2. Prove that the sequence

(
(−1)nn

)
is unbounded both above and below.

3.3 Convergence
Next we define what we mean by saying that a sequence of real numbers converges
to a limiting value.

Definition 3.8. We say that “xn → l as n→ ∞” if and only if

∀ϵ > 0,∃N s.t. ∀n > N, |xn − l| < ϵ.

The sentence “xn → l as n → ∞” is read as “xn converges to (or tends to) l as n
tends to infinity”. We may also write: ∃ limn→∞ xn = l. We say that l is the limit
of the sequence (xn). [Note that we say “n tends to infinity”; we do NOT say “n
converges to infinity”.]

Notes.

1. In the above definition the sentence

“xn → l as n→ ∞′′

must be interpreted as a whole. We are not attempting to define the individ-
ual terms “→” or “∞”.

2. Many sequences do not have limits.

3. To show that xn → l as n → ∞ directly from the definition it is necessary
to prove that for any given ϵ > 0, a corresponding N can be found; i.e. we
must find an expression for N in terms of ϵ. In that sense, the definition is
an operational definition - it tells you what you have to do.

4. In general, the number N depends on ϵ: the closer ϵ is taken to zero, the
larger the corresponding value of N . There is no necessity for N to be
an Integer, although the values of n have to be positive Integers for the
sequence (xn) to make sense.

We will start using this definition of convergence with a very simple example.



30 CHAPTER 3. SEQUENCES

Example 3.1. Prove that 1
n
→ 0 as n→ ∞.

Solution. Choose ϵ > 0. Put N = 1
ϵ
. Take any n > N and consider | 1

n
− 0| =

1
n
< 1

N
= ϵ. Hence 1

n
→ 0 as n→ ∞.

In the same way we can easily prove things like 2
n

→ 0 as n → ∞ - just
replace N = 1

ϵ
by N = 2

ϵ
. In Section 3.7 we will deal with a whole host of basic

convergent sequences. But here we will just use the definition on a few more
examples to get a feel for how it works.

Example 3.2. Prove that 2n
3n−1

→ 2
3

as n→ ∞.
Solution. (You might find it helpful to look again at the example of the sequence
( n
n+1

) that we investigated in Chapter 1, the Introduction.)
Here the sequence (xn) is ( 2n

3n−1
), the first few terms of which are 1, 4

5
, 3
4
, 8
11
, . . ..

We begin by choosing an arbitrary ϵ > 0. We make an inspired guess for N (how
this is done will be explained later): put N = 1

3ϵ
.

Now suppose that n > N and consider the expression | 2n
3n−1

− 2
3
|. We have

∣∣∣ 2n

3n− 1
− 2

3

∣∣∣ = ∣∣∣6n− 2(3n− 1)

3(3n− 1)

∣∣∣
=

∣∣∣ 2

3(3n− 1)

∣∣∣
≤ 2

3(2n)
note 2n ≤ 3n− 1

=
1

3n

<
1

3N
.

But N = 1
3ϵ

and so ϵ = 1
3N

. It follows that ∀n > N ,∣∣∣ 2n

3n− 1
− 2

3

∣∣∣ < ϵ.

Thus the definition is satisfied - we have taken a perfectly arbitrary ϵ > 0 and
found a number N such that if n > N then |xn − 2

3
| < ϵ.

Comment. We could have taken N to be any number greater than or equal to 1
3ϵ

.
So N = 1

3ϵ
+ 5 would have served our purposes just as well. In general, there is

no need to choose the smallest possibleN . We select the most convenient value to
avoid excessive amounts of algebraic manipulation. We’ll see something of how
that works in the next example.
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Example 3.3. Prove that the sequence ( 2n2+7
n2+n+1

) converges and find its limit.
Solution. Dividing top and bottom of the fraction by n2 we get

2n2 + 7

n2 + n+ 1
=

2 + 7
n2

1 + 1
n
+ 1

n2

.

It seems likely that 7
n2 → 0 as n → ∞ and that 1

n
+ 1

n2 → 0 as n → ∞. Thus, if
there is a limit, its value is probably 2+0

1+0
= 2. Accordingly we attempt to prove

that
2n2 + 7

n2 + n+ 1
→ 2 as n→ ∞.

Choose ϵ > 0.
Put N = 7

ϵ
(we’ll explain this inspired “guess” later).

Take any n > N and consider the expression
∣∣∣ 2n2+7
n2+n+1

− 2
∣∣∣. We have

∣∣∣ 2n2 + 7

n2 + n+ 1
− 2

∣∣∣ = ∣∣∣2n2 + 7− 2(n2 + n+ 1)

n2 + n+ 1

∣∣∣
=

∣∣∣ −2n+ 5

n2 + n+ 1

∣∣∣
≤

∣∣∣ 2n

n2 + n+ 1

∣∣∣+ ∣∣∣ 5

n2 + n+ 1

∣∣∣ (by the triangle inequality)

=
2n+ 5

n2 + n+ 1

≤ 7n

n2 + n+ 1
<

7n

n2
=

7

n
<

7

N
= ϵ. (3.1)

It follows that if n > N then
∣∣∣ 2n2+7
n2+n+1

−2
∣∣∣ < ϵ. Hence the sequence does converge

and its limit is 2.

Comments.

1. Once we got to the expression
∣∣∣ −2n+5
n2+n+1

∣∣∣ we started to use inequalities. Why?
It’s because the numerator is, crudely speaking, of size n and the denomi-
nator is of size n2, so the fraction will behave rather like 1

n
for “large” n.

So we may use inequalities to “simplify” the expression while retaining this
crude estimate of its size. Thus we “simplify” the numerator to the some-
what larger 7n (which is just a multiple of n) and the denominator to the
somewhat smaller n2. This then cancels down to 7

n
.

2. You are not expected to guess in advance that we put

“N = 7/e”.
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Lay out the proof as above but leave this line only partially completed at
first:

“N =”

When you reach the stage labelled 3.1, a suitable definition for N is made
for you. In this case we require 7/N ≤ ϵ, i.e. N ≥ 7/ϵ. Thus we have
to choose N greater than or equal to 7/ϵ, and so it may as well be 7/ϵ.
Indeed, you can use the following as a kind of pro-forma for these proofs:
Choose ϵ > 0. Put N = .... Take any n > N and consider |xn − l|... < ϵ

3. The phraseology of the question ”find its limit” suggests there can only be
one limit of a particular sequence. We prove this below.

4. Returning to the definition of the sentence “xn → l as n→ ∞” we see that
altering a finite number of the terms of a sequence cannot alter the limit (if
any). For if the last term to be altered is the mth, it is only necessary to alter
the value of N to m+ 1, if the value of N is less than or equal to m.

For similar reasons, removing, or adding, a finite number of terms cannot
alter the convergence behaviour of a sequence. In particular if k is a constant
(positive integer) then the sequences (xn) and (xn+k) either both converge
or both do not converge.

5. Some people like to ensure that N is an integer. This is easy, just round up a
non-integer N to the first integer above. If N works then any integer above
it will also work. To save on words, here below is a useful definition: the
integer part or floor function.

Definition 3.9. We denote by ⌊x⌋ the integer part of x, i.e. the unique integer M
Satisfying M ≤ x < M + 1.

Examples: ⌊3/2⌋ = 1, ⌊2⌋ = 2, ⌊−1.7⌋ = −2, ⌊−2⌋ = −2.
This item of terminology enables us to shorten a sentence such as “N = the first
integer greater than 7/ϵ” to “N = ⌊7/ϵ⌋+ 1”

The definition of convergence can also be used to prove that some sequences
do not converge to any limit.

Example 3.4. Show that the sequence ((−1)n) does not converge.
Solution. The first few terms of the sequence are: −1, 1,−1, 1, . . .. We will
attempt a proof by contradiction. So suppose that (−1)n → l as n→ ∞ for some
number l. Choose ϵ = 0.1. Then ∃N s.t. if n > N, |(−1)n − l| < 0.1.



3.4. SOME EASY RESULTS ON LIMITS 33

(a) Choose n even s.t. n > N . Then |1− l| < 0.1.
(b) Choose n odd s.t. n > N . Then |(−1)− l| < 0.1.
Of course |1− (−1)| = 2, but using (a) and (b), and the triangle inequality gives

2 = |1− (−1)| = |1− l − ((−1)− l)|
≤ |1− l|+ |(−1)− l|
< 0.1 + 0.1 = 0.2

But 2 < 0.2 is a contradiction and so we deduce that ((−1)n) does not converge
to any limit.

Note. Our choice for ϵ was rather extreme. We could have chosen ϵ = 1 and
obtained 2 < 2, which is still a contradiction (just!).

Exercises for Section 3.3

1. Use the definition of convergence to prove that for any Real Number a,
a
n
→ 0 as n→ ∞.

2. Use the definition of convergence to prove that n2

n2+n+1
→ 1 as n→ ∞.

3. Use the definition of convergence to prove that the sequence (2n+7
7n−3

) con-
verges, and find its limit.

4. Prove that the sequence ((−1)n n
n+1

) does not converge.

5. Suppose that xn < A for every n ∈ N and that xn → l as n → ∞. Prove
that l ≤ A. Give an example to show that we cannot assert that l < A.

3.4 Some easy results on limits

Theorem 3.4. The limit of a sequence is unique. If xn → l1 as n → ∞ and
xn → l2 as n→ ∞, then l1 = l2.

Of course we all know intuitively that a sequence cannot have two distinct
limits. The purpose of this theorem (and of many subsequent theorems) is to
show that the formal definition of convergence that we adopted is consistent with
our intuition.

Proof. (By contradiction.) Suppose l1 ̸= l2. We may assume l1 < l2. From the
definition of convergence, taking ϵ = (l2 − l1)/2 we have
(a) ∃N1 s.t. ∀n > N1, |xn − l1| < (l2 − l1)/2,
(b) ∃N2 s.t. ∀n > N2, |xn − l2| < (l2 − l1)/2.
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Choose n > max(N1, N2). Then we have

|l2 − l1| = |l2 − xn + xn − l1|
≤ |l2 − xn|+ |xn − l1|
< (l2 − l1)/2 + (l2 − l1)/2

= l2 − l1

But this gives l2 − l1 < l2 − l1, an obvious contradiction. The result follows.

The next theorem also proves something that you may feel is pretty obvious:
a constant sequence converges to its constant value.

Theorem 3.5. If xn = l for every n ∈ N, then xn → l as n→ ∞.

Proof. Choose ϵ > 0. Put N = 1 then for any n > N , |xn − l| = 0 < ϵ.

The following result concerns a sequence “sandwiched” or “squeezed” be-
tween two other sequences that have a common limit.

Theorem 3.6 (The sandwich or squeeze rule). Suppose that for every n ∈ N,
yn ≤ xn ≤ zn, and that both sequences (yn) and (zn) converge to a common limit
l. Then xn → l as n→ ∞.

Proof. For every n ∈ N we have yn − l ≤ xn − l ≤ zn − l. Choose ϵ > 0.
Since (yn) converges to l, ∃N1 s.t. ∀n > N1, |yn− l| < ϵ. Similarly ∃N2 s.t. ∀n >
N2, |zn − l| < ϵ. So if N = max(N1, N2), then ∀n > N

−ϵ < yn − l ≤ xn − l ≤ zn − l < ϵ,

which gives |xn − l| < ϵ. Thus xn → l as n→ ∞.

Comments. A simple consequences of this result is that if 0 ≤ xn ≤ zn for
every n ∈ N and if zn → 0 as n → ∞, then xn → 0 as n → ∞ because (xn)
is sandwiched between the constant sequence (0), and the sequence (zn), both of
which converge to 0.

A somewhat similar result is that |xn| → 0 as n → ∞ if and only if xn →
0 as n→ ∞. To see this, just to look at the definitions of the two statements. You
will see that they say exactly the same thing once you realise that

∣∣|xn|∣∣ = |xn|.

Maybe the next result isn’t quite so obvious. It’s really telling us that a con-
vergent sequence can’t get arbitrarily far from its limit.

Theorem 3.7. If (xn) is a convergent sequence, then it is bounded.
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Proof. Suppose xn → l as n → ∞. Taking ϵ = 1 in the definition, we find ∃N
s.t. ∀n > N, |xn − l| < 1. Take M to be the first integer greater than N . Put
A = max(|x1|, |x2|, |x3|, . . . , |xM |, 1 + |l|). If n ≤ M then |xn| ≤ A. By the
triangle inequality |xn| − |l| ≤ |xn − l|, and so |xn| ≤ |xn − l| + |l|. Hence, if
n > M, |xn| ≤ 1 + |l| ≤ A. Thus for all values of n, |xn| ≤ A. It follows that
(xn) is bounded.

Comment. If xn → l as n → ∞ then for any number k > l, we will find that
xn < k for all sufficiently large n. To see this take ϵ = (k − l) > 0, so that there
exists N such that for any n > N , |xn− l| < k− l, and this entails xn− l < k− l,
which gives xn < k. Similarly for any number k < l, we will find that xn > k for
all sufficiently large n. This is a useful observation.

If you look back to Example 3.3 you will see that we said things like “ It
seems likely that 7

n2 → 0 as n → ∞” in order to find the limit before using the
definition to prove that this was the limit. That proof involved some nasty algebra
and inequalities. It would be impossibly tedious to deal separately with every
conceivable sequence using the definition as we did in that example. So is there
a better way? Yes there is, and to get us going we will now prove some rules
for combining convergent sequences. The proof of these rules involves using
the definition, but once we have them, along with some “standard” convergent
sequences, we can deal with nasty expressions, such as the 2n2+7

n2+n+1
of Example

3.3, much more easily.

Exercises for Section 3.4

1. Give an example of a bounded sequence that is not convergent. [This
means that the converse of Theorem 3.7 is not true. This is hardly sur-
prising. However, every bounded sequence does have a convergent subse-
quence. This is known as the Bolzano-Weierstrass Theorem and we will
prove it in Section 3.10.]

2. Assuming that the sequence ( 1
n
) converges to 0 (see Example 3.1), and

assuming that the sine function has all its usual properties, determine the
limits of the sequences ( | sin(n)|

n
) and ( sin(n)

n
).

3. Prove that
n!

nn
→ 0 as n→ ∞.
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3.5 Combination rules
Theorem 3.8 (Combination rules). Suppose that xn → x as n → ∞ and yn →
y as n→ ∞. Then

(i) (multiple rule) if a is any constant, axn → ax as n→ ∞,

(ii) (sum rule) xn + yn → x+ y as n→ ∞,

(iii) (product rule) xnyn → xy as n→ ∞,

(iv) (quotient rule) xn/yn → x/y as n→ ∞ provided that y ̸= 0.

Proof.

(i) If a = 0 then (axn) is the constant sequence (0), which converges to 0 =
ax. So suppose that a ̸= 0. Choose ϵ > 0. Put ϵ′ = ϵ/(|a|). Since
xn → x as n → ∞, there exists N such that for all n > N , |xn − x| < ϵ′.
In other words, if n > N , |xn − x| < ϵ/(|a|), giving |axn − ax| < ϵ. Hence
axn → ax as n→ ∞.

(ii) Choose ϵ > 0. Put ϵ′ = ϵ/2. Then ∃N1, N2 such that if n > N1 then
|xn − x| < ϵ′, while if n > N2 then |yn − y| < ϵ′. Put N = max(N1, N2).
Then if n > N ,

|xn + yn − (x+ y)| ≤ |xn − x|+ |yn − y|
≤ ϵ′ + ϵ′ = ϵ

Hence xn + yn → x+ y as n→ ∞.

(iii) Since (yn) converges it is a bounded sequence, and so ∃A such that |yn| < A
for all n. Choose ϵ > 0. Put ϵ′ = ϵ/(A + |x|). Then ∃N1, N2 such that if
n > N1 then |xn − x| < ϵ′, while if n > N2 then |yn − y| < ϵ′. Put
N = max(N1, N2).
Then if n > N ,

|xnyn − xy| = |xnyn − xyn + xyn − xy|
≤ |yn||xn − x|+ |x||yn − y|
< Aϵ′ + |x|ϵ′

= (A+ |x|)ϵ′ = ϵ.

Hence xnyn → xy as n→ ∞.
Note. You are not expected to guess in advance that we put
ϵ′ = ϵ/(A + |x|). This choice is really made for you at the end when
we obtained |xnyn − xy| < (A + |x|)ϵ′. A similar comment applies to part
(iv) below.
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(iv) In view of part (iii) it is only necessary to show that if yn → y as n → ∞
and y ̸= 0, then 1/yn → 1/y as n→ ∞. Strictly speaking we ought also to
assume that none of the yn’s are zero. However we will show (see inequality
(3.2) below) that if y ̸= 0 then only a finite number of the yn’s can be zero.
These we imagine removed from the sequence.

First we obtain a positive lower bound for |yn|. Taking ϵ = |y|/2 in the
definition, we obtain:

∃N1 s.t. ∀n > N1, |yn − y| < |y|/2.

By the triangle inequality |y| − |yn| ≤ |yn − y|, and so for n > N1,
|y| − |yn| < |y|/2. Hence

|yn| > |y|/2 if n > N1. (3.2)

Next choose ϵ > 0. Put ϵ′ = y2ϵ/2. Then ∃N2 such that if n > N2 then
|yn − y| < ϵ′.
Put N = max(N1, N2). Then if n > N ,∣∣∣ 1

yn
− 1

y

∣∣∣ = ∣∣∣yn − y

yny

∣∣∣
=

|yn − y|
|yn||y|

<
2|yn − y|

|y|2
using inequality (3.2)

<
2ϵ′

y2
= ϵ.

Hence 1/yn → 1/y as n→ ∞ and part (iv), the quotient rule, follows.

Comment. You might well ask how to find proofs like the ones given above.
Consider the addition rule. If we know that xn is close to x for large values

of n and that yn is close to y for large values of n, it is natural to anticipate that
xn + yn will be close to x + y for large values of n. So we attempt to express
|(xn + yn) − (x + y)| in terms of xn − x and yn − y. That is easy because
|(xn+ yn)− (x+ y)| = |(xn−x)+ (yn− y)|, and the triangle inequality can then
be used to give |(xn + yn)− (x+ y)| ≤ |xn − x|+ |yn − y|.

The product rule is on the same lines but it isn’t quite so clear how to write
|xnyn − xy| in terms of xn − x and yn − y. Of course if xn is close to x then xnyn
is close to xyn, and this leads us to write |xnyn − xy| in the form

|xnyn − xyn + xyn − xy|,
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which can then be split into two, hopefully small, terms using the triangle inequal-
ity.

To illustrate how the combination rules can be used we give the following
example.

Example 3.5. Prove that the sequence ( 3n2+5n−9
10n2−3n+7

) converges, and determine its
limit. You may assume that 1

n
→ 0 as n→ ∞, which we proved in Example 3.1.

Solution. By dividing top and bottom of 3n2+5n−9
10n2−3n+7

by n2, it can be written as
3 + 5

n
− 9

n2

10− 3
n
+ 7

n2

. Now the combination rules can be used; we deal first with the

numerator. Since 1
n
→ 0 as n → ∞, by the multiple rule 5

n
→ 0 as n → ∞. By

the product rule applied to 1
n
× 1

n
, we deduce 1

n2 → 0 as n → ∞ and, again by
the multiple rule, −9

n2 → 0 as n → ∞. The constant sequence (3) converges to 3,
so by the sum rule 3 + 5

n
− 9

n2 → 3 + 0 + 0 = 3 as n → ∞. Applying the same
strategy to the denominator we get 10− 3

n
+ 7

n2 → 10 as n → ∞. Finally, by the
quotient rule

3n2 + 5n− 9

10n2 − 3n+ 7
=

3 + 5
n
− 9

n2

10− 3
n
+ 7

n2

→ 3

10
as n→ ∞.

Our explanation is given very fully, but it would generally suffice to say that

the “combination rules” have been used on
3 + 5

n
− 9

n2

10− 3
n
+ 7

n2

without specifying every

individual step. You should ask your instructor what level of detail is required.

Warning. Here is a warning about what not to do. This will give your lecturer
apoplexy, and it won’t do your grades any good either. I’ll put it in red as it is so
horrible.

3n2 + 5n− 9

10n2 − 3n+ 7
=

3 + 5
n
− 9

n2

10− 3
n
+ 7

n2

=
3 + 0 + 0

10 + 0 + 0
=

3

10
as n→ ∞

I am reduced to observing that (for example) 5
n

is NOT 0 for ANY value of n. It
may tend to zero as n increases, but that is not what appears in red above. The
moral is to use → and = as appropriate, they are not interchangeable symbols.

A related error is the (always erroneous) use of “variable” limits as in

3 +
5

n
− 9

n2
→ 3 + 0− 9

n2
as n→ ∞.
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The limit l in “xn → l as n → ∞” is a CONSTANT, independent of n. So it
MUST NOT contain any reference to n.

We remarked earlier that the convergence or otherwise of a sequence is unaf-
fected by altering a finite number of terms. In the case of the quotient rule we
also remarked that it can be convenient to ignore the fact that xn

yn
will be undefined

if yn = 0, provided that this only happens for a finite number of terms; we can
imagine the sequence starting beyond the point where this problem arises. For
example, we might write n

n−2
→ 1 as n → ∞ even though n

n−2
is undefined for

n = 2. We simply imagine the sequence starting at n = 3, the first few terms
being 1, 2, 5

3
, 6
4
, 7
5
, . . .. Indeed, if you look closely at the definition of convergence

you will see that it only refers to values of n that exceed some number N . So the
first few (million, billion?) terms are irrelevant to questions of convergence. Fur-
thermore, it is sometimes convenient to allow sequences to be numbered starting
at something other than 1, and it makes no difference to convergence properties.
If the start is numbered 0 (for example) we can use the notation (xn)

∞
0 to indicate

that the sequence is (x0, x1, x2, . . .).

When dealing with expressions that involve n it is helpful to have some idea
of the relative sizes of various terms for “large” values of n. Roughly speaking, in
increasing orders of magnitude, we have

nr (r > 0), ns (s > r), an (a > 1), n!, nn.

By saying this we really mean that (for example) n!
nn → 0 as n → ∞. It is useful

to keep these relative sizes in mind.

To get the full benefit from the combination rules we need some basic se-
quences. We’ve already seen that a constant sequence converges to its constant
value. The multi-part Theorem 3.11 below provides a repertoire of what are gen-
erally called basic null sequences; “null” because they all tend to zero. Before
getting to that result we have two preparatory theorems which are very helpful.

Theorem 3.9. Suppose that (xn) is a bounded sequence and that (yn) is a null
sequence (meaning that yn → 0 as n → ∞). Then (xnyn) is a null sequence, i.e.
xnyn → 0 as n→ ∞.

Proof. Since (xn) is bounded, ∃A such that |xn| < A for every value of n. Now
choose ϵ > 0 and put ϵ′ = ϵ/A. Since (yn) is null, ∃N s.t. ∀n > N, |yn − 0| < ϵ′,
i.e. |yn| < ϵ′. So, if n > N ,

|xnyn − 0| = |xnyn| ≤ A|yn| < Aϵ′ = ϵ,

and it follows that xnyn → 0 as n→ ∞.
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A couple of comments about the inequality signs in the proof above may be
appropriate here. First, since |xn| must be non-negative, and |xn| < A, we know
that A is strictly positive and cannot be zero. So division by A to form ϵ′ is
legitimate. (We did something similar in the proof of part (iii) of Theorem 3.8 - did
you notice?) Second, yn might be zero so we can’t assume that |xnyn| < A|yn|,
the best we can do is |xnyn| ≤ A|yn|. But even so, since A > 0 and |yn| < ϵ′, we
still have A|yn| < Aϵ′. It’s this sort of thing I meant when I warned earlier about
the need to be careful when using inequalities.

Theorem 3.9 is particularly useful for sequences involving expressions like
(−1)n. Since |(−1)n| = 1 for all values of n ∈ N, the sequence (xn) with
xn = (−1)n is a bounded sequence. Accepting that 1

n
→ 0 as n → ∞, it follows

that (−1)n 1
n
→ 0 as n→ ∞.

Exercises for Section 3.5

1. Prove that the sequence
(2n2 + (−1)nn+ 7

3n2 − 7n+ 1

)
converges, and determine

its limit.

2. Prove that the sequence
( n2 + 5n− 3

2n3 + 5n2 − n+ 3

)
converges, and determine

its limit.

3.6 Monotonic sequences
Some sequences behave so nicely that we give names to these nice properties.

Definition 3.10.
If xn+1 > xn for every n ∈ N, then we say that the sequence (xn) is strictly
increasing and we may write (xn) ↑↑ or just xn ↑↑.
If xn+1 ≥ xn for every n ∈ N, then we say that the sequence (xn) is monotonically
increasing and we may write (xn) ↑ or just xn ↑.
If (xn) is strictly increasing, then it is certainly monotonically increasing, so the
monotonic property is weaker than the strict property.

If xn+1 < xn for every n ∈ N, then we say that the sequence (xn) is strictly
decreasing and we may write (xn) ↓↓ or just xn ↓↓.
If xn+1 ≤ xn for every n ∈ N, then we say that the sequence (xn) is monotonically
decreasing and we may write (xn) ↓ or just xn ↓.
Again, the monotonic property is weaker than the strict property.

Don’t read more into ↑ and ↓ than in their definitions: a constant sequence is
both ↑ and ↓.

Why are these properties “nice”? The answer is in the next theorem.
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Theorem 3.10. If (xn) is monotonically increasing and bounded above, then it
converges to its least upper bound. Similarly if (xn) is monotonically decreasing
and bounded below, then it converges to its greatest lower bound.

Proof. We deal with the increasing case, the decreasing case is similar. So sup-
pose xn ↑ and that B = sup(xn) (i.e. B is the least upper bound of (xn)). Choose
ϵ > 0. By the definition of a least upper bound

1. xn ≤ B for every n ∈ N, and

2. ∃N ∈ N s.t. xN > B − ϵ.

Then if n > N , we have

B − ϵ < xN ≤ xn ≤ B < B + ϵ, (xN ≤ xn since xn ↑)

and so |xn −B| < ϵ. Hence xn → B as n→ ∞.

Here is an example illustrating the use of this theorem. It is certainly not
“obvious”.

Example 3.6. Prove that the sequence given by xn = (1 + 1
n
)n converges.

Solution. First we prove that the sequence is bounded above, then we prove that
it is strictly increasing. By the binomial theorem (see Section 3.1)(

1 +
1

n

)n

= 1 + n
( 1
n

)
+
n(n− 1)

2!

( 1
n

)2

+
n(n− 1)(n− 2)

3!

( 1
n

)3

+ . . .

. . .+
( 1
n

)n

= 1 + 1 +
1

2!

(
1− 1

n

)
+

1

3!

(
1− 1

n

)(
1− 2

n

)
+ . . .

. . .+
1

n!

(
1− 1

n

)(
1− 2

n

)
· · ·

(
1− n− 1

n

)
(3.3)

The terms in the brackets such as
(
1 − 2

n

)
are all positive and less than 1. Also

2! = 2, 3! = 3 × 2 > 22, 4! = 4 × 3 × 2 > 23, and so on until n! > 2n−1.
Consequently(
1 +

1

n

)n

< 1 + 1 +
1

2
+

1

22
+ . . .+

1

2n−1

= 1 +
(1− 1

2n

1− 1
2

)
(summing the geometric series as in Section 3.1)

= 1 + 2
(
1− 1

2n
)

< 3.
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Hence the sequence is bounded above by 3 (we are not saying that this is the least
upper bound).

To see that the sequence is strictly increasing, return to equation 3.3 and con-
sider the effect of increasing n to n+1. Each bracketed term such as

(
1− 2

n

)
will

increase since
(
1 − r

n

)
<

(
1 − r

n+1

)
. Also, the number of terms in the sum will

increase by 1, and all these terms are strictly positive. So (1+ 1
n
)n < (1+ 1

n+1
)n+1

and hence the sequence is strictly increasing.
We deduce that the sequence converges to some limit less than (or equal to) 3.

This limit is known as Euler’s number, denoted by e, whose approximate value is
2.718. In fact e is irrational, as we will prove in Chapter 7.

[Somewhat confusingly, Euler’s constant, denoted by γ, is different from Eu-
ler’s number. The value of γ is approximately 0.5772, and it is also defined as a

limiting value: γ = lim
n→∞

( n∑
r=1

1

n
−log(n)

)
. Interestingly, it is not known whether

γ is rational or irrational.]

There are many techniques for determining if a particular sequence (xn) is
increasing or decreasing. The ones to try first are looking at the difference between
consecutive terms xn+1 − xn or at their ratio xn+1

xn
. Sometimes it is necessary to

modify these slightly, for example to avoid problems with roots by considering
x2n+1 − x2n or x2

n+1

x2
n

.

Exercises for Section 3.6

1. Let yn =
n!an

nn
where 0 < a < 2. Prove that (yn) is a strictly decreasing

sequence by considering the ratio yn/yn+1 and using the lower bound on(
1+

1

n

)n

implied by Example 3.6. Deduce that (yn) converges and deter-
mine its limit.
[In fact (yn) converges for 0 < a < e. The argument outlined in the ques-
tion can be adapted to deal with the situation if 2 ≤ a < e because then
the sequence is decreasing from some n onwards. However the following
question shows that the situation is different if a ≥ e.]

2. Prove that ∀n ∈ N,
n!en

nn
> 2. Hint: Use the fact that

(r + 1

r

)r

< e for
r = 1, 2, . . . , n, and multiply all these inequalities together.
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3.7 Some basic sequences
Theorem 3.11 (Basic null sequences). The following terms form null sequences
(i.e. each converges to 0).

1.
1

nk
for any positive integer k,

2. nkan when |a| < 1 (equivalently nk

bn
when |b| > 1), where k is any integer,

3.
an

n!
for any a ∈ R,

4.
nk

n!
for any integer k,

5.
( 1

n!

) 1
n

.

Proof.

1. We start with xn = 1
n

. Choose ϵ > 0. Put N = 1
ϵ

Then for any n > N ,
n > 1

ϵ
, so 1

n
< ϵ. Consequently | 1

n
− 0| = 1

n
< ϵ. Hence 1

n
→ 0 as n→ ∞.

By the product rule applied k times, we deduce that
1

nk
→ 0 as n→ ∞ for

any positive integer k.

2. If a = 0, the sequence formed from nkan is just the constant sequence (0),
which converges to 0. So we can assume in the rest of the proof that a ̸= 0.
We present the rest of the proof of part 2 in three parts depending on whether
k < 0, k = 0, or k > 0.

If k < 0 then by part 1, nk → 0 as n → ∞. Also the sequence (an) is
bounded since |an| = |a|n < 1. So by Theorem 3.9, nkan → 0 as n→ ∞.

If k = 0 then |nkan| = |a|n and this forms a strictly decreasing sequence
because |a|n+1 = |a|n× |a| < |a|n. (Strictly decreasing because we assume
a ̸= 0.) Clearly the sequence (|a|n) is bounded below by 0, so we deduce
that this sequence converges to some limit l, i.e.

|a|n → l as n→ ∞.

This implies that the sequence (|a|n+1) also converges to l because it is the
same sequence with the first term deleted, so

|a|n+1 → l as n→ ∞.
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But |a|n+1 = |a|n × |a|, and so by the multiple rule,

|a|n+1 → |a| × l as n→ ∞.

It follows that l = |a|l, giving l(1 − |a|) = 0, and since |a| ̸= 1, we have
l = 0. Hence |a|n → 0 as n → ∞, which gives an → 0 as n → ∞.
(As remarked in a comment after Theorem 3.6, for any sequence (xn), if
|xn| → 0 as n→ ∞, then xn → 0 as n→ ∞.)

If k > 0 then k ≥ 1. Here the argument is similar to the case k = 0.
We show that |nkan| is decreasing from some point onwards, and then the
determination of the limit follows the same pattern.

From part 1 of this theorem, 1
n

→ 0 as n → ∞. By the addition and
product rules it follows that (1 + 1

n
)k → 1 as n → ∞. Put ϵ∗ = 1−|a|

|a|
then ∃N∗ s.t. ∀n > N∗, (

1 +
1

n

)k

< 1 + ϵ∗

= 1 +
1− |a|
|a|

=
1

|a|

=
|a|n

|a|n+1
.

Hence if n > N∗ then

|(n+ 1)kan+1| < |nkan|.

It follows that |nkan| forms a strictly decreasing sequence for n > N∗. (We
might say it is eventually strictly decreasing by ignoring the terms numbered
with n ≤ N∗.) This sequence is clearly bounded below by 0, so it converges
to some limit l, i.e.

|nkan| → l as n→ ∞.

This implies that the sequence (|(n+ 1)kan+1|) also converges to l because
it is the same sequence with the first term deleted, so

|(n+ 1)kan+1| → l as n→ ∞.

But |(n+ 1)kan+1| =
(
1 + 1

n

)k

× |a| × |nka|n, and so by the multiple rule,

|(n+ 1)kan+1| → 1× |a| × l as n→ ∞.

It follows that l = |a|l, giving l(1 − |a|) = 0, and since |a| ̸= 1, we have
l = 0. Hence |nkan| → 0 as n→ ∞, and so nkan → 0 as n→ ∞.
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3. Suppose that xn = an

n!
. If a = 0 the resulting sequence is the constant

sequence (0) which converges to 0. We may therefore assume that a ̸= 0.
We have ∣∣∣xn+1

xn

∣∣∣ = ∣∣∣ an+1

(n+ 1)!

n!

an

∣∣∣ = ∣∣∣ a

n+ 1

∣∣∣ < 1 if n > |a|.

So |xn| = |an
n!
| forms a strictly decreasing sequence for n > |a| (again

it is eventually strictly decreasing). It is also bounded below by 0, and
consequently it converges to some limit l. Also |xn+1| = | a

n+1
| × |xn|. But

|xn+1| also converges to l and 1
n+1

converges to 0, so l = |a| × 0× l, giving
l = 0. Hence |xn| → 0 as n → ∞, and this gives xn → 0 as n → ∞. Thus
for any a ∈ R, xn = an

n!
→ 0 as n→ ∞.

4. Suppose that xn = nk

n!
. Then

xn+1

xn
=

(n+ 1

n

)k n!

(n+ 1)!
=

(
1 +

1

n

)k

× 1

n
.

For a fixed integer k, by the combination rules (1 + 1
n
)k → 1 as n→ ∞, so

xn+1

xn
→ 1× 0 = 0 as n → ∞. So once again the sequence xn is eventually

strictly decreasing (meaning that there exists some number N such that if
n > N then xn+1 < xn). The sequence is clearly bounded below by zero,
and consequently it converges to some limit l. But

xn+1 =
(
1 +

1

n

)k

× 1

n
× xn.

So l = 1× 0× l, giving l = 0. Hence xn = nk

n!
→ 0 as n→ ∞.

5. Suppose that xn =
(

1
n!

) 1
n

. Choose ϵ > 0. From part 3 of this theorem,

(1
ϵ
)n

n!
→ 0 as n → ∞, so ∃N s.t. ∀n > N,

(1
ϵ
)n

n!
< 1. Hence for n >

N, 1
n!
< ϵn, i.e. xn =

(
1
n!

) 1
n
< ϵ. Thus ∀n > N, |xn − 0| < ϵ, and it

follows that xn =
(

1
n!

) 1
n → 0 as n→ ∞.

Comment. Here again you might ask how to devise proofs like the ones above.
So take the last sequence as an example. We’d like to prove that we can get(

1
n!

) 1
n
< ϵ. But nth roots are tricky, so raise both sides to the power n to get the
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equivalent requirement that
(

1
n!

)
< ϵn. This can be rewritten as

(1
ϵ
)n

n!
< 1. And

we know we can achieve this by the earlier part 3 of the theorem.
Generally, we’d start to devise a proof by writing down what we’d like to

achieve and seeing if we can find conditions that ensure it. This can be difficult
for people starting a first course of Real Analysis since it is the opposite process
to what most people encounter at school where most examples start with facts and
require you to make deductions from those facts. Sometimes people get the idea
that you can prove almost anything by this “reverse” process, but of course this
isn’t the case. If you try to prove something that is incorrect, you won’t be able to
find conditions that ensure it.

Here are a couple more basic sequences involving nth roots. They aren’t null,
but they do have nice limits.

Theorem 3.12. n 1
n → 1 as n → ∞, and consequently if a > 0, a

1
n → 1 as n →

∞.

Proof. Choose ϵ > 0, then 1
1+ϵ

< 1 and so, using Theorem 3.11, we see that

n
(

1
1+ϵ

)n

→ 0 as n → ∞ . Hence ∃N s.t. ∀n > N, n
(

1
1+ϵ

)n

< 1,
i.e. n < (1 + ϵ)n. So if n > N

1− ϵ < 1 < n
1
n < 1 + ϵ,

which gives |n 1
n − 1| < ϵ, and it follows that n

1
n → 1 as n→ ∞.

If a ≥ 1 then 1 ≤ a
1
n < n

1
n for n > a. So by the sandwich rule a

1
n →

1 as n→ ∞. If 0 < a < 1 then 1
a
> 1 and so

(
1
a

) 1
n → 1 as n→ ∞. Then by the

quotient rule applied to
(
1/( 1

a
)

1
n

)
= a

1
n , we deduce that a

1
n → 1 as n→ ∞.

Exercises for Section 3.7

1. For xn =
4n2 + 3n

5n3 + 2(3n)
determine whether or not the sequence (xn) con-

verges and, if it does converge, determine its limit.

2. For yn =
5n2 + (−2)n

6n + 5(n!)
determine whether or not the sequence (yn) con-

verges and, if it does converge, determine its limit.
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3.8 Recurrence relations

A sequence might be defined by means of a recurrence relation. In such cases it
is often possible to determine if the sequence converges and even to find its limit.
Here is an example.

Example 3.7. The sequence (xn) is defined by x1 = 3 and, for n ≥ 1, xn+1 =√
xn + 5. Prove that (xn) converges and determine its limit.

Solution. If xn → l as n→ ∞ then xn+1 → l as n→ ∞. Since (xn+1)
2 = xn+5

we find that l2 = l + 5 and solving the quadratic equation l2 − l − 5 = 0 tells us

that either l =
1−

√
21

2
or l =

1 +
√
21

2
. However, it is clear from the original

recurrence relation that xn > 0 for every n, so we cannot have l < 0. Hence if

the sequence does converge, the limit must be
1 +

√
21

2
= 2.7913 (to 4 decimal

places).
To prove convergence, we start by considering the first few terms of the se-

quence to get a feel for what is happening. We have x1 = 3, so x2 =
√
8 = 2.8284

(to 4 decimal places). Then x3 = 2.7979 and x4 = 2.7925 (to 4 decimal places).
So it seems possible (on admittedly flimsy evidence) that the sequence is strictly
decreasing. We will attempt to prove that this is the case, and then the limit l will
be the greatest lower bound of the sequence. To eliminate problems arising from
the square root we consider

x2n − x2n+1 = x2n − xn − 5

= (xn − α)(xn − β)

where α =
1−

√
21

2
and β =

1 +
√
21

2
are the roots of the equation x2−x−5 =

0. The aim is to prove that x2n − x2n+1 > 0 for all n as this will prove that (xn) is
strictly decreasing. The factored form (xn −α)(xn − β) will clearly be positive if
xn > β = l, and this looks likely from the decimal approximations to l, x2, x3, x4
noted above.

So we now try to prove that xn > β for all n. We will do this by induction.
First, x1 = 3 > β = 2.7913 (to 4 decimal places). Next assume that xk > β
for some positive integer k. Then xk+1 =

√
xk + 5 >

√
β + 5, and so x2k+1 >

β + 5 = β2. Taking the positive roots we get xk+1 > β. It follows by induction
that xn > β for every n ∈ N. Thus the sequence is strictly decreasing, clearly

bounded below by 0, and so it converges. The limit l must be
1 +

√
21

2
, as already

established.
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You might like to consider the above example with various initial values x1.
Plainly we can’t allow x1 < −5 because of the square root in the recurrence
relation. But you could try values of x1 between −5 and β and also other values
greater than β. What happens if x1 = β?

Exercises for Section 3.8

1. Suppose that the sequence (xn) is given by x1 = m and xn+1 =
1
2
(1+ xn)

for n ≥ 1. Prove that if m < 1 then (xn) is bounded above by 1 and is
strictly increasing, while if m > 1 then (xn) is bounded below by 1 and
is strictly decreasing. Determine the limit in each case. What happens if
m = 1?

2. Suppose that m > 1 and that the sequence (xn) is given by x1 = m and
xn+1 = 1

2
(xn + m

xn
) for n ≥ 1. Prove that the sequence (xn) is bounded

below by
√
m and that it is monotonically decreasing. Hence show that

(xn) is convergent and determine its limit. [Hint: start by considering
x2n+1 −m.]

3.9 Non-convergent sequences
Next we classify non-convergent sequences. Such sequences are sometimes called
divergent but this can be slightly confusing as it covers a range of possible be-
haviours.

Definition 3.11. Suppose that ∀A, ∃N s.t. ∀n > N, xn > A. Then we say that
(xn) diverges to +∞ (read as “plus infinity”) and write xn → +∞ as n → ∞.
Sometimes the + sign is omitted from the +∞. Note that there is no attempt to
define individual symbols such as ∞ or the meaning of “infinity”; the sentence
must be taken as a whole.

Figure 3.1 illustrates a sequence (xn) that diverges to +∞. Given any vertical
height (specified by A), there is a point N on the horizontal axis beyond which all
the members of the sequence lie above A in the shaded region. As A increases,
we’d anticipate having to move N further to the right on the picture.

Note that we do not say that (xn) converges to +∞. The word “converges”
is used exclusively for sequences that converge to some limit l ∈ R. For a con-
vergent sequence (xn) with limit l we may write limn→∞ xn = l, so it may be
thought natural to write limn→∞ xn = +∞ for a sequence (xn) that diverges to
+∞. In the convergent case this implies that l is a Real Number (l ∈ R), but in
the divergent case this must not be taken as implying that ∞ is a Real Number.
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Infinity, whatever it is, is most certainly is not a Real Number (∞ ̸∈ R). An even
more distasteful practice is adding the ∃ sign and writing ∃ limn→∞ xn = +∞
which suggests that the sequence converges to a numerical limit +∞ - something
to avoid!

xn

A

N n

Figure 3.1: xn → +∞ as n→ ∞.

Definition 3.12. If (xn) is a sequence for which (−xn) diverges to +∞, then
we say that (xn) diverges to −∞ (read as “minus infinity”) and write xn →
−∞ as n → ∞. An equivalent definition is that ∀B, ∃N s.t. ∀n > N, xn < B.
The − sign is never omitted from the −∞.

Definition 3.13. Sequences that diverge to +∞ or −∞ are sometimes said to be
properly divergent. A sequence which is not convergent and not properly diver-
gent is said to be oscillatory. An oscillatory sequence which is bounded is said
to oscillate finitely, and an oscillatory sequence which is unbounded is said to
oscillate infinitely.

Here are some examples, stated without proofs (which are easy).

1. n→ +∞ as n→ ∞,

2. −n2 → −∞ as n→ ∞,

3. ((−1)n) oscillates finitely,

4. ((−1)nn3) oscillates infinitely.
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Some of the results we saw for convergent sequences have analogies for prop-
erly divergent series, but some do not.

Theorem 3.13. Suppose that xn → +∞ as n → ∞ and that yn → +∞ as n →
∞. Then

1. (multiple rule) if a > 0 then axn → +∞ as n→ ∞,

2. (sum rule) xn + yn → +∞ as n→ ∞,

3. (product rule) xnyn → +∞ as n→ ∞.

We omit the proofs of these rules, but we observe that there can be no analogy
of the quotient rule. To see this, suppose that xn > 0 for every n ∈ N and that
xn → +∞ as n → ∞. Put yn = 2xn so that yn → +∞ as n → ∞. But then
xn

yn
→ 1

2
as n → ∞. Similarly, if we took yn =

√
xn we’d get xn

yn
→ +∞ as n →

∞, while yn = nxn gives xn

yn
→ 0 as n→ ∞.

In place of the quotient rule we have the following result.

Theorem 3.14. Suppose that the sequence (xn) is eventually positive (meaning

that ∃N∗ s.t. ∀n > N∗, xn > 0). Then xn → 0 as n → ∞ if and only if
1

xn
→

+∞ as n→ ∞.

Proof. Suppose first that xn → 0 as n → ∞. Choose A ∈ R. If A ≤ 0 put
ϵ = 1 and if A > 0 put ϵ = 1

A
. Then ∃N s.t. ∀n > N, 0 < xn < ϵ. But then

∀n > N,
1

xn
>

1

ϵ
≥ A. Hence

1

xn
→ +∞ as n→ ∞.

Next suppose that
1

xn
→ +∞ as n → ∞. Choose ϵ > 0. Put A = 1

ϵ
. Then

∃N s.t. ∀n > N,
1

xn
> A. But then ∀n > N, 0 < xn < 1

A
= ϵ. Hence

xn → 0 as n→ ∞.

The sequence (xn) is eventually positive if and only if the sequence ( 1
xn
) is

eventually positive, and a sequence that diverges to +∞ must be eventually pos-
itive. So if we know that yn → +∞ as n → ∞, then it follows (without having
to specify “eventually positive”) that 1

yn
→ 0 as n → ∞. It’s also the case that if

yn → −∞ as n→ ∞ then 1
yn

→ 0 as n→ ∞ (consider the sequence (−yn)).
The reciprocals of the basic null sequences provide examples of sequences

that diverge to +∞, although we must insist that the constant a that appears in
two of these null sequences is strictly positive.

Example 3.8. Suppose that x is not a multiple of π. Prove that the sequence
(sin(nx)) oscillates finitely. You may assume all the usual properties of the sine
and cosine functions.
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Solution. Since | sin(nx)| ≤ 1, the sequence is bounded, and so either it con-
verges to some limit l or it oscillates finitely. Suppose that sin(nx) → l as n →
∞. Then

2 sin(x) cos(nx) = sin((n+ 1)x)− sin((n− 1)x) → l − l = 0 as n→ ∞.

But x is not a multiple of π, so sin(x) ̸= 0, and consequently we can deduce that
cos(nx) → 0 as n→ ∞. But then

2 sin(x) sin(nx) = cos((n− 1)x)− cos((n+ 1)x) → 0− 0 = 0 as n→ ∞,

from which we deduce that sin(nx) → 0 as n→ ∞. Then we can deduce that

cos2(nx) + sin2(nx) → 0 + 0 = 0 as n→ ∞.

But this contradicts the fact that cos2(nx)+sin2(nx) = 1. From this contradiction,
we conclude that the sequence (sin(nx)) does not converge to any limit, and so it
oscillates finitely.

Exercises for Section 3.9

1. Classify the behaviour of each of the following sequences as convergent,
divergent to +∞ or −∞, oscillating finitely or infinitely.
(i)

(
n2 + (−1)nn

)
(ii)

(
n+ (−1)nn2

)
(iii)

(
1 + (−1)n

)
(iv)

(√
n+ 1−

√
n
)

(v)
(√

n2 + n− n
)

(vi)
(√

n3 + n2 −
√
n3
)

2. If xn → +∞ as n→ ∞, prove that 1+xn

xn
→ 1 as n→ ∞.

3. If sn = 1 + 1
2
+ 1

3
+ 1

4
+ . . . + 1

2n
, prove that sn+1 − sn >

1
2

and hence
show that sn → +∞ as n→ ∞.

4. If tn = 1 + 1
22

+ 1
32

+ 1
42

+ . . . + 1
n2 , using induction or otherwise, prove

that for all n, tn ≤ 2− 1
n

. Deduce that (tn) converges to some limit l ≤ 2.

The last two questions are where I think Real Analysis starts to produce inter-
esting and unexpected results. The terms 1, 1

2
, 1
3
, 1
4
, . . . decrease steadily with limit

0, but their sum nevertheless grows without limit. Putting it crudely, these terms
don’t get smaller fast enough to ensure that their sum remains bounded above. If
we square these individual terms and consider the resulting sum, the answer is
very different. We will look at this again in more detail in the next chapter on
series.
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3.10 Subsequences
Next we look at subsequences of a given sequence and consider some associated
results. First the definition.

Definition 3.14. Suppose that (nr) is a strictly increasing sequence of positive
integers and that (xn) is a given sequence. Then we say that the sequence (xnr) is
a subsequence of (xn).

For example, if nr = 2r for r = 1, 2, 3, . . . then xnr = x2r, giving the sub-
sequence (xnr) = (x2, x4, x6, . . .). In general, a subsequence of (xn) comprises
an infinite subset of the original sequence with the selected terms in their original
ordering. Our first result about subsequences is fairly obvious.

Theorem 3.15. If xn → l as n → ∞ and if (xnr) is a subsequence of (xn), then
(xnr) → l as r → ∞.

Proof. Choose ϵ > 0. Since xn → l as n → ∞, there exists N such that for
every n > N, |xn − l| < ϵ. But (nr) is a strictly increasing sequence of positive
integers, so n1 ≥ 1, n2 ≥ 2, . . . , nr ≥ r. So for any r > N we have nr > N and
consequently |xnr − l| < ϵ. It follows that (xnr) → l as r → ∞.

Corollary 3.15.1. if (xn) has two subsequences converging to different limits, or
has a non-convergent subsequence, then (xn) cannot be convergent.

As an example, consider the sequence ((−1)n). The odd numbered terms form
the constant subsequence (−1) that converges to −1, while the even numbered
terms form the constant subsequence (1) that converges to 1. So the sequence
((−1)n) cannot be convergent and, since it is bounded, we deduce that it oscillates
finitely.

One reason for looking at subsequences is that many non-convergent
sequences do have convergent subsequences. In fact any bounded sequence must
have a convergent subsequence. To get us started on a proof of this, consider a
non-empty set of numbers S ⊆ R that is bounded above with least upper bound A
(i.e. A = supS). If T is any non-empty subset of S, then it is also bounded above
by A and so its least upper bound B must satisfy B ≤ A. So T ⊆ S implies that
supT ≤ supS. Now apply this principle to a sequence (xn) that is bounded above
with least upper bound M1 (the reason for the subscript 1 will become apparent).
So M1 = sup(x1, x2, x3, . . .). Put M2 = sup(x2, x3, x4, . . .). Then M2 ≤ M1.
Proceeding in this way with Mr = sup(xr, xr+1, xr+2, . . .), we have Mr+1 ≤ Mr

for every r = 1, 2, 3 . . .. Consequently the sequence (Mr) is monotonically de-
creasing. If it is bounded below, it converges to some limit denoted by lim

n→∞
xn or
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by lim sup
n→∞

xn. If we denote Mr as sup
n≥r

(xn), then we can write the definition in the

following form.

Definition 3.15. Suppose that the sequence (sup
n≥r

(xn)) (where r takes the values

1, 2, 3, . . .) is bounded below, so that it converges to some limit l. Then we define

lim
n→∞

xn = lim sup
n→∞

xn = lim
r→∞

sup
n≥r

(xn) = l.

The limiting value l is called the upper limit or limit-superior of the original se-
quence (xn).

Using a similar argument, suppose now that S ⊆ R is non-empty and is
bounded below with greatest lower bound A (i.e. A = inf S). If T is any non-
empty subset of S, then it is also bounded below by A and so its greatest lower
bound B must satisfy B ≥ A. So T ⊆ S implies that inf T ≥ inf S. Now apply
this principle to a sequence (xn) that is bounded below with greatest lower bound
m1, i.e. m1 = inf(x1, x2, x3, . . .). Put m2 = inf(x2, x3, x4, . . .). Then m2 ≥ m1.
Proceeding in this way with mr = inf(xr, xr+1, xr+2, . . .), we have mr+1 ≥ mr

for every r = 1, 2, 3 . . .. Consequently the sequence (mr) is monotonically in-
creasing. If it is bounded above, it converges to some limit denoted by lim

n→∞
xn or

by lim inf
n→∞

xn. If we denote mr as inf
n≥r

(xn), then we can write the definition in the

following form.

Definition 3.16. Suppose that the sequence (inf
n≥r

(xn)) (where r takes the values

1, 2, 3, . . .) is bounded above, so that it converges to some limit l. Then we define

lim
n→∞

xn = lim inf
n→∞

xn = lim
r→∞

inf
n≥r

(xn) = l.

The limiting value l is called the lower limit or limit-inferior of the original se-
quence (xn).

As an easy example, the sequence formed by xn = (−1)n has

lim sup
n→∞

xn = 1, and lim inf
n→∞

xn = −1.

Here is a more informative example.

Example 3.9. Consider the sequence (xn) =
(
(−1)n

n+ 1

n

)
. Figure 3.2 illus-

trates the situation. We will prove that lim sup
n→∞

xn = 1 and, by a similar argument,

it follows that lim inf
n→∞

xn = −1.
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Note first that n+1
n

= 1+ 1
n

forms a strictly decreasing sequence that converges

to 1. If r is even, sup
n≥r

(xn) = xr =
r + 1

r
, while if r is odd, sup

n≥r
(xn) = xr+1 =

r + 2

r + 1
. Hence, whether r is even or odd, we have 1 ≤ sup

n≥r
(xn) ≤

r + 1

r
. Hence,

by the sandwich rule, lim
r→∞

sup
n≥r

(xn) = 1. The proof for lim inf is similar.

xn = (−1)n
n+ 1

n

1

−1
n10 20

| |

Figure 3.2: lim sup and lim inf.

Here is another example.

Example 3.10. Consider the sequence (xn) =
(
(−1)n

n

n+ 1

)
. Figure 3.3 illus-

trates the situation. We state without proof that lim sup
n→∞

xn = 1 and lim inf
n→∞

xn =

−1.

xn = (−1)n
n

n+ 1

1

−1
n10 20

| |

Figure 3.3: lim sup and lim inf again.

There is a subtlety in the definitions of lim sup and lim inf for a sequence (xn)
that may have escaped your notice. These are defined as limits of sequences of
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bounds of (xn), not as limits of subsequences of (xn). In Example 3.9, the bounds
were actually members of the sequence, but this is not necessarily the case for
all sequences, as shown by Example 3.10. However, we can prove that there is
always a subsequence of (xn) that converges to lim sup

n→∞
xn whenever the latter

is well-defined (i.e. when (xn) is bounded above and the sequence (sup
n≥r

(xn)) is

bounded below). We can do similarly for lim inf. A consequence (see Theorem
3.18 below) is that xn → l as n→ ∞ if and only if lim sup

n→∞
xn = lim inf

n→∞
xn = l.

Theorem 3.16. Suppose that (xn) is bounded above and the sequence (sup
n≥r

(xn))

is bounded below, so that there exists a Real Number l = lim sup
n→∞

xn. Then there

is a subsequence of (xn) that converges to l.

Proof. Denote (sup
n≥r

(xn)) as Mr for each r = 1, 2, 3, . . . so that Mr → l as r →

∞. Take r1 = 1. Then take r2 > r1 such that M(r1+1) ≥ xr2 > M(r1+1) − 1
2
.

Proceeding in this way, take rk+1 > rk such that M(rk+1) ≥ xrk > M(rk+1) −
1
k
. These choices are possible because each Mr is the least upper bound of the

sequence obtained from (xn) by deleting the first r − 1 terms. [Take your time to
convince yourself that this is correct.]

The sequence (rk) (k = 1, 2, 3, . . .) is strictly increasing, so the subsequence
(Mrk) must converge to l. Consequently (M(rk+1)) converges to l as does
(M(rk+1) − 1

k
). Then by the sandwich rule applied to the inequality M(rk+1) ≥

xrk > M(rk+1) − 1
k
, we deduce that xrk → l as k → ∞.

We can prove the analogous result for lim inf in a similar way. We state the
result without proof.

Theorem 3.17. Suppose that (xn) is bounded below and the sequence (inf
n≥r

(xn))

is bounded above, so that there exists a Real Number l = lim inf
n→∞

xn. Then there

is a subsequence of (xn) that converges to l.

From the previous two theorems we can deduce the following useful result
known as the Bolzano-Weierstrass Theorem.

Corollary 3.17.1 (The Bolzano-Weierstrass Theorem). If the sequence (xn) is
bounded then it has a convergent subsequence.

Proof. The boundedness of (xn) ensures that both lim sup
n→∞

xn and lim inf
n→∞

xn exist.

By the previous two theorems, there is a subsequence of (xn) that converges to the
upper limit and a subsequence of (xn) that converges to the lower limit. (These can
be the same subsequence if the upper limit equals the lower limit - see Theorem
3.18 below.)
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Theorem 3.18. xn → l as n→ ∞ if and only if lim sup
n→∞

xn = lim inf
n→∞

xn = l.

Proof. Suppose first that xn → l as n → ∞ then (xn) is bounded above and
below (see Theorem 3.7), so both lim sup

n→∞
xn and lim inf

n→∞
xn exist. Every subse-

quence of (xn) converges to l and, in particular, subsequences that converge to
these upper and lower limits. So both the upper and lower limits must equal l.

Next suppose that lim sup
n→∞

xn = lim inf
n→∞

xn = l. This implies that (xn) is

bounded above and below and that the sequences (Mr) and (mr), where Mr =
(sup
n≥r

(xn)) and mr = (inf
n≥r

(xn)), converge to the common value l. But for each

positive integer r, mr ≤ xr ≤ Mr, so by the sandwich rule we must have xr →
l as n→ ∞.

Using the previous result, we can easily prove the following (which may seem
obvious).

Theorem 3.19. Suppose that an > 0 for every n ∈ N and that an → l as n→ ∞.
Then

√
an →

√
l as n→ ∞.

Proof. Since (an) is a convergent sequence, it is bounded, i.e.
∃A s.t. ∀n ∈ N, 0 < an < A. But then 0 <

√
an <

√
A, so the sequence (

√
an)

is bounded. If this sequence were not convergent, it would have subsequences
converging respectively to its upper limit a and to its lower limit a, which are
unequal. But then the corresponding subsequences of (an) would, by the product
rule (an =

√
an ×

√
an), converge respectively to a2 and a2, which are unequal, a

contradiction. Hence (
√
an) must be convergent, and if a is its limit, the product

rule gives the limit of (an) as a2. So a2 = l, and consequently a =
√
l.

Of course the theorem and its proof are easily generalised to kth roots for any
positive integer k. We state it without giving the details.

Theorem 3.20. Suppose that an > 0 for every n ∈ N and that an → l as n→ ∞.
Then if k is any positive integer, k

√
an → k

√
l as n→ ∞.

Exercises for Section 3.10

1. Prove that the sequence
((

1
(2n)!

) 1
n

)
converges and find its limit.

2. If (xn) is a monotonically increasing sequence which has a convergent
subsequence with limit l, prove that xn → l as n→ ∞.

3. Assuming it is possible to prove that (1 + 2
n
)n forms a monotonically in-

creasing sequence, prove that (1 + 2
n
)n → e2 as n→ ∞.
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4. Prove that (1 + 2
n
)n forms a monotonically increasing sequence.

5. Use the identity

1− 1

n
=

1

1 + 1
n−1

to prove that (1− 1
n
)n → e−1 as n→ ∞.

6. What do think might happen to (1 + x
n
)n as n → ∞? (No proof required,

just a guess.)
7. Suppose that the sequence (xn) is bounded, but not convergent (i.e. it

oscillates finitely). Prove that it has two subsequences that converge to
different limits.

8. Prove that if (xn) is unbounded above then it has a subsequence diverging
to +∞.

9. Suppose that (xn) is a sequence that has a finite number of subsequences
S1, S2, . . . Sk that cover {xn : n ∈ N} (meaning that every xn lies in at
least one of these subsequences). If each of these subsequences converges
to the same limit l, prove that xn → l as n→ ∞.

3.11 Cauchy sequences
Cauchy’s criterion provides a test for convergence of a sequence where the limit
is not known. We make the following definition.

Definition 3.17. A sequence (xn) is called a Cauchy sequence if and only if the
following property is satisfied:

∀ϵ > 0,∃N s.t. ∀m,n > N, |xm − xn| < ϵ.

Intuitively, this says that a Cauchy sequence is one where the terms of the
sequence get arbitrarily close together as you move along the sequence. Rather
surprisingly this is sufficient to ensure convergence.

Theorem 3.21. A sequence (xn) is convergent if and only if it is a Cauchy se-
quence.

Proof. We start with the easier implication by showing that convergence implies
that the Cauchy criterion is satisfied. Choose ϵ > 0. If xn → l as n → ∞ then
∃N s.t. ∀n > N, |xn − l| < ϵ

2
. So if m,n > N we have

|xm − xn| = |(xm − l) + (l − xn)| ≤ |xm − l|+ |xn − l| < ϵ

2
+
ϵ

2
= ϵ.
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Hence a convergent sequence is necessarily a Cauchy sequence.
Next assume that (xn) is a Cauchy sequence. We first show that (xn) is

bounded by taking ϵ = 1 in the definition and choosing M to be the first inte-
ger greater than N , so that if n > N then |xM − xn| < 1. Put

A = max(|x1|, |x2|, . . . , |xM |, |xM |+ 1).

If n ≤M then |xn| ≤ A, and if n > M then

|xn| = |xM + (xn − xM)| ≤ |xM |+ |xM − xn| < |xM |+ 1 ≤ A.

So for every n ∈ N, |xn| ≤ A, meaning that the sequence (xn) is bounded. It
follows that (xn) has a subsequence (xnr) converging to some limit l. We will
prove that the entire sequence (xn) converges to l. To do this, choose ϵ > 0. Then
∃N1 s.t. ∀m,n > N1, |xm − xn| < ϵ/2, and ∃N2 s.t. ∀r > N2, |xnr − l| < ϵ/2.
Put N∗ = max(N1, N2). Take n > N∗ and r > N∗ (so that nr > N∗ because
nr ≥ r). We have

|xn − l| = |(xn − xnr) + (xnr − l)| ≤ |xn − xnr |+ |xnr − l| < ϵ

2
+
ϵ

2
= ϵ.

It follows that xn → l as n→ ∞.

EXERCISES 3.11

1. If |xn − xn+1| ≤ 1
2n

for all n, prove that (xn) is a Cauchy sequence and
therefore convergent.



Chapter 4

Series

4.1 Basic results

The first thing to say is that mathematicians use the words “sequence” and “series”
to mean different things. A sequence is an ordered list, often (but not always) a list
of numbers. On the other hand a series is formed from a sequence of numbers by
adding them together. In this chapter we will look at infinite series formed from
infinite sequences. We won’t keep saying “infinite”. Here is the definition.

Definition 4.1. Suppose that (an) = (a1, a2, a3, . . .) is an (infinite) sequence of
Real Numbers. We define the nth partial sum of the corresponding series to be

Sn = a1 + a2 + . . .+ an =
n∑

i=1

ai.

If the sequence (Sn) of partial sums converges to some limit S as n tends to
infinity, then we say that S is the sum of the (infinite) series a1 + a2 + a3 + . . ..
We may write

S =
∞∑
i=1

ai = a1 + a2 + a3 + . . . .

We can also express this by saying that the series
∑∞

i=1 ai converges to S, more
briefly by writing ∃

∑∞
i=1 ai = S, or even more briefly by writing

∑∞
i=1 ai = S.

If the sequence (Sn) of partial sums does not converge then we say that∑∞
i=1 ai diverges. A series is said to be properly divergent if the sequence of

partial sums is properly divergent, i.e. it tends to either +∞ or to −∞. In such
cases we may write

∑∞
i=1 ai = +∞ or

∑∞
i=1 ai = −∞, as appropriate. But re-

member this is shorthand and should not be used to treat things like +∞ or −∞
as if they were numbers.

59
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The numbers ai are generally called the terms of the series. Sometimes it is
more convenient to start the summation at an index value i other than i = 1. A
common convenient alternative is i = 0. So we may use notations like∑∞

i=0 ai = a0 + a1 + a2 + . . ., and choose to define Sn as either the sum of
the first n terms (in which case the sum ends at an−1), or as the sum of terms up
to and including an (i.e. n+1 terms). Such minor changes are just notational and
do not affect issues of convergence.

Something to observe about notation is that the “i” in
∑∞

i=1 ai is a dummy
variable. You can replace it by any symbol not used elsewhere. For example,∑∞

i=1 ai and
∑∞

n=1 an mean exactly the same thing. Of course if you define Sn as
the nth partial sum, you must not write Sn =

∑n
n=1 an because this uses n for two

different purposes: as a dummy variable and as a variable specifying the end of
the summation.

Note. We allow ourselves to talk about
∑∞

i=1 ai whether or not it converges. So
the mere writing down of such a symbol should not be taken to imply that the
series has a sum. Moreover, it should not be assumed that it is impossible to
obtain meaningful results about divergent series - whole books have been written
about them, see [G. H. Hardy,“Divergent Series”].

Obviously we would not talk about convergent series unless there were some
examples. Here is an easy one.

Example 4.1. Prove that
∞∑
i=1

1

i(i+ 1)
= 1.

Solution. We start by examining the first few terms:

1

1× 2
+

1

2× 3
+

1

3× 4
+ . . . .

Observe that the nth term is given by

an =
1

n(n+ 1)
=

1

n
− 1

n+ 1
(partial fractions).

Hence the nth partial sum Sn is given by

Sn =
(
1− 1

2

)
+
(1
2
− 1

3

)
+
(1
3
− 1

4

)
+ . . .+

( 1

n− 1
− 1

n

)
+
( 1
n
− 1

n+ 1

)
.

Observe that the second term in each bracket cancels with the first term in the next
bracket. We are left with the first term in the first bracket and the second term in
the last bracket. So Sn = 1− 1

n+1
→ 1 as n→ ∞, and the result follows.
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There are some potentially upsetting results about infinite series. If you look
back to the previous chapter, in the last two questions of Exercises 3.9 you will see
that whether or not a series

∑∞
i=1 ai converges can depend on how fast the terms

get smaller. But even worse is to come. We will see that the sum can vary depend-
ing on the order of the terms, or even how we might bracket them together. Of
course these two operations alter the underlying sequence (an), so maybe such re-
sults are not so surprising, even though finite sums are not affected by re-ordering
or bracketing. We start with two fairly simple results that are extremely useful.

Theorem 4.1. Suppose that ai ≥ 0 for every i ∈ N and that the sequence formed
by the partial sums Sn =

∑n
i=1 ai is bounded above, then

∑∞
i=1 ai converges.

Proof. Since ai ≥ 0 for every i ∈ N, the sequence (Sn) is monotonically increas-
ing. If this sequence is bounded above, it must therefore converge.

Theorem 4.2. If
∑∞

i=1 ai converges then an → 0 as n→ ∞.

Proof. Put Sn =
∑n

i=1 ai and let S denote the limit of (Sn), so that Sn →
S as n → ∞. But then Sn−1 → S as n → ∞. Hence Sn − Sn−1 → S − S =
0 as n → ∞. However Sn − Sn−1 = an, so we have proved that an → 0 as n →
∞.

A consequence of this result is:

Corollary 4.2.1. If (an) does not converge to zero then
∑∞

i=1 ai cannot converge.

The converse of Theorem 4.2 is FALSE. That is to say, a series may diverge
even though the terms tend to zero. We will prove (Theorem 4.5) that

∑∞
i=1

1
n

diverges, even though 1
n
→ 0 as n → ∞. But before that we examine geometric

series.

Theorem 4.3. The geometric series
∑∞

i=0 x
i converges with sum 1

1−x
if |x| < 1,

but it diverges if |x| ≥ 1.

Proof. The first few terms of the series are: 1 + x + x2 + x3 + . . .. We put
Sn =

∑n−1
i=0 x

i, the sum of the first n terms. We examined such a sum in the
previous chapter, Section 3.1. We write Sn in full and xSn below it, lining up
similar powers of x.

Sn = 1 + x+ x2 + x3 + . . .+ xn−1

xSn = x+ x2 + x3 + . . .+ xn−1 + xn

so Sn − xSn = 1− xn.

Hence (1− x)Sn = 1− xn, which gives Sn =
1− xn

1− x
, provided that x ̸= 1.
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If |x| < 1 then xn → 0 as n→ ∞, and so Sn → 1
1−x

as n→ ∞.
If |x| ≥ 1 then the terms of the series do not tend to zero, and so by Corollary
4.2.1 above, the series cannot converge.

Here is a verbal and pictorial illustration of Theorem 4.3 in the case when x =
1
2
. Take ruler of unit length (say 10cm). Add on half the length again (5cm), then

add on half that length (2.5cm), and so on. If you keep going you will approach
two units of length (20cm). Each successive term added to the partial sum halves
the remaining distance to two units. So the geometric series 1 + 1

2
+ 1

4
+ 1

8
+ . . .

converges to 2. Figure 4.1 illustrates what is happening.

1 1
2

1
4

1
8

· · ·
2 units

Figure 4.1:
∑∞

i=0(
1
2
)i = 2.

Theorem 4.3 enables us to deal with recurring decimals. You are probably
aware that 0.9̄ = 0.999 · · · = 1. However, many people retain a sense of unease
about this, probably feeling that in some way 0.9̄ is ever so slightly less than 1. I
hope the following explanation will resolve this unease. The resolution lies in the
fact that 0.9̄ is really an (infinite) series in disguise:

0.9̄ =
9

10
+

9

100
+

9

1000
+ . . . .

The sum of the first n terms is

Sn =
9

10

[
1 +

1

10
+

1

102
+ . . .+

1

10n−1

]
=

9

10

[1− 1
10n

1− 1
10

]
= 1− 1

10n

→ 1 as n→ ∞.

So when we write 0.9̄ = 1 the equals sign is really doing a bit more work than
it usually does. It is asserting that the infinite series 0.9̄ converges as well as
asserting that its limit is 1. Maybe we should really write ∃0.9̄ = 1 to emphasise
the convergence but somehow I don’t see this ever gaining acceptance. Of course
the partial sums are all less than 1, but the limit itself, represented by 0.9̄, is exactly
1.
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Recognising recurrent decimals as infinite series justifies performing arith-
metic operations as we have done since school days, for example 3 × 0.3̄ = 0.9̄
(3 × 1

3
= 1, right?). The length of the recurrent section doesn’t matter, such

decimals are always infinite series in disguise. For example,

0.12 = 0.121212 · · · = 12

100

[
1 +

1

100
+

1

1002
+ . . .

]
.

Next we give some simple results on series that are easy consequences of
earlier results on sequences

Theorem 4.4 (Combination Rules for Series).

1. If ∃
∑∞

n=1 xn = S and α is any Real Number, then ∃
∑∞

n=1(αxn) = αS.

2. If
∑∞

n=1 xn is divergent and α ̸= 0, then
∑∞

n=1(αxn) is divergent.

3. If m ∈ N and ∃
∑∞

n=1 xn = S, then ∃
∑∞

n=m+1 xn = S −
∑m

n=1 xn.

4. If m ∈ N and ∃
∑∞

n=m+1 xn = S, then ∃
∑∞

n=1 xn = S +
∑m

n=1 xn.

5. If
∑∞

n=1 xn and
∑∞

n=1 yn differ in only a finite number of terms then either
both series converge, or they both diverge.

6. If ∃
∑∞

n=1 xn = S and ∃
∑∞

n=1 yn = T , then ∃
∑∞

n=1(xn + yn) = S + T .

Proof.

1. Put Sn =
∑n

i=1 xi so that Sn → S as n → ∞. Then the nth partial sum of∑∞
n=1(αxn) is

∑n
i=1(αxi) = αSn → αS as n→ ∞.

2. If ∃
∑∞

n=1(αxn) = S, then by part (1) ∃
∑∞

n=1(
1
α
αxn) =

S
α

, i.e ∃
∑∞

n=1 xn,
a contradiction.

3. The partial sums of the two series differ by the fixed amount
∑m

n=1 xn.

4. As in part (3).

5. ∃m ∈ N s.t. ∀n > m, xn = yn. Hence
∑∞

n=m+1 xn and
∑∞

n=m+1 yn are
identical, and so either they both converge of they both diverge. The result
then follows from parts (3) and (4).

6. Denote the nth partial sums of the two series as Sn and Tn respectively. Then
the nth partial sum of the combined series is

∑n
i=1(xi + yi) = Sn + Tn →

S + T as n→ ∞.
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You might wonder why we haven’t given a result about multiplying convergent
series. If you multiply (a + b)(c + d) you get 4 terms: ac + ad + bc + bd. If you
multiply two sums each having 10 terms, you get a product with 100 terms. So
you can see that multiplying two series, each with infinitely many terms, is likely
to be a complicated business. We will address this later in this chapter. Meanwhile
here is a non-obvious result.

Theorem 4.5. The series
∞∑
n=1

1

nα
is convergent if α > 1, but divergent if α ≤ 1.

The particular case α = 1 corresponds to the series 1 + 1
2
+ 1

3
+ . . ., which is

known as the harmonic series and is DIVERGENT.

Proof. We denote the sum of the first n terms by Sn.
Suppose first that α > 1. Clearly (Sn) is a strictly increasing sequence because

as n increases, more positive terms are added to the existing partial sum. If we
can show that (Sn) is bounded above, it will follow that (Sn) is convergent. To do
this, note first that because n ≤ 2n − 1, we have Sn ≤ S2n−1 for every positive
integer n. But

S2n−1 =
1

1α
+
( 1

2α
+

1

3α

)
+
( 1

4α
+

1

5α
+

1

6α
+

1

7α

)
+ . . .

+
( 1

2(n−1)α
+ . . .+

1

(2n − 1)α

)
.

Think carefully about the final bracket, it contains 2n−1 terms. It follows that

Sn ≤ S2n−1 ≤ 1 +
2

2α
+

4

4α
+ . . .+

2n−1

2(n−1)α

= 1 +
1

2α−1
+

1

4α−1
+ . . .+

1

(2n−1)α−1

= 1 +
1

2α−1
+

1

(2α−1)2
+ . . .+

1

(2α−1)n−1
(a geometric series)

=
1− 1

(2α−1)n

1− 1
2α−1

<
1

1− 1
2α−1

(since 0 <
1

2α−1
< 1, because α > 1).

So if α > 1 the sequence of (strictly increasing) partial sums is bounded above
and is therefore convergent.
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Now suppose that α ≤ 1. Note that in this case nα ≤ n, so that 1
nα ≥ 1

n
. We

will show that the subsequence (S2n) is unbounded above and therefore divergent.
We have

S2n =
1

1α
+

1

2α
+
( 1

3α
+

1

4α

)
+
( 1

5α
+

1

6α
+

1

7α
+

1

8α

)
+ . . .

+
( 1

(2n−1 + 1)α
+ . . .+

1

(2n)α

)
.

Again, the final bracket contains 2n−1 terms. Since 1
nα ≥ 1

n
, this gives

S2n ≥ 1

1
+

1

2
+
(1
3
+

1

4

)
+
(1
5
+

1

6
+

1

7
+

1

8

)
+ . . .

+
( 1

(2n−1 + 1)
+ . . .+

1

(2n)

)
≥ 1 +

1

2
+

2

4
+

4

8
+ . . .+

2n−1

2n

= 1 +
1

2
+

1

2
+

1

2
+ . . .+

1

2
(n+ 1 terms)

= 1 +
n

2
.

Hence if α ≤ 1 the sequence (Sn) has a divergent subsequence and so it must also
be divergent. Indeed, since (Sn) is increasing and not bounded above we can say
Sn → +∞ as n→ ∞. We may write this as

∑∞
n=1

1
nα = +∞ when α ≤ 1.

It is perhaps surprising that the harmonic series 1+ 1
2
+ 1

3
+ 1

4
+ . . . is divergent.

Although the terms tend to zero, they do not do so fast enough to counteract the
effect of adding more and more of them together. The proof of divergence is quite
instructive. For example, if we want an estimate for a value of N that will ensure
that

∑N
n=1

1
n

exceeds 106, it tells us that we can take N = 2m where 1+ m
2
> 106.

So N = 22×106 would give
∑N

n=1
1
n
> 106.

It is probably worth making another point about the series
∑∞

n=1
1
nα that really

has nothing to do with the proof but concerns what is meant by nα. In Appendix
C we show that if q is a positive integer then any positive Real Number a has a
unique positive qth root a

1
q . This facilitates a definition of rational powers of a

positive number a. If p is any integer and q is a positive integer then for a positive
Real Number a we can define a

p
q to be the qth root of ap, i.e a

p
q = (ap)

1
q . It is easy

to prove that
(ap)

1
q = (a

1
q )p.

To see this, consider [
(a

1
q )p

]q
= (a

1
q )pq =

[
(a

1
q )q

]p
= ap.
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Then taking qth roots we get (a
1
q )p = (ap)

1
q , as required.

So rational powers are relatively easy to define and behave as we expect. But
what about aα when α is irrational? The answer is that we can define this for
positive a ∈ R. The definition is best left to a much later stage when we have
discussed the exponential and logarithm functions (exp and loge). As a temporary
expedient you can think of something like 3

√
2 as being the limit of a sequence

(3xn) where (xn) is any sequence of Rational Numbers with (irrational) limit
√
2.

We won’t make any use of expressions with irrational exponents until after we
have defined them properly. However, the proof of Theorem 4.5 works just as
well for irrational α as for rational α.

We conclude this section with a result on the alternating harmonic series. In
the next section on convergence tests we will generalize this result.

Theorem 4.6. The alternating harmonic series
∞∑
n=1

(−1)n−1

n
converges.

Proof. Put Sn =
n∑

i=1

(−1)i−1

i
(the nth partial sum). Then

S2n =
(
1− 1

2

)
+
(1
3
− 1

4

)
+ . . .+

( 1

2n− 1
− 1

2n

)
.

Clearly the subsequence (S2n) is strictly increasing since all the bracketed pairs
are positive. If we bracket differently we have

S2n = 1−
(1
2
− 1

3

)
−

(1
4
− 1

5

)
− . . .−

( 1

2n− 2
− 1

2n− 1

)
− 1

2n

≤ 1.

So (S2n) is bounded above by 1. It follows that (S2n) converges to some limit
l ≤ 1. But S2n−1 = S2n + 1

2n
→ l + 0 = l as n → ∞. So (Sn) has two

subsequences that cover {Sn : n ∈ N} and have the same limit l. It follows (see
Exercises 3.10) that Sn → l as n → ∞. [In fact l = loge 2 but we cannot prove
that yet.]

The key features of this proof are (i) that the terms of the series alternate in
sign, (ii) their absolute values (in this case 1

n
) monotonically decrease, and (iii)

the terms converge to zero. So this is a sort of partial converse to Corollary 4.2.1,
albeit with the stringent extra conditions (i) and (ii). Leibniz’ Alternating Series
test in the next section generalises this result with an almost exact copy of the
proof.
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Exercises for Section 4.1

1. Prove that
∞∑
i=1

1

n(n+ 2)
converges and determine its sum.

2. Determine the sum of the geometric series 1
2
+ 1

22
+ 1

23
+ . . ..

3. Determine the sum of the geometric series 1
2
− 1

22
+ 1

23
− 1

24
+ . . . (i.e. with

common ratio −1
2
).

4.2 Convergence Tests

How can we tell if something like
∞∑
n=1

1 + 2n− n2

2n4 + 3n− 1
converges? It would be hor-

rible to have to treat every possible case from basic principles. What are needed
are some simple tests that will deal with most (or at least many) cases. As we have
already mentioned Leibniz’ alternating series test, we present this first.

Theorem 4.7 (Leibniz’ Alternating Series Test). Suppose that (xn) is a sequence
with the following three properties:

(i) the members of the sequence alternate in sign,

(ii) (|xn|) is a monotonically decreasing sequence,

(iii) xn → 0 as n→ ∞.

Then the series
∞∑
n=1

xn converges.

Proof. Put Sn =
n∑

i=1

xi (the nth partial sum). Without loss of generality we may

assume that x1 > 0 so that xn > 0 for n odd and xn < 0 for n even. Then

S2n = (x1 + x2) + (x3 + x4) + . . .+ (x2n−1 + x2n).

By condition (ii) |x1| ≥ |x2|, |x3| ≥ |x4|, etc., so all the bracketed pairs are at
least zero, and it follows that (S2n) is a monotonically increasing subsequence. If
we bracket differently we have

S2n = x1 + (x2 + x3) + (x4 + x5) + . . .+ (x2n−2 + x2n−1) + x2n

≤ x1,
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because all the bracketed terms, and the final (unbracketed) term, are now at most
zero. So (S2n) is bounded above by x1. It follows that (S2n) converges to some
limit l ≤ x1. But S2n−1 = S2n − x2n → l + 0 = l as n → ∞. So (Sn) has
two subsequences that cover {Sn : n ∈ N} and have the same limit l. Hence
Sn → l as n→ ∞.

The three conditions in this test are of equal importance. If you examine the
proof carefully you will see that we have used conditions (i) and (ii) to prove
that (S2n) is increasing and bounded above, and we used condition (iii) to prove
that (S2n) and (S2n−1) have the same limit. Of course convergence of a series is
unaffected by altering a finite number of terms, so it suffices for conditions (i) and
(ii) to hold for all sufficiently large n, i.e. all n > N for some number N . So we
have the following corollary.

Corollary 4.7.1. Suppose that (xn) is a sequence with the following three prop-
erties:

(i) the members of the sequence alternate in sign for n > N ,

(ii) (|xn|) is an eventually monotonically decreasing sequence (i.e. monotoni-
cally decreasing for n > N ),

(iii) xn → 0 as n→ ∞.

Then the series
∞∑
n=1

xn converges.

Example 4.2. Prove that if −1 ≤ x < 0 then
∞∑
n=1

xn

n
converges.

Solution. Since x < 0, the terms an = xn/n alternate in sign, and because |x| ≤ 1
we have |an| ≤ 1

n
, and so (|an|) is a null sequence. Moreover,∣∣∣an+1

an

∣∣∣ = ∣∣∣ xn+1

n+ 1
· n
xn

∣∣∣ = ∣∣∣ xn

n+ 1

∣∣∣ ≤ n

n+ 1
< 1,

so (|an|) is a monotonically decreasing sequence. Thus the three conditions of

Leibniz’ alternating series test are met, and we deduce that
∞∑
n=1

xn

n
converges

when −1 ≤ x < 0. [The case x = −1 is the alternating harmonic series.]

Example 4.3. Prove that if x < 0 then
∞∑
n=0

xn

n!
converges.
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Solution. Since x < 0, the terms an = xn/n! alternate in sign, and because
(
xn

n!

)
is a basic null sequence, (|an|) is also a null sequence. Moreover,∣∣∣an+1

an

∣∣∣ = ∣∣∣ xn+1

(n+ 1)!
· n!
xn

∣∣∣
=

|x|
n+ 1

< 1 for n > |x|

[Note how factorials cancel: n!/(n+ 1)! = 1/(n+ 1), e.g. 6!/7! = 1/7.]
So (|an|) is an eventually monotonically decreasing sequence (decreasing for n >
|x|). Thus the three conditions of Leibniz’ alternating series test are met, and we

deduce that
∞∑
n=1

xn

n!
converges when x < 0.

All the remaining convergence tests in this section deal with series whose
terms are non-negative. In the next section (Absolute Convergence) we will see
how these tests can be adapted to deal with series that contain a mixture of positive
and negative terms. So our initial restriction to non-negative terms is not as bad
as it may seem.

Theorem 4.8. [Comparison Test]
Suppose that

∑∞
n=1 cn is a convergent series of non-negative terms, and that∑∞

n=1 dn is a divergent series of non-negative terms.

1. If 0 ≤ xn ≤ cn (∀n ∈ N), then
∑∞

n=1 xn converges and
∑∞

n=1 xn ≤∑∞
n=1 cn.

2. If xn ≥ dn (∀n ∈ N), then
∑∞

n=1 dn diverges.

Proof. 1. Suppose that 0 ≤ xn ≤ cn (∀n ∈ N). The partial sums of
∑∞

n=1 xi
form a monotonically increasing sequence because each term xn is non-
negative. Furthermore,

∑n
i=1 xi ≤

∑n
i=1 ci ≤

∑∞
i=1 ci. So the partial sums

of
∑∞

i=1 xn are bounded above. Hence these partial sums form a convergent
sequence with limit at most

∑∞
i=1 ci, i.e. ∃

∑∞
i=1 xi ≤

∑∞
i=1 ci.

2. Suppose that xn ≥ dn (∀n ∈ N). Then
∑n

i=1 xi ≥
∑n

i=1 di → +∞ as n →
∞. Hence

∑n
i=1 xi is divergent.

Since convergence or divergence of a series is unaffected by altering a finite
number of terms, the comparison test can be used to determine convergence (or di-
vergence) if ∃N such that 0 ≤ xn ≤ cn (or xn ≥ dn) for all n > N . Furthermore,
positive multiples of convergent (divergent) series are convergent (divergent), we
can relax the conditions of the test to give the following corollary
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Corollary 4.8.1.
Suppose that

∑∞
n=1 cn is a convergent series of non-negative terms, and that∑∞

n=1 dn is a divergent series of non-negative terms.

1. If α > 0 and 0 ≤ xn ≤ αcn (∀n > N ), then
∑∞

n=1 xn converges.

2. If α > 0 and xn ≥ αdn (∀n > N ), then
∑∞

n=1 dn diverges.

Now let us look at that horrible example we mentioned at the start of this
section.

Example 4.4. Determine whether or not the series
∞∑
n=1

1 + 2n− n2

2n4 + 3n− 1
converges.

Solution. First examine xn =
1 + 2n− n2

2n4 + 3n− 1
informally. The dominant term in

the numerator is −n2, and the dominant term in the denominator is 2n4. So, for
large n we’d expect xn to be close to (−n2)/(2n4) = (−1)/2n2. Ignoring the

numerical factor −1
2
, this suggests that the series will behave like

∞∑
n=1

1

n2
, which

is convergent (see Theorem 4.5). So we attempt to prove this by using (essentially)

the comparison test with
∞∑
n=1

1

n2
. Because of the − sign in front of the n2 in the

numerator, it’s best to look at −xn = yn, say. Then

yn =
−1− 2n+ n2

2n4 + 3n− 1

<
n2

2n4 + 3n− 1

<
n2

2n4
since 3n− 1 > 0 for n ≥ 1,

=
1

2n2
.

Also, yn ≥ 0 provided n2 ≥ 1 + 2n, which is certainly true if n ≥ 3. (Note that
yn ≥ 0 is an important condition in the comparison test for convergence.)

So we now have that for n ≥ 3, 0 ≤ yn ≤ 1

2n2
. Since

∞∑
n=1

1

n2
converges,

it follows from the comparison test that
∑∞

n=1 yn converges, and hence
∑∞

n=1 xn
also converges because it is a multiple (by a factor −1) of that series.

Although we won’t do this here, it would be possible to get some estimate of

the value of
∑∞

n=1 xn, since the comparison test ensures that
∞∑
n=3

yn ≤ 1

2

∞∑
n=3

1

n2
.
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The following version of the comparison test can save a bit of arithmetic.

Corollary 4.8.2. [Limit Comparison Test]
Suppose that

∑∞
n=1 cn is a convergent series of non-negative terms, and that∑∞

n=1 dn is a divergent series of non-negative terms.

1. If
xn
cn

→ l as n→ ∞ and l > 0, then
∑∞

n=1 xn converges.

2. If
xn
dn

→ l as n→ ∞ and l > 0 (or if l = +∞), then
∑∞

n=1 xn diverges.

Proof. 1. If
xn
cn

→ l as n → ∞ and l > 0, then taking ϵ = l
2

in the definition

of convergence, ∃N s.t. ∀n > N,
∣∣∣xn
cn

− l
∣∣∣ < l/2. But then for n > N ,

0 <
l

2
<
xn
cn

<
3l

2
,

which gives 0 < xn < (3l/2)cn for all n > N . It then follows from
Corollary 4.8.1 that

∑∞
n=1 xn converges.

2. Using a similar argument to part (1) when l ̸= +∞,

∃N s.t. ∀n > N,
l

2
<
xn
dn
,

which gives xn > (l/2)dn for all n > N . It then follows from Corollary
4.8.1 that

∑∞
n=1 xn diverges. In the case when l = +∞, ∃N s.t. ∀n >

N, xn > dn and again we deduce from the Corollary that
∑∞

n=1 xn diverges.

To show how this works, look again at Example 4.4. Again we compare

yn =
−1− 2n+ n2

2n4 + 3n− 1
with cn =

1

n2
. We have

yn
cn

=
n2(−1− 2n+ n2)

2n4 + 3n− 1

=
− 1

n2 − 2 1
n
+ 1

2 + 3
n3 − 1

n4

(dividing top and bottom by n4)

→ 1

2
as n→ ∞.

So by the limit comparison test
∑∞

n=1 yn converges.
Here is another example.
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Example 4.5. Determine whether or not the series
∞∑
n=1

n2 + 3n

2n2
√
n+ 10

converges.

Solution. For large n we’d expect the term xn =
n2 + 3n

2n2
√
n+ 10

to behave like

n2

2n2
√
n

=
1

2
√
n

. So we compare xn with dn = 1√
n

= 1

n
1
2

, noting that, by

Theorem 4.5,
∑∞

n=1 dn is a divergent series of positive terms. We have

xn
dn

=

√
n(n2 + 3n)

2n2
√
n+ 10

=
1 + 3

n
√
n

2 + 10
n2

√
n

(dividing top and bottom by n2
√
n)

→ 1

2
as n→ ∞.

It then follows from the limit comparison test that
∑∞

n=1 xn diverges.

The comparison test (in whatever form it is used) does have certain disadvan-
tages.

1. It is necessary to have some idea in advance of whether or not the series in
question converges or diverges.

2. Then you have to find a suitable series with which to make the comparison.
At present we just have geometric series

∑∞
n=0 x

n and series of the form∑∞
n=1

1
nα .

The following test does not suffer from these disadvantages. But this is really
because it has comparison with geometric series built into it. So the test is less
subtle than the comparison test, although much easier to use.

Theorem 4.9. [D’Alembert’s Ratio Test]
Suppose that

∑∞
n=1 xn is a series of positive terms.

1. If there exists a number k < 1 such that for every n ∈ N,
xn+1

xn
≤ k, then∑∞

n=1 xn converges.

2. If for every n ∈ N,
xn+1

xn
> 1, then

∑∞
n=1 xn diverges.



4.2. CONVERGENCE TESTS 73

Proof. 1. If
xn+1

xn
≤ k < 1 for every n ∈ N, then we have

x2 ≤ kx1, x3 ≤ kx2 ≤ k2x1, x4 ≤ kx3 ≤ k3x1, . . . .

In general, xn ≤ kn−1x1. Since 0 < k < 1, it follows by comparison with
the geometric series

∑∞
n=1 k

n−1 that the series
∑∞

n=1 xn converges.

2. If
xn+1

xn
> 1 for every n ∈ N, then we have xn > x1 for every n ∈ N.

By the assumption implicit in writing the ratio xn+1/xn we have x1 ̸= 0.
Hence the sequence of terms (xn) cannot converge to zero, and so

∑∞
n=1 xn

diverges.

Notes.
1. In part (1) of the test (convergence), it is important to find a constant k < 1.
It isn’t sufficient merely to show that xn+1/xn < 1 because that does not ensure
convergence. It would only show that the sequence of terms is decreasing, it may
not even be the case that xn → 0 as n → ∞. And even if the terms do tend to
zero, the series may not converge, as is shown by the DIVERGENT harmonic
series where xn = 1

n
, giving xn+1/xn = n/(n+ 1) < 1.

2. If you look at the proof of part (2) of the test you will see that the conditions
ensure that the terms xn do not tend to zero, and consequently the series cannot
converge. In this part of the test we can drop the requirement that the terms xn
are positive provided we have |xn+1/xn| > 1, i.e. we introduce modulus signs.
Then we deduce that |xn| does not tend to zero, and so xn does not tend to zero.
A similar observation applies to subsequent versions of the test given below.

As with the comparison test, we note that convergence or divergence of a series
is unaffected by altering a finite number of terms, so it suffices if the conditions
apply to all sufficiently large n, i.e. all n > N . So we can relax the conditions of
the test to give the following corollary

Corollary 4.9.1.
Suppose that

∑∞
n=1 xn is a series of positive terms.

1. If there exists a number k < 1 such that ∀n > N ,
xn+1

xn
≤ k, then

∑∞
n=1 xn

converges.

2. If ∀n > N ,
xn+1

xn
> 1, then

∑∞
n=1 xn diverges.

There is also a limit form of the test that often saves some arithmetic.
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Corollary 4.9.2.
Suppose that

∑∞
n=1 xn is a series of positive terms and that

xn+1

xn
→ l as n→ ∞.

Then

1. if l < 1,
∑∞

n=1 xn converges,

2. if l > 1 (including the case l = +∞),
∑∞

n=1 xn diverges,

3. if l = 1, the test is inconclusive - the series might converge or it might
diverge.

Proof. For l < 1, the basic idea of the proof is that if we pick a number k between
l and 1, such as k = (1+ l)/2, then the ratio xn+1/xn will be less than k provided
that n is sufficiently large. Similarly if l > 1 and we pick a number k between 1
and l, such as k = (l+1)/2, then the ratio xn+1/xn will be greater than k provided
that n is sufficiently large. Here are the details.

1. If l < 1 take ϵ = 1−l
2

in the definition of sequence convergence. We have

that ∃N s.t. ∀n > N,
∣∣∣xn+1

xn
− l

∣∣∣ < 1− l

2
. But then if n > N ,

xn+1

xn
<

1− l

2
+ l =

1 + l

2
= k, say, and k < 1. The result then follows from the

previous corollary.

2. If l > 1 (but l ̸= +∞) take ϵ = l−1
2

in the definition of sequence con-

vergence. We have that ∃N s.t. ∀n > N,
∣∣∣xn+1

xn
− l

∣∣∣ < l − 1

2
. But then if

n > N ,
xn+1

xn
> l − l − 1

2
=
l + 1

2
> 1. Again, the result follows from the

previous corollary.

In the case l = +∞, the terms are eventually increasing and so do not tend
to zero, consequently the series diverges.

3. Both the series
∑∞

n=1
1
n

and
∑∞

n=1
1
n2 give l = 1, but the former diverges,

while the latter converges.

Example 4.6. Prove that if 0 ≤ x < 1 then the series
∑∞

n=1
xn

n
converges, while

if x ≥ 1 the series diverges.
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Solution. If x = 0 then the series converges because all the terms (and hence all
the partial sums) are zero. So suppose x > 0 and put an = xn/n. Then

an+1

an
=

xn+1

n+ 1
· n
xn

= x · n

n+ 1
→ x as n→ ∞.

By the limit version of D’Alembert’s ratio test, the series converges if the limiting
value, namely x, satisfies x < 1, and diverges if x > 1.

In the case x = 1, the series is the harmonic series
∑∞

n=1
1
n

, which is DI-
VERGENT. If you look back to Example 4.2, you will see that we now know that∑∞

n=1
xn

n
converges when −1 ≤ x < 1. It diverges if |x| > 1 because then the

terms do not tend to zero. We’ll indicate a more satisfactory proof of all this once
we have discussed the concept of absolute convergence in the next section.

Example 4.7. Prove that if x ≥ 0 then the series
∑∞

n=0
xn

n!
converges.

Solution. If x = 0 then the series converges because all the terms apart from
the first term (corresponding to n = 0) are zero. So suppose x > 0 and put
an = xn/n!. Then

an+1

an
=

xn+1

(n+ 1)!
· n!
xn

=
x

n+ 1
→ 0 as n→ ∞.

By the limit version of D’Alembert’s ratio test, the series converges because the
limiting value, namely 0, is less than 1.

If you look back to Example 4.3, you will see that we now know that
∑∞

n=1
xn

n!

converges for all x ∈ R. Again, we’ll indicate a more satisfactory proof once
we have discussed the concept of absolute convergence in the next section. It is
perhaps a little surprising that the series converges no matter what value of x you
choose. The truth is that size matters: n! will eventually massively outrun xn as n
gets larger, whatever the value of x might be.

A further test, which can be useful is the following.

Theorem 4.10 (Cauchy’s nth Root Test).
Suppose that

∑∞
n=1 xn is a series of non-negative terms.

1. If there exists a number k < 1 such that for every n ∈ N, n
√
xn ≤ k, then∑∞

n=1 xn converges.
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2. If for every n ∈ N, n
√
xn > 1, then

∑∞
n=1 xn diverges.

Proof. 1. If n
√
xn ≤ k for every n ∈ N, and k < 1, then we have xn ≤ kn, and

consequently
∑∞

n=1 xn converges (by comparison with
∑∞

n=1 k
n).

2. If n
√
xn ≥ 1 for every n ∈ N, then xn ≥ 1, and consequently

∑∞
n=1 xn

diverges (the terms do not tend to zero).

As with previous tests, it suffices for the conditions to hold for all sufficiently
large n, i.e n > N . So we have the corollary.

Corollary 4.10.1.
Suppose that

∑∞
n=1 xn is a series of non-negative terms.

1. If there exists a number k < 1 such that for every n > N , n
√
xn ≤ k, then∑∞

n=1 xn converges.

2. If for every n > N , n
√
xn > 1, then

∑∞
n=1 xn diverges.

There is also a limit version of this test.

Corollary 4.10.2.
Suppose that

∑∞
n=1 xn is a series of non-negative terms and that n

√
xn → l as n→

∞. Then

1. if l < 1,
∑∞

n=1 xn converges,

2. if l > 1 (including the case l = +∞),
∑∞

n=1 xn diverges,

3. if l = 1, the test is inconclusive - the series might converge or it might
diverge.

Proof. As in the proof of the limit form of D’Alembert’s ratio test, we have in
case

1. ∃N and k < 1 such that ∀n > N , n
√
xn ≤ k,

2. ∃N such that ∀n > N , n
√
xn > 1,

3. the same examples provide the justification.

Example 4.8. Use Cauchy’s nth root test to prove that
∞∑
n=1

x2n

(2n)!
converges for

every real Number x.
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Solution. The expression x2n is non-negative for every x ∈ R and for every n ∈

N, and hence all the terms of the series are non-negative. Moreover, n

√
x2n

(2n)!
=

x2

n
√

(2n)!
. But

(2n)! ≥ (2n)(2n− 1)(2n− 2) · · · (n+ 1)

and the latter product has n terms, all greater than n, and so (2n)! > nn, giving

n
√
(2n)! > n. It follows that 0 ≤ n

√
x2n

(2n)!
≤ x2

n
→ 0 as n → ∞. Consequently

n

√
x2n

(2n)!
→ 0 as n → ∞ and then by the limit version of Cauchy’s nth root test

we deduce that
∞∑
n=1

x2n

(2n)!
converges for every Real Number x.

Exercises for Section 4.2

1. Investigate whether or not the following series converge.

∞∑
n=1

n!

nn
.a)

∞∑
n=1

√( n

n3 + 1

)
.b)

∞∑
n=1

n√
4n5 + 1

.c)

∞∑
n=1

1√
n2 +

√
n

.d)
∞∑
n=1

n

3n
.e)

∞∑
n=1

( n

2n+ 1

)n

.f)

2. Prove that
∞∑
n=1

(
√
n+ 1−

√
n) diverges, but

∞∑
n=1

(−1)n(
√
n+ 1−

√
n) con-

verges.

3. Define an =

{
0 if n has a zero in its decimal representation,
1 otherwise.

For example, a3 = 1, a50 = 0, a103 = 0, a579 = 1.

Prove that
∞∑
n=1

an
n

converges.

[Hint: m-digit integers are those from 10m−1 to 10m − 1; count how many

of these have no zeros amongst theirm digits. Hence estimate
10m−1∑

n=10m−1

an
n

.]
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4.3 Absolute Convergence

All the convergence tests in the previous section rely on the terms being well-
behaved in the sense of either all being non-negative or alternating in sign. But
there is no reason why series should always look like one of these alternatives. To

deal with this issue, suppose informally that
∞∑
n=1

xn is a series which has a mix-

ture of positive and negative terms. With such a series we can associate a series

containing only non-negative terms, namely
∞∑
n=1

|xn|. In this latter series there

is no possibility of positive and negative terms cancelling out, so it is plausible

that
∞∑
n=1

|xn| is less likely to converge than
∞∑
n=1

xn. We will prove that if
∞∑
n=1

|xn|

converges then so necessarily does
∞∑
n=1

xn. This provides us with a way to investi-

gate the convergence of
∞∑
n=1

xn, since
∞∑
n=1

|xn| contains no negative terms and the

earlier tests may be applied to it. We start with a definition.

Definition 4.2. Suppose that
∞∑
n=1

xn is a series and that the associated series

∞∑
n=1

|xn| converges. The we say that
∞∑
n=1

xn converges absolutely.

This definition is only seen to be sensible once we have proved the result
mentioned above, namely that if a series converges absolutely, then it converges.

Theorem 4.11. If
∞∑
n=1

xn converges absolutely (i.e. if
∞∑
n=1

|xn| converges), then

∞∑
n=1

xn converges.

Proof. Roughly speaking, the strategy is to split the series into its positive and

negative parts and prove by comparison with
∞∑
n=1

|xn| that these separate parts
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converge. Accordingly we define

x+n =

{
xn if xn ≥ 0,
0 if xn < 0

x−n =

{
0 if xn ≥ 0,
xn if xn < 0

Then xn = x+n + x−n and |xn| = x+n − x−n . Moreover, 0 ≤ x+n ≤ |xn| and

0 ≤ −x−n ≤ |xn|. By the comparison test with the convergent series
∞∑
n=1

|xn|,

it follows from the last two inequalities that both
∞∑
n=1

x+n and
∞∑
n=1

x−n converge.

Hence
∞∑
n=1

(x+n + x−n ) converges, i.e.
∞∑
n=1

xn converges.

Motivated by the preceding theorem we make another definition.

Definition 4.3. If the series
∞∑
n=1

xn converges, but is not absolutely convergent

(i.e.
∞∑
n=1

|xn| diverges), the we say that
∞∑
n=1

xn is conditionally convergent or that

it converges conditionally.

An example of a conditionally convergent series is the alternating harmonic

series
∞∑
n=1

(−1)n−1

n
= 1 − 1

2
+

1

3
− 1

4
+ . . .. This is convergent (Theorem 4.6),

but the harmonic series itself 1 +
1

2
+

1

3
+

1

4
+ . . . is divergent (Theorem 4.5).

Example 4.9. Determine whether or not the series
∞∑
n=1

sin(n)

n2
converges. (As-

sume that the sine function has all its usual properties.)

Solution. Here we cannot employ Leibniz’ alternating series test because, al-
though sin(n) is positive for some values of n and negative for other values, it
certainly does not alternate (e.g. sin(n) > 0 for n = 1, 2, 3, but sin(n) < 0 for
n = 4, 5, 6). And because the terms certainly do take positive and negative values,
we cannot directly employ any of the other tests (comparison, ratio, nth-root).
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Therefore we consider the series
∞∑
n=1

| sin(n)|
n2

. We have 0 ≤ | sin(n)|
n2

≤ 1

n2
,

and
∞∑
n=1

1

n2
converges (Theorem 4.5). So, by the comparison test,

∞∑
n=1

| sin(n)|
n2

converges, and hence the series
∞∑
n=1

sin(n)

n2
converges (it is absolutely convergent).

A note on Complex sequences and series
So far we have assumed that we are working in the field of Real Numbers (R). But
many of the definitions and theorems also apply in the field of Complex Numbers
(C). In particular, the triangle inequality, the definition of a convergent sequence,
the boundedness of a convergent sequence, the rules for sums, products and quo-
tients of convergent sequences, the definition of a convergent series, the fact that
terms of a convergent series must tend to 0, the behaviour of geometric series
with complex common ratios, and the result that absolute convergence ensures
convergence. For the latter, |z| is interpreted as the complex modulus of z. If
you subsequently study Complex Analysis you will encounter all these familiar
friends(?) again, generally with almost identical proofs. Of course there are some
differences, for example the alternating series test cannot apply to a series of Com-
plex Numbers because there is no notion of a Complex Number being positive (or
negative).

In this section on absolute convergence there are two important aspects. One
aspect concerns the application of absolute convergence to power series. This
generates lots of examples to test your knowledge of convergence tests and, more
importantly, it is the first step in defining familiar functions such as sinx. So this
first aspect is important to you because you are highly likely to be tested on it
in any examination or test on series. The other aspect is that we can show that
conditionally convergent series can be rearranged to converge to whatever you
like, or to oscillate finitely or infinitely, or to diverge to either +∞ or to −∞.
Indeed, the words “conditionally convergent” refer to the condition that the terms
should not be rearranged. So the basic message from this is that you must not
rearrange a conditionally convergent series. This is quite different to all finite
sums, which are unaltered by any rearrangement of the terms. It’s good that we
never form an infinite series of positive and negative financial transactions when
we go shopping - the shopkeeper would undoubtedly argue that we should owe
+∞, while we might prefer −∞. But first we will deal with power series.

Definition 4.4. An infinite series of the form
∞∑
n=0

anx
n, (where each an is inde-

pendent of x) is called a power series in the variable x. The number a0 is called
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the constant term and, for n ≥ 1, the number an is referred to as the coefficient of
xn.

For example, the geometric series
∞∑
n=0

xn is a power series in which all the

coefficients and the constant term are equal to 1. Another example is
∞∑
n=1

xn

n
,

where the constant term is 0 and the coefficient of xn is 1
n

for each n ≥ 1.
A power series in x may converge only for x = 0 (when anxn = 0 for n ≥ 1),

or it may converge for some non-zero values of x but diverge for other values of
x, or it may converge for all values of x. We will see examples of all of these
behaviours. The next two theorems show that every power series has a degree of
regularity in its behaviour. For example, it can’t diverge for x = 2, and converge
for x = 3.

Theorem 4.12. Suppose that the power series
∞∑
n=0

anx
n converges for x = ξ and

that |ξ| > 0 (i.e. ξ ̸= 0). Then the power series converges absolutely for any
value of x satisfying |x| < |ξ|.

Proof. Since
∞∑
n=0

anξ
n converges, the terms tend to zero, i.e. anξn → 0 as n →

∞. Hence there exists a bound A such that |anξn| < A for n = 0, 1, 2, . . .. But
then we have

|anxn| = |anξn|
∣∣∣x
ξ

∣∣∣n
≤ A

∣∣∣x
ξ

∣∣∣n.
Hence, if |x| < |ξ|, the series

∞∑
n=0

|anxn| converges (by the comparison test with

the geometric series
∞∑
n=0

∣∣∣x
ξ

∣∣∣n whose common ratio is
∣∣∣xξ ∣∣∣ < 1). Thus the power

series
∞∑
n=0

anx
n converges absolutely for any value of x satisfying |x| < |ξ|.

Corollary 4.12.1. If the power series
∞∑
n=0

anx
n diverges for x = ξ, then it diverges

for any value of x satisfying |x| > |ξ|.
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Proof. Suppose that the series converges for x = η where |η| > |ξ|. Then by The-
orem 4.12, the series converges for all values of x satisfying |x| < |η|. Therefore
the series must converge for x = ξ, a contradiction. Hence the series must diverge
for any value of x satisfying |x| > |ξ|.

Theorem 4.13. [The radius of convergence of a power series]

Given a power series
∞∑
n=0

anx
n, precisely one of the following three alternatives

must apply.

1. The series converges only for x = 0.

2. The series converges for all values of x.

3. There exists a number R > 0 such that the series converges if |x| < R and
diverges if |x| > R.

In case (3), the number R is called the radius of convergence of the series. In case
(1) we say that the radius of convergence is zero and write R = 0. In case (2) we
say that the radius of convergence is infinite and write R = ∞.

Proof. Suppose that (1) and (2) are not the case. Then there exists ξ > 0 such that
the series converges for x = ξ, and there exists η such that the series diverges for
x = η. From Theorem 4.12 it follows that |ξ| < |η|. Put

S =

{
|x| :

∞∑
n=0

anx
n converges

}
.

The set S is bounded above by |η| so S has a least upper bound R ∈ R, and
R ≤ |η|. If |x| < R it follows from the definition of S and Theorem 4.12 that
the series converges. If |x| > R it follows from Corollary 4.12.1 that the series
diverges.

Comments

1. The reason that R is called the radius of convergence is that Theorems 4.12
and 4.13 remain valid if we allow each an and x to be Complex Numbers.
In the complex plane, the inequality |x| < R determines a circular region
centred on the origin with radius R.

2. Theorem 4.13 tells us nothing about convergence when |x| = R (unless
R = 0 or ∞). For any R > 0 (R ̸= ∞) there are power series with that
radius of convergence, which converge if |x| = R, others which diverge if
|x| = R, and ones which converge for x = R and diverge for x = −R (and
vice-versa).
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3. In many cases, D’Alembert’s ratio test or Cauchy’s nth root test can be used
to determine the value of R.

Example 4.10. Consider the geometric series
∞∑
n=0

xn. If we ignore the n = 0

term, which is irrelevant to questions of convergence, the nth term is xn. The nth

root of |xn| is just |x|. So if |x| < 1 the series converges (absolutely), while if
|x| > 1 it diverges, so the radius of convergence is R = 1. In the cases when
|x| = 1 (i.e. x = 1 and x = −1) the series diverges because the terms do not tend
to zero.

Example 4.11. Consider the series
∞∑
n=1

xn

n
. Here the nth root of |xn/n| is

|x|/(n 1
n ) → |x| as n → ∞. So if |x| < 1 the series converges (absolutely),

while if |x| > 1 it diverges. Thus the radius of convergence is again R = 1. In
the case when x = 1 the series diverges (it is the harmonic series), and in the case
when x = −1 it converges (use Leibniz’ alternating series test or observe that it
is the negative of the alternating harmonic series).

Example 4.12. Consider the series
∞∑
n=0

xn

n!
. Put an = xn/n! and, for x ̸= 0,

consider the ratio |an+1/an| = |x|/(n+1) → 0 as n→ ∞, so the series converges
absolutely by D’Alembert’s ratio test. Hence the series converges for every x ∈ R,
including x = 0 of course, and the radius of convergence of this series is R = ∞.

Example 4.13. Consider the series
∞∑
n=0

n!xn. Put an = n!xn and, for x ̸= 0,

consider the ratio |an+1/an| = (n + 1)|x| → +∞ as n → ∞, so the series
diverges by D’Alembert’s ratio test for every x ∈ R, except for x = 0 of course.
Hence the radius of convergence of this series is R = 0.

Power series can be used to define familiar functions. In Chapter 7 we will take
the following power series as definitions of sin(x), cos(x) and exp(x). In each of
these three cases the series converges for all x ∈ R (the radius of convergence
R = ∞).
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sin(x) =
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
.

cos(x) =
∞∑
n=0

(−1)nx2n

(2n)!
.

exp(x) =
∞∑
n=0

xn

n!
.

We will show how all the familiar properties of these functions may be deduced
from the power series that define them. We can’t do that here because important
properties of functions, such as continuity and differentiability have not yet been
defined. So I’m afraid we have to delay for the time being.

At this point you might like to try the exercises for this section, which lie a
few pages further on. However, before we get to them in the text, we are going to
look at the issue of rearranging the terms of a series and considering what effect,
if any, it can have on convergence and divergence. First we need to define what
we mean by a rearrangement.

Definition 4.5. Suppose that S is any set of numbers (here we have in mind S =
N). A permutation ϕ of S is a one-to-one mapping of S onto itself (i.e. ϕ is a
bijection). This means that every n ∈ S has an image ϕ(n) that also lies in S, and
every m ∈ S is the image of some n ∈ S, i.e. m = ϕ(n). Every permutation ϕ
has an inverse permutation ϕ−1 such that ϕ−1(ϕ(n)) = n and ϕ(ϕ−1(m)) = m.

A rearrangement of an infinite sequence (an) is a sequence of the form (aϕ(n)),
where ϕ is a permutation of the indexing set (generally N or the set N ∪ {0}). If
(bn) is a rearrangement of (an), then (an) is a rearrangement of (bn). The infinite
series formed from each of these sequences are also said to be rearrangements of
one another.

Somewhat less formally, if (bn) is a rearrangement of (an) then the two se-
quences contain exactly the same numbers with the same multiplicity, meaning
that if a number appears k times in one sequence then it appears k times in the
other. Rather trivially every infinite series is a rearrangement of itself. But the
real interest lies with rearrangements that are not confined to any finite number
of terms. As an example, consider the alternating harmonic series that we have
already shown to be (conditionally) convergent. Let S denote the sum of this
series:

S = 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ . . . .
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Plainly S ̸= 0 since all the partial sums are at least 1
2
. Let us rearrange this series

by taking one positive term, followed by two negative terms, in blocks of three,
giving the series

1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+ . . . .

Let Sn and Tn (respectively) denote the partial sums of the first n terms in each of
the two series. Then

S2n = 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ . . .+

1

2n− 1
− 1

2n
, and

T3n =
(
1− 1

2
− 1

4

)
+
(1
3
− 1

6
− 1

8

)
+ . . .+

( 1

2n− 1
− 1

4n− 2
− 1

4n

)
=

(1
2
− 1

4

)
+
(1
6
− 1

8

)
+ . . .+

( 1

4n− 2
− 1

4n

)
=

1

2
S2n.

We have S2n → S as n → ∞ and so T3n → 1
2
S as n → ∞. But T3n+1 − T3n =

1
2n+1

→ 0 as n → ∞ and T3n+2 − T3n = 1
2n+1

− 1
4n+2

→ 0 as n → ∞, and so
we deduce that Tn → 1

2
S as n → ∞. Hence the rearranged series converges with

sum 1
2
S, i.e.

1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+ . . . =

S

2
.

Since S ̸= 0 the rearranged series has a different sum 1
2
S from the original series

(the alternating harmonic series) whose sum is S.

While the bad news (as in this example) is that we must be cautious when rear-
ranging a series, there is some good news. We now show that a rearrangement of a
series that has only non-negative terms does not affect convergence/divergence, or
the sum of such a series in the case of convergence. Moreover, this result extends
to absolutely convergent series.

Theorem 4.14. Suppose that
∑∞

n=1 an is a series of non-negative terms (i.e an ≥ 0
for all N ∈ N), and that

∑∞
n=1 bn is a rearrangement of this series. Then either

both series diverge to +∞, or both converge to the same sum S.

Proof. The partial sums Sn of
∑∞

n=1 an are monotonically increasing. Let us
assume first that this series converges with sum S. Then Sn ≤ S for every n ∈ N.
Now consider a partial sum Tn of

∑∞
n=1 bn, i.e. Tn =

∑n
i=1 bi. Since (bi) is a

rearrangement of (ai), there will be some integer m such that Tn ≤ Sm. But then
we have Tn ≤ S, so the monotonically increasing sequence (Tn) is bounded above
by S and must therefore converge to some limit T ≤ S. We can now reverse the
roles of the two series, noting that

∑∞
n=1 an is a rearrangement of

∑∞
n=1 bn, and
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deduce that S ≤ T . It follows that S = T , so both series converge to the same
sum.

To deal with the divergence case is now easy. If
∑∞

n=1 an diverges, could∑∞
n=1 bn converge? The answer must be no because, if

∑∞
n=1 bn converges then

by the previous argument
∑∞

n=1 an must also converge, a contradiction.

Corollary 4.14.1. Suppose that
∑∞

n=1 an is a series of non-positive terms (i.e
an ≤ 0 for all N ∈ N), and that

∑∞
n=1 bn is a rearrangement of this series. Then

either both series diverge to −∞, or both converge to the same sum S.

Proof. This follows immediately from Theorem 4.14 by considering
∑∞

n=1(−an)
and

∑∞
n=1(−bn).

Theorem 4.15. Suppose that
∑∞

n=1 xn is an absolutely convergent series, and that∑∞
n=1 yn is a rearrangement of this series. Then both series converge to the same

sum.

Proof. The strategy of the proof is similar to that of Theorem 4.11, so it is a
good idea to look back there and see how the series was split into its positive and
negative parts. Here we define

x+n =

{
xn if xn ≥ 0,
0 if xn < 0

y+n =

{
yn if yn ≥ 0,
0 if yn < 0

x−n =

{
0 if xn ≥ 0,
xn if xn < 0

y−n =

{
0 if yn ≥ 0,
yn if yn < 0

Then (y+n ) is a rearrangement of the non-negative sequence (x+n ), and (y−n ) is a
rearrangement of the non-positive sequence (x−n ). Moreover, both

∑∞
n=1 x

+
n and∑∞

n=1 x
−
n converge (see the proof of Theorem 4.11), and so both

∑∞
n=1 y

+
n and∑∞

n=1 y
−
n converge, and with the same limits (respectively). But xn = x+n + x−n

and yn = y+n + y−n . Hence
∞∑
n=1

xn =
∞∑
n=1

x+n +
∞∑
n=1

x−n =
∞∑
n=1

y+n +
∞∑
n=1

y−n =
∞∑
n=1

yn.

We saw above how the alternating harmonic series (which is conditionally
convergent) can be rearranged to converge to a different sum. In fact we can re-
arrange any conditionally convergent series to do pretty much whatever we want.
The first step is to show that in a conditionally convergent series the sum of the
positive terms and the sum of the negative terms must both diverge (to +∞ and
−∞ respectively). This follows from the proof of Theorem 4.11. Here are the
details.
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Theorem 4.16. Suppose that
∑∞

n=1 xn is a conditionally convergent series. Define

x+n =

{
xn if xn ≥ 0,
0 if xn < 0

x−n =

{
0 if xn ≥ 0,
xn if xn < 0

Then
∑∞

n=1 x
+
n diverges to +∞ and

∑∞
n=1 x

−
n diverges to −∞.

Proof. As in the proof of Theorem 4.11, we have |xn| = x+n − x−n . Since∑∞
n=1 |xn| diverges, at least one of

∑∞
n=1 x

+
n and

∑∞
n=1 x

−
n must diverge. Sup-

pose that the former converges. Then since x−n = x+n − xn and both
∑∞

n=1 x
+
n

and
∑∞

n=1 xn converge, we would have
∑∞

n=1 x
−
n convergent, a contradiction. If

instead we suppose that
∑∞

n=1 x
−
n converges we get a contradiction by the same

method. It follows that both
∑∞

n=1 x
+
n and

∑∞
n=1 x

−
n diverge. Since the former

has monotonically increasing partial sums and the latter monotonically decreas-
ing partial sums, the divergence must be (respectively) to +∞ and to −∞.

Theorem 4.17. Suppose that
∑∞

n=1 xn is a conditionally convergent series. Then
it is possible to rearrange the series to converge to any desired sum S ∈ R, to
oscillate finitely between any desired upper and lower limits, to oscillate infinitely,
to diverge to +∞, or to diverge to −∞.

Proof. We will deal with the case S ∈ R. The other cases can be dealt with in the
same way. We note that by the previous theorem (and using the same notation)∑∞

n=1 x
+
n diverges to +∞ and

∑∞
n=1 x

−
n diverges to −∞.

Let (pn) denote the subsequence of (xn) formed by selecting precisely those
terms for which xn ≥ 0, and let (qn) denote the subsequence (xn) formed by
selecting precisely those terms for which xn < 0. Then every xn lies in one of
these two subsequences. The subsequence (pn) is not quite the same as (x+n ),
because the sequence (x+n ) has zeros for those values of n for which xn < 0,
while (pn) omits these zeros. Similarly (qn) is not quite the same as (x−n ). For
example, if (xn) forms the terms of the alternating harmonic series, then we have

(xn) = (1,−1
2
, 1
3
,−1

4
, 1
5
,−1

6
, . . .)

(x+n ) = (1, 0, 1
3
, 0, 1

5
, 0, . . .)

(pn) = (1, 1
3
, 1
5
. . .)

(x−n ) = (0,−1
2
, 0,−1

4
, 0,−1

6
. . .)

(qn) = (−1
2
,−1

4
,−1

6
, . . .)

However, it is easy to see that
∑∞

i=1 pi diverges to +∞ and
∑∞

i=1 qi diverges to
−∞, since deleting zeros from a series will not alter the fact that the partial sums
are unbounded.
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Now choose S ∈ R. The strategy (roughly) is to take alternating subsets of
positive and negative terms from (xn) and so build up a suitable rearrangement.
We start at x1 and take only positive (or zero) terms until their sum first exceeds
S, then we go back to x1 and take negative terms until the new sum is first below
S. Then we return to taking positive (or zero) terms until the total again exceeds
S, and follow this with negative terms until the sum is below S. See-sawing in
this way, we gradually home in on S while ensuring that we have included all the
original terms of the series. The rearrangement converges to S because the terms
xn, and hence also pn and qn, tend to zero. Here are the details.

Take r1 to be the least integer such that
∑r1

i=1 pi > S. This is possible because∑∞
i=1 pi diverges to +∞. Put P1 =

∑r1
i=1 pi. Next take s1 to be the least integer

such that P1 +
∑s1

i=1 qi < S. This is possible because
∑∞

i=1 qi diverges to −∞.
Put Q1 =

∑s1
i=1 qi

Next take r2 to be the least integer greater than r1 such that P1 + Q1 +∑r2
i=r1+1 pi > S and put P2 =

∑r2
i=r1+1 pi. Likewise take s2 to be the least integer

greater than s1 such that P1+Q1+P2+
∑s2

i=s1+1 qi < S and putQ2 =
∑s2

i=s1+1 qi.
Again, these choices are possible because of the divergence of

∑∞
i=1 pi and∑∞

i=1 qi.
At this point pause and note that r2 > r1 ≥ 1 and s2 > s1 ≥ 1. We also have

P1 = p1 + . . .+ pr1 > S

P1 +Q1 = p1 + . . .+ pr1 + q1 + . . .+ qs1 < S

P1 +Q1 + P2 = p1 + . . .+ pr1 + q1 + . . .+ qs1 + pr1+1 + . . .+ pr2 > S

P1 +Q1 + P2 +Q2 = p1 + . . .+ pr1 + q1 + . . .+ qs1 + pr1+1 + . . .+ pr2+

+ qs1+1 + . . .+ qs2 < S (sorry it doesn’t fit on one line!)

You can see that we are beginning to use all the terms of both (pn) and (qn), and
hence building up a rearrangement of (xn). If we look at the third of the four sums
displayed above and omit the positive term pr2 , then the total will be less than or
equal to S. In other words S + pr2 ≥ (P1 +Q1 + P2) > S. So the partial sum of
the rearrangement given by that third sum differs by at most |pr2 | from S. These
bounds on the sum will continue to hold as we add the negative terms qs1+1 up
to and including qs2−1, because up until and including that last addition, the sum
remains greater than S (or just possibly equal to S). At any rate all these partial
sums differ from S by at most |pr2|. If we then look at the last of the four sums
displayed above and omit the negative term qs2 , then that total will be greater than
or equal to S. In other words S > (P1 +Q1 + P2 +Q2) ≥ S + qs2 . So the partial
sum of the rearrangement given by that fourth sum differs by at most |qs2| from
S. Again that bound will continue to hold as we add further positive terms until
we get to pr3 which is defined by the requirement that it is the least integer greater
than r2 such that P1 +Q1 + P2 +Q2 +

∑r3
i=r2+1 pi > S.
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We continue in this fashion, alternating groups of entries from (pn) and (qn)
to produce a rearrangement of (xn) with the property that the partial sums of
the associated series differ from S by a subsequence of values taken from (xn),
and which subsequence must therefore tend to zero. Hence the rearranged series
converges to S.

[Strictly speaking we should use induction to define the sequences
(r1, r2, r3, . . .) and (s1, s2, s3, . . .) but sometimes it is best to take a more relaxed
attitude, and this is certainly one such occasion. How would you do it? First de-
fine r1 and s1 as we have done and then, on the assumption that r1, r2, . . . , rn and
s1, s2, . . . sn are already defined, give a definition of rn+1 and sn+1 - good luck!!]

To deal with the other cases (divergence, oscillation) we follow a similar pro-
cedure, we just alter the targets. So for divergence to +∞, we take blocks of
positive and negative terms alternately above and below 1, 2, 3, . . ..

Exercises for Section 4.3
1. Which of the following series are alternating? You may assume that the

trigonometric functions have their usual properties.
∞∑
n=1

cos(n)

n2
,a)

∞∑
n=1

cos(nπ/2)

n2
,b)

∞∑
n=1

sin((2n+ 1)π/2)

n
,c)

∞∑
n=1

tan(nπ/2)

n
.d)

2. Which, if any, of the series in Question 1 converge and is the convergence
absolute or conditional?

3. Determine the values of x (if any) for which the following series converge.
∞∑
n=1

(−1)n

n2 + x2
,a)

∞∑
n=1

n

1 + x2n
,b)

∞∑
n=1

xn!,c)
∞∑
n=1

n2x
3n

2n
.d)

4. Prove that the following series converges absolutely and determine its sum:
1− 1

2
− 1

4
+ 1

8
− 1

16
− 1

32
+ 1

64
− . . . (terms taken three at a time, one positive

and two negative).
5. Prove that the series

∑∞
n=0(n+ 1)xn converges if and only if |x| < 1, and

determine the sum when it is convergent. [Let Sn denote the nth partial
sum and calculate Sn − 2xSn + x2Sn.]
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6. Prove that the series (defined earlier in this section) as sin(x), cos(x) and
exp(x) all have infinite radius of convergence.

7. Determine the radius of convergence of the power series
∞∑
n=1

n!xn

nn
.

8. Use the method given in the proof of Theorem 4.17 to write down in the
correct order the first ten terms of a rearrangement of the alternating har-
monic series that will converge with the sum 7

8
= 0.875.

4.4 Multiplication of Series

Multiplication of series poses a problem about the order of terms. If we examine
a very simple finite product (a0 + a1)(b0 + b1), you will have several choices
about how to write down the answer. Probably the most obvious ones are a0b0 +
a0b1 + a1b0 + a1b1 and a0b0 + a1b0 + a0b1 + a1b1. But there are four terms in the
product and so 4! = 24 ways to order the four terms. Clearly if we had 3 terms
in each bracket, there would be a lot of choice (9! in fact). So you can see that
with an infinite number of terms in each bracket, we need to proceed with some
caution. If you multiply two polynomials in some variable x you will, I hope, feel
an urge to group like powers of x together. For example, (a0 + a1x)(b0 + b1x) =
a0b0 + (a0b1 + a1b0)x + a1b1x

2. If we take two quadratic factors and record the
terms up to x2 in the product we get

(a0 + a1x+ a2x
2)(b0 + b1x+ b2x

x) = a0b0 + (a0b1 + a1b0)x

+ (a0b2 + a1b1 + a2b0)x
2 + . . . .

This gives us a clue about how we might proceed, and at least this is consistent
with what we do for multiplying polynomials.

Definition 4.6. Given two infinite series
∑∞

n=0 an and
∑∞

n=0 bn, their Cauchy
product is defined as the infinite series

∑∞
n=0 cn, where cn = a0bn + a1bn−1 +

a2bn−2 + . . .+ anb0.

This definition says absolutely nothing about issues of convergence. Investi-
gating that aspect is what this Section is all about. We will show that if

∑∞
n=0 an

and
∑∞

n=0 bn are both absolutely convergent with sumsA andB respectively, then
their Cauchy product is absolutely convergent with sum C = AB. But the con-
dition of absolute convergence on the two ingredients is important. To start the
proof, we will look at the possibility of summing an infinite 2-dimensional array.
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Consider the following array of Real Numbers.

a0,0 a0,1 a0,2 . . . a0,j . . .
a1,0 a1,1 a1,2 . . . a1,j . . .
a2,0 a2,1 a2,2 . . . a2,j . . .

...
...

...
...

...
...

ai,0 ai,1 ai,2 . . . ai,j . . .
...

...
...

...
...

...


First we try to sum the numbers in each row, i.e. we form the series

∞∑
j=0

a0,j,
∞∑
j=0

a1,j,

∞∑
j=0

a2,j, . . . ,

∞∑
j=0

ai,j,

and see if each one is convergent. Now suppose that each one is convergent and
denote the sum

∑∞
j=0 ai,j by Ri. Then we can form the combined sum of all the

rows:
∞∑
i=0

Ri =
∞∑
i=0

( ∞∑
j=0

ai,j

)
,

and see if this is also convergent. If this sum is convergent then we say that the
array has the row sum SR given by

SR =
∞∑
i=0

Ri =
∞∑
i=0

( ∞∑
j=0

ai,j

)
.

In a similar way, working first with columns, we may (when all the series
involved are convergent) form the column sum of the array SC =

∑∞
j=0Cj , where

Cj =
∑∞

i=0 ai,j . Our interest then is whether the two sums

SR =
∞∑
i=0

( ∞∑
j=0

ai,j

)
and SC =

∞∑
j=0

( ∞∑
i=0

ai,j

)
are in fact equal. Sometimes this can happen.

Theorem 4.18. With the same notation as in the preceding discussion, suppose
that ai,j ≥ 0 for all i and j. Then if the row sum converges, so does the column
sum (and vice-versa), and the sums are equal.

Proof. Suppose that the row sum is convergent. This means that
∑∞

j=0 ai,j is
convergent for each i and, denoting this sum by Ri, the sum

∑∞
i=0Ri is also

convergent to some Real Number SR.
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We observe that ai,j ≤ Ri for each j. Therefore, summing over i and using
the comparison test it follows that

∑∞
i=0 ai,j converges and the sum (denoted by

Cj) satisfies

Cj =
∞∑
i=0

ai,j ≤
∞∑
i=0

Ri = SR.

In other words, each column of the array forms a convergent series.
In fact, we have a lot more that just ai,j ≤ Ri. If J is any non-negative integer,

we have
∑J

j=0 ai,j ≤ Ri. So again summing over i and using the comparison test
we obtain

J∑
j=0

Cj ≤
∞∑
i=0

Ri = SR.

So the partial sums of the series
∑∞

j=0Cj are bounded above by SR and therefore
this series of non-negative terms must converge to some value SC ≤ SR. Thus the
column sum is convergent and, by reversing the roles of rows and columns (i.e.
taking the transpose of the array), we also get SR ≤ SC . It follows that SR = SC ,
and that completes the proof.

The theorem above establishes a result when all the terms ai,j are non-negative.
The corollary below establishes a similar result without this restriction provided
that we have absolute convergence of the row or column sum. And, roughly speak-
ing, the proof involves splitting the array into its positive and negative parts as we
have done previously.

Corollary 4.18.1. Suppose that (ai,j) is an (infinite) array of Real Numbers and
that the row (or column) sum of the array (|ai,j|) converges. Then both the row
and column sums of (ai,j) converge to a common value.

Proof. Define

a+i,j =

{
ai,j if ai,j ≥ 0,
0 if ai,j < 0

a−i,j =

{
0 if ai,j ≥ 0,
ai,j if ai,j < 0

If either the row or column sum of (|ai,j|) converges, then by Theorem 4.18 above,
so does the other. We may therefore suppose that both converge.

Consider the array (a+i,j). Since a+i,j ≤ |ai,j|, it follows from the compar-
ison test that

∑∞
j=0 a

+
i,j converges to some Real Number, R+

i , say, and R+
i ≤∑∞

j=0 |ai,j|. Then, once again by the comparison test,
∑∞

i=0R
+
i converges. Let

S+
R denote its sum.

[Although we don’t need this, it may help you to observe that

S+
R =

∞∑
i=0

R+
i =

∞∑
i=0

( ∞∑
j=0

a+i,j

)
≤

∞∑
i=0

( ∞∑
j=0

|ai,j|
)
. ]
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In the same way it follows that
∑∞

i=0 a
+
i,j converges to some Real Number, C+

j ,
say, and C+

j ≤
∑∞

i=0 |ai,j|. And, once again by the comparison test,
∑∞

j=0C
+
j

converges. Let S+
C denote its sum. By Theorem 4.18 we have S+

R = S+
C .

If we now consider the array (a−i,j), we may proceed in a similar fashion and
find the row sum S−

R and the column sum S−
C , and note that S−

R = S−
C .

Then because ai,j = a+i,j + a−i,j , it follows that the row sum SR of (ai,j) exists
and is given by SR = S+

R + S−
R , and also that the column sum SC of (ai,j) exists

and is given by SC = S+
C + S−

C . Finally, since S+
R + S−

R = S+
C + S−

C , it follows
that SR = SC , i.e. the row and column sums of the array (ai,j) are equal.

We can now proceed to the main result of this section.

Theorem 4.19. Suppose that
∑∞

i=0 ai and
∑∞

i=0 bi are both absolutely convergent
series with sums A and B respectively. Then their Cauchy product is also abso-
lutely convergent with sum AB.

Proof. Define Ā =
∑∞

i=0 |ai| and B̄ =
∑∞

i=0 |bi|. Then consider the two arrays:
a0b0 0 0 0 . . .
a0b1 a1b0 0 0 . . .
a0b2 a1b1 a2b0 0 . . .
a0b3 a1b2 a2b1 a3b0 . . .

...
...

...
...

...




|a0b0| 0 0 0 . . .
|a0b1| |a1b0| 0 0 . . .
|a0b2| |a1b1| |a2b0| 0 . . .
|a0b3| |a1b2| |a2b1| |a3b0| . . .

...
...

...
...

...


In the second array, the (j + 1)th column has sum |aj|

∑∞
i=0 |bi| = |aj|B̄, so

the overall column sum of this array is (
∑∞

j=0 |aj|)B̄ = ĀB̄. It follows from
Corollary 4.18.1 that the row and column sums of the first array converge to a
common value.

Looking at that first array, the (j + 1)th column has sum aj
∑∞

i=0 bi = ajB,
so the overall column sum of this array is (

∑∞
j=0 aj)B = AB. However, the row

sum of this array is

a0b0 + (a0b1 + a1b0) + (a0b2 + a1b1 + a2b0) + . . . ,

which is precisely the Cauchy product of the series
∑∞

i=0 ai and
∑∞

i=0 bi. So the
Cauchy product converges with sum AB.

Theorem 4.19 is particularly useful when it comes to multiplying power se-
ries. Remember that a power series is absolutely convergent within its radius of
convergence, so if we have two power series in a variable x with radii of con-
vergence R1 and R2, and R1 ≥ R2, then the Cauchy product will have radius of
convergence at least R2. In cases where the radii of convergence are both infinite,
the Cauchy product will also have an infinite radius of convergence.
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Exercises for Section 4.4

1. If exp(x) is defined as sum of the power series 1+ x
1!
+ x2

2!
+ . . .+ xn

n!
+ . . .,

prove that the Cauchy product of exp(x) with itself (i.e. (exp(x))2) is just
exp(2x).

2. Prove that the Cauchy product of exp(x) and exp(y) is exp(x+ y).
[If you have a very strong stomach for algebra you can prove in a similar
way that sin(x) cos(y) + cos(x) sin(y) = sin(x + y), where sin(x) and

cos(x) are given by the power series
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
and

∞∑
n=0

(−1)nx2n

(2n)!

respectively. We will look at this in detail when we discuss these functions
and investigate their properties in Chapter 7.]

3. The series
∑∞

n=1
(−1)n−1

√
n

is conditionally convergent. Show that the
Cauchy product of this series with itself is divergent. [Hint: show that
the terms of the Cauchy product do not form a null sequence.]



Chapter 5

Functions, Limits and Continuity

5.1 Functions
You will already have your own ideas about what we mean when we speak about
functions. The purpose of this section is to give a formal definition and to describe
some associated terminology.

Definition 5.1. A mapping ϕ from a set S to a set T is a rule that takes each x ∈ S
and associates with it one or more elements of T . The “rule” is specified by the
set of all the ordered pairs (x, y) where x ∈ S and y is any one of the elements of
T associated with x by ϕ.

Example 5.1. Suppose that S = {1, 2, 3} and T = {a, b, c, d, e, f} and ϕ asso-
ciates 1 with a, c, d, 2 with b, d, e, and 3 with a, b. Then ϕ is a mapping from S to
T . As a collection of ordered pairs we can write

ϕ = {(1, a), (1, c), (1, d), (2, b), (2, d), (2, e), (3, a), (3, b).}

Continuing with the definition, if ϕ associates x ∈ S with y ∈ T , then we say
that y is an image of x under ϕ. In the example above, a, c, d are the images of
1 ∈ S in the set T . In general, every point of S has at least one image in T , but
there may be points in T that are not the image of any x ∈ S. In the example
above, f is not the image of any of the points of S. The set S is generally called
the domain of ϕ, and the set T is generally called the co-domain. The set of all the
images, denoted by ϕ(S), may be called the range or the image set of ϕ. Clearly,
ϕ(S) ⊆ T . In the example above, ϕ(S) = {a, b, c, d, e}. If ϕ(S) = T , i.e. every
element of the co-domain is an image of some point in the domain, then we say
that ϕ is a surjective or onto mapping.

95
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It may happen that each x ∈ S has precisely one image in T under ϕ. In such
a case, ϕ is called a function, and the unique image of x ∈ S under ϕ is denoted
by ϕ(x).

Summarising: a function has one image of each point in its domain.

It is possible that a function may map more than one element of S to the same
element of T , i.e. we may have ϕ(x1) = ϕ(x2) for x1 ̸= x2. If that happens, the
function is described as being a many-one function.

Example 5.2. Suppose that S = T = R and ϕ is defined as the mapping that takes
x ∈ R to x2 ∈ R. Then ϕ is a function from S to T because every x gives rise
to a unique value x2. However this is a many-one function because, for example,
4 ∈ T is the image of both 2 and −2 in S.

In previous chapters we studied sequences. A sequence can be seen as a func-
tion. For example, the sequence ( 1

n2 ) is the function defined by all the ordered
pairs (n, 1

n2 ) for n ∈ N. The domain of this function is N, the co-domain can be
taken as R, and the image set is the set of all Real Numbers of the form 1

n2 for
n ∈ N.

Again continuing with the definition, in the case when ϕ is a function defined
by a formula, as will often be the case, we may write ϕ : x 7→ ϕ(x). So we can
describe the mapping of Example 5.2 as ϕ : x 7→ x2 (read as “x maps to x2 ”).
Indeed, we often abbreviate further, just referring to the formula itself, as in “the
function x2 ”. However, giving a formula such as ϕ(x) = x2 does not specify
the domain or the co-domain. In such cases, either the domain must be specified
separately, or (the default position) taken as the largest set for which the formula
makes sense. Once the domain is known, if the co-domain is not specified, it
can be taken to be the image set. In terms of ordered pairs the mapping from the
example is ϕ = {(x, x2) : x ∈ R}, and this does specify the domain. If we wish
to restrict the domain to a specific interval, for example the interval from 0 to 1,
we might write something like “ϕ(x) = x2 for 0 ≤ x ≤ 1”. We often do restrict a
domain in order to make deductions about the image set.

One way to specify the domain S and co-domain T of a mapping ϕ is to use
the → symbol as in ϕ : S → T . So we could write ϕ : R → R, x 7→ x2. The
→ symbol is also used to denote convergence, but that isn’t likely to cause any
confusion. So why use the 7→ symbol at all, couldn’t we just stick to →? That’s
a good question. It seems to have become an accepted convention to use 7→ when
specifying the image of an individual point x ∈ S. Personally, I wouldn’t get
too hung up about this, particularly in handwriting; only a pedant would criticise
x→ x2.
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Example 5.3. If ψ(x) =
√
x, the default domain is the set of non-negative Real

Numbers: {x : x ≥ 0}. This is because
√
x only makes sense (if we expect a

Real Number for
√
x) for x ≥ 0. [Note that

√
x means the non-negative root.

For example,
√
4 = 2, not −2. Of course this is a notational convention and it

cannot alter the fact that there are two square roots of 4, namely
√
4 and −

√
4.]

The image set for this function is also the set of all non-negative Real Numbers.

In some cases a function ϕ with domain S will have the property that each
y ∈ ϕ(S) is the image of a unique point x ∈ S. This is the case with the function
ψ(x) =

√
x of the previous example: if y ≥ 0 then y is the image of y2 under

ψ, i.e. ψ(y2) = y. In such cases we say that the function is injective or one-one
(sometimes written as “one-to-one” or “1:1”). Many functions are not injective.
For example the function ϕ(x) = x2 with domain R is certainly not injective
because 2 and −2 have the same image, namely 4. However, if we restrict the
domain of ϕ(x) = x2 to non-negative Real Numbers ({x : x ≥ 0}) then it (strictly
speaking it’s a new function) becomes injective.

If the function ϕ : S → T is both surjective (onto) and injective (one-one),
then is is said to be bijective. In some ways bijective functions are the nicest ones;
in particular, each bijective function has an inverse function.

If f : S → T is a bijective function then the inverse function, denoted by f−1,
is defined to be the function with domain T and co-domain S given by the rule

f−1(y) = x if and only if f(x) = y.

It follows immediately from this definition that f(f−1(y)) = y, f−1(f(x)) = x,
and (f−1)−1 = f . Moreover, each x ∈ S is the image under f−1 of the unique
value y = f(x) ∈ T , so that f−1 is also bijective.

Example 5.4. Determine the inverse of the function given by f(x) = 3x+2 with
domain R.

Solution. Put y = 3x+2 then x = (y− 2)/3. So f−1(y) = (y− 2)/3. Of course
this is what you’ve always done when solving equations. The only (sometimes)
tricky bit is finding the domain of f−1, which is the original image set of f . That’s
fairly obvious here since every Real Number y will give a corresponding Real
Number x. So the domain of f−1 in this example is R.

We conclude this Section with description of notation for composite functions
and a description of what is meant by an implicit function.

Definition 5.2 (Composite functions).
Suppose that g : S → T and f : T → U are two functions. Then, given s ∈ S,
we have g(s) ∈ T and so we can compute f(g(s)) ∈ U . The resulting function
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with domain S and co-domain U , given by s 7→ f(g(s)) is called the composite
of f and g and may be denoted as f ◦ g. Figure 5.1 illustrates the formation of
f ◦ g from f and g.

s g(s)
f(g(s))

(f ◦ g)(s) =
g f

f ◦ g

S T U

Figure 5.1: Formation of f ◦ g

Note that in f ◦ g, g is applied first and f second, so that f ◦ g is not the same
thing as g ◦ f . In fact the existence of f ◦ g does not imply the existence of g ◦ f
(or vice-versa), and even when both exist, they may be different functions. One
exception is with a pair of inverse functions that happen to have the same domain,
because then (f−1 ◦ f)(x) = f−1(f(x)) = x and (f ◦ f−1)(x) = f(f−1(x)) = x,
so in this case f−1 ◦ f = f ◦ f−1.

Example 5.5. Take f : {x : x ≥ 0} → R given by x 7→
√
x and g : R → R given

by x 7→ −x. Then g ◦ f : {x : x ≥ 0} → R is given by x 7→ −
√
x. However, if

you try to form f ◦ g you will find that you are attempting to calculate things like√
−1 because the image set of g is not contained within the domain of f . So f ◦ g

does not exist in this case.

Definition 5.3 (Implicit functions).
Suppose that f : S → R is a function, and that S is the set of ordered pairs (x, y)
where x ∈ S1 and y ∈ S2 (S is then called the Cartesian product of S1 and S2,
and we write S = S1 × S2).

Consider the equation f(x, y) = 0. For a given x ∈ S1 this equation may
have (a) no solutions for y, or (b) one solution for y, or (c) more than one solution
for y. Now suppose that (b) is the case for every x ∈ S1. So for each value of x
there is just one corresponding value of y which we will denote by y(x) and which
satisfies f(x, y(x)) = 0. Then y(x) is a function with domain S1 and co-domain
S2 that is known as the implicit function of x determined by f .

Example 5.6.
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(a) If f : R × R → R is given by f(x, y) = x2 + y, then the implicit function
is y(x) = −x2.

(b) If f : {x : −1 ≤ x ≤ 1} × {y : 0 ≤ y ≤ 1} → R is given by f(x, y) =
x2 + y2 − 1, then the implicit function is y(x) =

√
1− x2.

(c) If f : {x : −1 ≤ x ≤ 1} × {y : −1 ≤ y ≤ 1} → R is given by
f(x, y) = x2 + y2 − 1, then there is no implicit function y(x) because for
at least one value of x ∈ {x : −1 ≤ x ≤ 1} (e.g. x = 0) there are two
solutions for y to the equation x2 + y2 − 1 = 0.

(d) If f : R × {y : 0 ≤ y ≤ 1} → R is given by f(x, y) = x2 + y2 − 1, then
there is no implicit function y(x) because for at least one value of x ∈ R
(e.g. x = 2) there is no solution for y to the equation x2 + y2 − 1 = 0.

It may be difficult or even impossible to “solve” an equation f(x, y) = 0 to
get y in terms of x, even though f may define an implicit function. There is an
example of this in the Exercises.

Exercises for Section 5.1

1. Determine which of the following mappings are surjective, and which are
functions. For those that are surjective functions determine if they are
many-one or one-one (injective). For those that are bijective determine the
inverse function.

ϕ = {(1, b), (2, c), (2, e), (3, b), (4, a)}, domain {1, 2, 3, 4},
co-domain {a, b, c, d, e},

a)

ϕ = {(1, b), (2, b), (3, b), (4, a)}, domain {1, 2, 3, 4},
co-domain {a, b, c},

b)

ϕ = {(1, b), (2, b), (3, b), (4, a)}, domain {1, 2, 3, 4},
co-domain {a, b},

c)

ϕ = {(1, b), (2, a), (3, d), (4, c)}, domain {1, 2, 3, 4},
co-domain {a, b, c, d},

d)

ϕ(x) = x3, domain R, co-domain R,e)

ϕ(x) = x4, domain R, co-domain R,f)

ϕ(x) = ±
√
x, domain {x : x ≥ 0}, co-domain R,g)

ϕ(x) = x2, domain R, co-domain {x : x ≥ 0},h)

ϕ(x) = x2, domain {x : x ≤ 0}, co-domain {x : x ≥ 0}.i)
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2. The function f(x) is given by f(x) = x2 − 3x+ 2 with domain
{x : x ≥ 3

2
} and co-domain equal to the image set. Determine the

inverse function f−1 and state its domain and image set.
3. If f(x) = 2x and g(x) = x + 1, both with domain and co-domain R, find

f ◦ g and g ◦ f .
4. Put f(x, y) = y3 − y − x, where x, y are any Real Numbers. Show that

for a given x ≥ 6 there is at most one y satisfying f(x, y) = 0. [In fact
there is exactly one y for each such value of x, so f does define an implicit
function y = y(x) for x ≥ 6.]

5.2 Cartesian Graphs
If we return to the ordered pair specification of a function when the domain and co-
domain are R or subsets thereof, we can represent the function on a 2-dimensional
Cartesian graph. For example if f(x) = x+ 1 with domain and co-domain R, the
graph consists of all the points (x, y) for which y = x + 1. This can then be
illustrated with a sketch. I emphasise the word “illustrated” because sketches
can be misleading. That does not deny their utility in giving insight into how a
function behaves. So, by all means, use sketches to suggest results and proofs,
but do not use them as proofs. Having given this restricted licence to sketch
graphs, we will take a look at some functions and graphs. Note that the domain is
represented on the horizontal axis, and the co-domain on the vertical axis.

Example 5.7. If ϕ(x) = x2 with domain and co-domain R, the Cartesian graph
of ϕ is the set of ordered pairs {(x, x2) : x ∈ R}. This is sketched below in Figure
5.2. The dotted line shows that this is a many-one function. There are two values
on the horizontal x-axis that give rise to the same value of ϕ(x).

Example 5.8. If ψ(x) =
√
x with domain and co-domain {x : x ≥ 0}, the

Cartesian graph ofψ is the set of ordered pairs {(x,
√
x) : x ≥ 0}. This is sketched

below in Figure 5.3. This is an injective (one-one) function. As illustrated by the
dotted line, any value on the non-negative part of the vertical axis arises from a
unique value of x on the non-negative part of the horizontal axis.

The next example shows why sketching a graph can be misleading.

Example 5.9. Suppose that f(x) =
{

2 if x is rational,
1 if x is irrational, with domain R (and

co-domain {1, 2}). Since every interval on the x-axis (no matter how small) con-
tains both rational and irrational numbers, the best we can do to illustrate this
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x| | | |
−2 −1 1 2

ϕ(x)

−

−

−

−

1

2

3

4

Figure 5.2: ϕ(x) = x2

x| | | |
1 2 3 4

ψ(x)

−

−

1

2

Figure 5.3: ψ(x) =
√
x

function is the following sketch (Figure 5.4). The blue line corresponds to ratio-
nal values of x and the red line to irrational values of x. It looks like the dotted line
cuts the graph twice, once on the blue line and once on the red line, but this is not
the case. Any such vertical dotted line (corresponding to a value of x) will only
cut one of the two lines (the blue line if x is rational, the red line if x is irrational).
So the sketch makes it look like this function is not a function at all, even though
it is. It’s very misleading and, if you use it, you should give a health warning.

Sometimes we use filled or empty circles to denote points included or excluded
from a sketch.

Example 5.10. Figure 5.5 shows a sketch of the floor function f(x) = ⌊x⌋ with
domain R. [Reminder: ⌊x⌋ is the integer satisfying the inequalities ⌊x⌋ ≤ x <
⌊x⌋+1.] The filled circles indicate included points and the empty circles indicate
excluded points. For example, there is a point on the graph at (1, 1), but not
at (2, 1). Obviously such indications of included and excluded points have their
limitations - it’s the best that can be done in a simple sketch.
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x| | | | | |
−3 −2 −1 1 2 3

f(x)

−

−

1

2

Figure 5.4: A misleading graph

x| | | | |
−2 −1 1 2 3

f(x)

−

−

−

−

−2

−1

1

2

Figure 5.5: The floor function f(x) = ⌊x⌋

Next we turn our attention to inverse functions. Suppose that f is a bijective
function with domain S ⊆ R and co-domain T ⊆ R. The Cartesian graph of f is
obtained by plotting the points (s, f(s)) for s ∈ S. The Cartesian graph of f−1

is obtained by plotting the points (f(s), s), effectively swapping the domain and
co-domain of f , which means swapping the horizontal and vertical axes. Geomet-
rically, this is achieved by reflecting the graph of f in the line with gradient 1 that
passes through the origin, as shown in Figure 5.6 below.

Example 5.11. If f(x) = x2 with domain and co-domain {x : x ≥ 0}, then f is
bijective because

(i) each y in the co-domain is the image of x =
√
y in the domain, so the

function is surjective (onto), and

(ii) it is only x =
√
y in the domain that has image y in the co-domain, so the

function is injective (one-one)

It follows that f has an inverse function (f−1(x) =
√
x of course) with domain

and co-domain {x : x ≥ 0}. These are sketched below in Figure 5.7.
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x

f(x)

f−1(x)

Figure 5.6: A function and its inverse

Two particular types of function are easily described by graphical illustrations.
These are even and odd functions. First, here are the definitions.

Definition 5.4 (Even and odd functions).
Suppose that f : S → R is a function where S is a suitable subset of R (what we
mean by “suitable” is clarified below).

If f(x) = f(−x) for each x ∈ S, then we say that f is an even function.
If f(x) = −f(−x) for each x ∈ S, then we say that f is an odd function.

Clearly this entails having −x ∈ S whenever x ∈ S; that’s what we mean by
“suitable”.

The reason for the terms “even” and “odd” is that even powers of x define even
functions, and odd powers of x define odd functions. For example, f(x) = x2 is
even and f(x) = x3 is odd.

The Cartesian graph of an even function is symmetrical about the vertical axis,
and the Cartesian graph of an odd function has 180o rotational symmetry about the
origin. If f is odd and if 0 ∈ S, this implies that f(0) = 0. The graphs below
illustrate the two cases (Figure 5.8). Of course most functions are neither even
nor odd (e.g. f(x) = 1 + x). But if the domain of f is “suitable”, we can define
even and odd parts of f , such that f is the sum of its even and odd parts.

Definition 5.5 (Even and odd parts).
Suppose that f : S → R is a function with domain S ⊆ R such that whenever
x ∈ S, it is also the case that −x ∈ S. Then we define the even part of f as the
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x| | | |
1 2 3 4

−

−

−

−

1

2

3

4 f(x) = x2

f−1(x) =
√
x

Figure 5.7: f(x) = x2 and f−1(x) =
√
x

function

feven(x) =
f(x) + f(−x)

2
,

and the odd part of f as the function

fodd(x) =
f(x)− f(−x)

2
,

both with domain S and co-domain R.

It is easy to check that feven is an even function, that fodd is an odd function,
and that feven(x) + fodd(x) = f(x) for every x ∈ S.

We conclude this Section with some notation for intervals. It is very tedious to
have to express a domain such as {x : −1 ≤ x ≤ 1} in this form. It is an interval
in R and the important information comprises the end points and whether or not
they are included.

Definition 5.6. Suppose that a, b ∈ R and that a < b. Then

(a, b) denotes the interval {x : a < x < b},
[a, b] denotes the interval {x : a ≤ x ≤ b},
[a, b) denotes the interval {x : a ≤ x < b},
(a, b] denotes the interval {x : a < x ≤ b},

(a,∞) denotes the interval {x : x > a},
[a,∞) denotes the interval {x : x ≥ a},

(−∞, a) denotes the interval {x : x < a},
(−∞, a] denotes the interval {x : x ≤ a},

(−∞,∞) = R.
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odd

Figure 5.8: Even and odd functions

x| | | | | |
−2 −1 0 1 2 3

closed interval
[−2,−1]

open interval
(1, 3)

Figure 5.9: Open and closed intervals

You will observe that excluded end points are denoted by round brackets, and
included end points by square brackets. So, for example, a ̸∈ (a, b). The interval
(a, b) is described as the open interval from a to b, and [a, b] is described as the
closed interval from a to b. Figure 5.9 illustrates (a, b) and [a, b] using empty
circles and filled circles as described earlier.

Exercises for Section 5.2
1. Sketch the graphs of the following functions with the default domain in

each case, and state whether the function is odd, even or neither. You can
assume the usual properties of the sine function.

f(x) =


−1 if x < 0,
0 if x = 0,
1 if x > 0.

a)

f(x) =
√
x2.b)
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f(x) = x− ⌊x⌋.c)

f(x) = sin( 1
x
).d)

f(x) =

{
0 if x = 0,

x sin( 1
x
) if x ̸= 0.

e)

f(x) =

{
0 if x is irrational,
1
q

if x is rational (x = p
q

in lowest terms, with q > 0).f)

5.3 Limits of Functions

Suppose that f(x) has domain R. Then we might enquire about what happens to
f(x) for large positive x, i.e. as x tends to +∞. This is similar to what we did
for sequences. Equally well we might ask about the behaviour of f(x) as x tends
to −∞. But with a continuous variable x, in place of the discrete variable n of a
sequence, we can also enquire about the behaviour of f(x) as x approaches any
particular Real Number a from the left (x < a), or from the right (x > a), or
unrestricted. We will look at each of these in turn, starting with the ones that are
closest to what we did for sequences.

5.3.1 Limits at ±∞
We start very informally by considering the Cartesian graph of the function f(x) =
(x−1)/xwith domain [1,∞]. This is sketched in Figure 5.10. It looks fairly clear

x
| | | | | | | | |
1 2 3 4 5 6 7 8 9

−1

f(x) = (x− 1)/x

Figure 5.10: f(x) = (x− 1)/x

from the graph that the value of f(x) is approaching 1 as x increases. This is not
surprising, particularly if you write f(x) = (x− 1)/x = 1− 1

x
and think what is

likely to happen to 1
x

as x gets larger. We’d like to write “f(x) → 1 as x → ∞”.
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And to do enable us to do this we make a definition very similar to what we did
for sequences.

Any function f(x) with a domain (a,∞) can be said to tend to a limit l as x
tends to ∞ if, for any horizontal strip centred on l, there is some point X beyond
which (i.e. for all x > X), all the values of f(x) lie in the strip. See the illustration
below (Figure 5.11).

x

l

l + ϵ

l − ϵ

f(x)

X

For x > X,
f(x) lies in the strip.

Figure 5.11: f(x) → l as x→ ∞

Our definition of what we mean by saying that “f(x) → l as x → ∞” is that
for any sized strip (characterized by ϵ > 0) there exists a number X such that for
every x > X, |f(x)− l| < ϵ. In formal terminology:

Definition 5.7. We say that “f(x) → l as x→ ∞” if and only if

∀ϵ > 0,∃X s.t. ∀x > X, |f(x)− l| < ϵ.

This is almost the same as what we had as the definition of “xn → l as n →
∞” for sequences. I invite you to look again at the discussion in Chapter 1. Al-
most every technique and result we had about sequences in Chapter 3 has its coun-
terpart here for functions with limits at ∞. Note that the definition implies that f
is defined on some domain (a,∞).

Example 5.12. Prove that if f(x) = (x− 1)/x, then f(x) → 1 as x→ ∞.

Solution. Choose ϵ > 0. Put X = 1
ϵ
. Take any x > X and consider |f(x)− 1| =

1
x
< 1

X
= ϵ. Hence f(x) → 1 as x→ ∞.

The similarities with the results for sequences are so strong that we won’t
spend time looking at the details.

Sometimes we may replace “x → ∞” with “x → +∞′′ in the definition
above in order to emphasise that we are concerned with large positive values of x.



108 CHAPTER 5. FUNCTIONS, LIMITS AND CONTINUITY

x

l

l + ϵ

l − ϵ

f(x)

X

For x < X,
f(x) lies in the strip.

Figure 5.12: f(x) → l as x→ −∞

This is because, unlike sequences where n heads off in the positive direction, for
functions we may also consider what happens as xmoves in the negative direction,
as illustrated in Figure 5.12.

With the diagram in mind, we make the following definition.

Definition 5.8. We say that “f(x) → l as x→ −∞” if and only if

∀ϵ > 0,∃X s.t. ∀x < X, |f(x)− l| < ϵ.

This is almost the same as the previous definition. Previously we had x > X ,
now we have x < X . But all the arguments for dealing with limits at −∞ are
much the same as those for limits at ∞. And this definition implies that f is
defined on some domain (−∞, a).

Example 5.13. Prove that if f(x) = (x− 1)/x, then f(x) → 1 as x→ −∞.

Solution. Choose ϵ > 0. Put X = −1
ϵ

(note X is negative). Take any x < X (so
|x| > |X|), and consider |f(x) − 1| = | 1

x
| < | 1

X
| = ϵ. Hence f(x) → 1 as x →

−∞.
This is almost the same as the previous solution - we just had to introduce a

few modulus signs because our choice for X was negative.

If you look back to what we did for sequences, you will see that we defined
carefully what was meant by saying “xn → +∞ as n→ ∞”. Here are the equiv-
alent definitions for a function f(x), both for x moving in the positive direction,
and for x moving in the negative direction.

Definition 5.9.
1. We say that “f(x) → +∞ as x→ +∞” if and only if

∀A, ∃X s.t. ∀x > X, f(x) > A.
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2. We say that “f(x) → −∞ as x→ +∞” if and only if

∀A,∃X s.t. ∀x > X, f(x) < A.

3. We say that “f(x) → +∞ as x→ −∞” if and only if

∀A,∃X s.t. ∀x < X, f(x) > A.

4. We say that “f(x) → −∞ as x→ −∞” if and only if

∀A,∃X s.t. ∀x < X, f(x) < A.

Don’t try to memorise each of these. Learn the first one and how to change
directions to get the other three. All four are illustrated in the following diagram
(Figure 5.13) by four different functions exhibiting the four behaviours. And in
all four cases the definition implies that f is defined on some appropriate domain.

x

f1(x) → +∞ as x→ +∞f3(x) → +∞ as x→ −∞

f2(x) → −∞ as x→ +∞f4(x) → −∞ as x→ −∞

Figure 5.13: Various behaviours

Example 5.14. Prove that x3 → −∞ as x→ −∞.
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Solution. Choose A ∈ R. Put X = −(|A| + 1), so that X ≤ −1 and X < −|A|
Then take any x < X and consider x3 < X3 ≤ X < −|A| ≤ A. Hence
x3 → −∞ as x→ −∞.

There are a few examples for you to practice with in the Exercises at the end of
this Section. But now we will leave this type of behaviour concerned with limits
at ±∞ in favour of considering the behaviour of a function f(x) in the vicinity of
a point a ∈ R.

5.3.2 Limits at a point

x
f(x)

l

a

Figure 5.14: f(x) → l as x→ a−

Looking at the graph in Figure 5.14, you will see that f(x) approaches the
value l as x approaches a from the left hand side of a. Another way of expressing
this is to say that f maps points near a (but below a) to points near l. We need to
encapsulate this in a formal definition. The first thing to recognise is that it isn’t
necessary for f(x) to be defined at x = a. In fact, even if f(x) is defined at x = a
it will be convenient to avoid the assumption that f(a) = l. So in trying to find a
definition of “f(x) → l as x → a−”, (to be read as “f(x) tends to l as x tends to
a from below”), we regard the value of f(x) at x = a as totally irrelevant!

From our work on sequences and on limits of functions at ±∞, we know
how to enclose the limiting value in a strip. So take the previous diagram and
form a strip centred on the horizontal dotted line. The strip is characterised (as
before) by the positive number ϵ. This is shown in Figure 5.15. You will see that
corresponding to the horizontal strip there is a one-sided vertical strip (to the left
of a), that can be characterised by some positive number δ, and which has the
property that if x lies in this vertical strip, then f(x) lies in the horizontal strip

We would expect to find that for any horizontal strip (i.e. for any ϵ > 0) there
is a corresponding vertical strip (i.e. δ > 0) such that for any x between a− δ and
a, the value of f(x) is within the horizontal strip (i.e. |f(x)− l| < ϵ). This gives
us the following definition.
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x
f(x)

l + ϵ
l − ϵ

a

δ

Figure 5.15: Towards a definition.

Definition 5.10. We say that “f(x) → l as x→ a−” if and only if

∀ϵ > 0,∃δ > 0 s.t. ∀x ∈ (a− δ, a), |f(x)− l| < ϵ.

The expression x ∈ (a− δ, a) is equivalent to a− δ < x < a so, if you prefer
it, you can write the definition as

∀ϵ > 0,∃δ > 0 s.t. ∀x satisfying a− δ < x < a, |f(x)− l| < ϵ.

Of course the interest lies in small positive values of ϵ, but we don’t say that
explicitly (what is “small”?) because “all ϵ > 0” certainly captures small ϵ > 0,
however you choose to think of “small”. And normally if ϵ is made smaller, we’d
anticipate that δ would have to be made smaller. Just like the definition of a
sequence converging, this definition is an operational one, it tells us that to prove
convergence we have to pick an arbitrary positive ϵ and determine a corresponding
value of δ.

Example 5.15. Prove that x2 → 4 as x→ 2−.

Solution. Choose ϵ > 0. Put δ = min(1, ϵ/4). Choose any x satisfying
2− δ < x < 2, so that x ∈ (1, 2) and 2− x < δ. Then consider

|x2 − 4| = 4− x2 = (2 + x)(2− x) < 4(2− x) < 4δ ≤ ϵ.

Hence x2 → 4 as x→ 2−.

Remarks.
1. In the solution, δ is essentially taken as ϵ/4 but we make it the minimum of 1
and ϵ/4 to ensure (via the 1) that x can’t be too far away from 2. After all, there’s
nothing in the definition to stop you taking ϵ = 1000 however crazy that might
seem. The definition has to be verified for all ϵ > 0.
2. You don’t have to guess the ϵ/4 at the start of the solution, just leave δ =
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min(1, . . .) incomplete until you get to near the end. It’s the same technique that
was used to establish convergence of sequences.

Having seen the definition of convergence to a limit as x approaches a value a
from below, it should be relatively easy to see how to alter that definition to deal
with x approaching a from above. The graph below in Figure 5.16 illustrates this.
Again we have a horizontal strip, characterised by ϵ > 0, with a corresponding
vertical strip characterised by δ > 0, this time to the right of a. Once again, the
value (if any) of f(x) for x = a is irrelevant.

Definition 5.11. We say that “f(x) → l as x→ a+” if and only if

∀ϵ > 0,∃δ > 0 s.t. ∀x ∈ (a, a+ δ), |f(x)− l| < ϵ.

The expression x ∈ (a, a+ δ) is equivalent to a < x < a+ δ so, if you prefer
it, you can write the definition as

∀ϵ > 0,∃δ > 0 s.t. ∀x satisfying a < x < a+ δ, |f(x)− l| < ϵ.

x

f(x)

l + ϵ
l − ϵ

a

δ

Figure 5.16: f(x) → l as x→ a+

Example 5.16. Prove that x2 → 4 as x→ 2+.

Solution. Choose ϵ > 0. Put δ = min(1, ϵ/5). Choose any x satisfying
2 < x < 2 + δ, so that x ∈ (2, 3) and x− 2 < δ. Then consider

|x2 − 4| = x2 − 4 = (x+ 2)(x− 2) < 5(x− 2) < 5δ ≤ ϵ.

Hence x2 → 4 as x→ 2+.
This solution is almost identical to the one we had previously for x→ 2−. We

just needed to alter the fraction from ϵ/4 to ϵ/5 because now x is (slightly) larger
than 2.
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Often we need to consider what happens to f(x) as x approaches a, without
restricting x to be below or above a. In other words, we want a definition of
f(x) → l as x → a (read as “f(x) tends to l as x tends to a”) and we define this
to mean that both

• f(x) → l as x→ a−, and

• f(x) → l as x→ a+

For a given ϵ > 0 there may be two different δ values, one for x → a− and one
for x→ a+. But by taking the smaller of the two, we can formulate this definition
as follows.

Definition 5.12. We say that “f(x) → l as x→ a” if and only if

∀ϵ > 0,∃δ > 0 s.t. ∀x satisfying 0 < |x− a| < δ, |f(x)− l| < ϵ.

This provides a formal definition to capture the informal idea that f maps
points near a (excluding a itself) to points near l. Note that the condition 0 <
|x − a| ensures that the one value of x that is totally irrelevant is x = a, so we
don’t even need f(x) to be defined at x = a. Why is this exclusion useful? It can

be shown that
sin(x)

x
→ 1 as x→ 0, even though

sin(x)

x
is (obviously) undefined

at x = 0, and there are many similar examples.

Example 5.17. Prove that x2 → 4 as x→ 2.

Solution.
We already did this by showing that x2 → 4 as x → 2− and that x2 → 4 as x →
2+. But it can be done, all in one go, as follows.

Choose ϵ > 0. Put δ = min(1, ϵ/5), take any x satisfying 0 < |x− 2| < δ (so
that |x| < 3) and consider

|x2 − 4| = |x− 2||x+ 2| < δ|x+ 2| < 5δ ≤ ϵ,

which is what we sought to prove.

The following example is more difficult and it does involve a function f(x)
that is undefined for x = a.

Example 5.18. Prove that if a > 0 then f(x) =
√
x−

√
a

x− a
→ 1

2
√
a

as x→ a.
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Solution.
Choose ϵ > 0. Put δ = min(a

2
, a3/2ϵ). [The a

2
is to ensure that x isn’t too far from

a, and the a3/2ϵ comes out in the working below - you don’t have to guess it in
advance!]

Take any x satisfying 0 < |x − a| < δ. This implies that x > a
2
, so that

√
x >

√
a
2
. The first step is to get

√
x−

√
a

x−a
into a form that suggests it might be

close to 1
2
√
a
. We have

f(x) =

√
x−

√
a

x− a
=

√
x−

√
a

(
√
x−

√
a)(

√
x+

√
a)

=
1

(
√
x+

√
a)

This looks a bit like 1
2
√
a

and it follows that∣∣∣f(x)− 1

2
√
a

∣∣∣ = ∣∣∣ 1

(
√
x+

√
a)

− 1

2
√
a

∣∣∣
=

∣∣∣ √
a−

√
x

2
√
a(
√
x+

√
a)

∣∣∣
=

∣∣∣(√a−√
x)(

√
a+

√
x)

2
√
a(
√
x+

√
a)2

∣∣∣
=

|a− x|
2
√
a(
√
x+

√
a)2

<
δ

2
√
a(
√
x+

√
a)2

<
δ

2
√
a(
√

a
2
+
√
a)2

(using
√
x >

√
a
2
)

=
δ

(3 + 2
√
2)a3/2

<
δ

a3/2
≤ ϵ

Remarks.
1. To prove that |f(x) − l| is less than ϵ, the main tool at your disposal is the
inequality |x − a| < δ. In establishing a limit from first principles, it is almost
always the case that you need to relate |f(x)− l| to some multiple of |x−a|. That
is precisely what all the nasty algebra was about in the previous example.
2. We obviously don’t want to have to wade through lots of horrible algebra every
time. So we need some general results (like we had for sequences) that tell us
what happens if we add, multiply or divide functions. We also need some results
about “standard” easy functions, such as f(x) = x. We move on to such results
below.
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3. If you can recall results about differentiation from previous experiences, you
might notice a connection between the previous example and the result that the
derivative of

√
x is 1

2
√
x
. Differentiation is the subject of the next chapter where

we will make use of results about limits obtained in this chapter.

The definition of convergence for functions at a point can be used to prove
non-convergence, just like we did for sequences.

Example 5.19. Assuming the usual properties of sin(x), prove that sin( 1
x
) has no

limit as x tends to zero.

Solution. Suppose that sin( 1
x
) → l as x→ 0. Take ϵ = 0.5 in the definition. Then

there exists δ > 0 such that for any x satisfying 0 < |x| < δ, | sin( 1
x
)− l| < 0.5.

Now take x1 =
1

2nπ − π
2

and x2 =
1

2nπ + π
2

, where the positive integer n ≥ 1 is

chosen so large that x1, x2 < δ. But then sin
(

1
x1

)
= −1 and sin

(
1
x2

)
= 1. So we

have both | − 1− l| < 0.5 and |1− l| < 0.5, which is clearly impossible (l cannot
be within 0.5 of both −1 and 1). We therefore conclude that sin( 1

x
) ̸→ l as x→ 0

for any l ∈ R.
Now let us move on to some simple results about limits of functions at a point.

We won’t give the proofs here because they are so similar to the proofs of the cor-
responding results for sequences. But you are asked to provide your own proofs
in the exercises at the end of this section. The results remain true (with minor
adjustments to the intervals) for one-sided convergence at a point a, and also for
convergence at ±∞. Here then is a list summarised as a Theorem.

Theorem 5.1.

(a) The limit of a function at a point is unique: if f(x) → l1 as x → a and
f(x) → l2 as x→ a then l1 = l2.

(b) If f is the constant function with value l, then f(x) → l as x→ a.

(c) (Local boundedness) If f(x) → l as x → a, then there exists δ > 0 such
that the set S = {y : y = f(x) for some x satisfying 0 < |x− a| < δ} is
a bounded set of Real Numbers.

(d) (Combination rules) Suppose that f(x) → l as x→ a and
g(x) → m as x→ a. Then

(i) (multiple rule) if k is any constant, kf(x) → kl as x→ a,

(ii) (sum rule) f(x) + g(x) → l +m as x→ a,

(iii) (product rule) f(x)g(x) → lm as x→ a,
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(iv) (quotient rule) if m ̸= 0 then f(x)/g(x) → l/m as x→ a.

The sum and product rules can of course be extended to cover a finite sum
or product of n functions for any positive integer n. However you should not
use these rules on infinite series or products. Here is an example of what can go
wrong.

Example 5.20. Let f(x) be defined with domain R by the formula

f(x) = x2 +
x2

(1 + x2)
+

x2

(1 + x2)2
+ . . . =

∞∑
i=0

x2

(1 + x2)i
.

Note that if x ̸= 0 then 1
1+x2 < 1 and so the (geometric) series converges with

sum f(x) = x2
1

1− 1
1+x2

= 1 + x2. However, if x = 0 all the terms of the series

are zero and so f(0) = 0. So we have a situation where each term of the sum
tends to zero as x tends to zero, but f(x) → 1 as x → 0, even though f(0) = 0.
[The moral is that any result connecting the limiting value of an infinite series to
the limits of the separate terms will require further conditions on the nature of the
series. A similar comment applies to infinite products.]

You could well be tempted to conjecture a result for composite functions, per-
haps along the following lines: “If f(x) → l as x → a and g(x) → a as x → b
then (f ◦ g)(x) = f(g(x)) → l as x → b.” Unfortunately this is not necessarily
true. The problem is that g(x) might actually equal a. Indeed, it could even be the
constant function with value a and, even though f(x) → l as x → a, there is no
necessity for f(x) to be defined at a and, even if it is, we may have f(a) ̸= l. The
resolution of this difficulty will be found when we move on to discuss continuity
in the next section.

Our next theorem tells us that polynomials and rational functions (i.e. quo-
tients of polynomials) behave as we would expect.

Theorem 5.2. If f(x) is a polynomial then for every a ∈ R, f(x) → f(a) as x→
a. If g(x) is also a polynomial then the rational function r(x) = f(x)/g(x) →
f(a)/g(a) as x→ a for every a ∈ R for which g(a) ̸= 0.

Proof. We have already mentioned that the constant function f0(x) = l → l =
f0(a) as x→ a.

Next consider the function f1(x) = x. Choose ϵ > 0. Put δ = ϵ and take any
x satisfying 0 < |x − a| < δ. Then consider |f1(x) − f1(a)| = |x − a| < δ = ϵ.
Hence f1(x) = x→ f1(a) = a as x→ a.
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Now apply the product rule k−1 times to f1 to deduce that for k > 1, fk(x) =
xk → ak as x→ a. By applying the multiple rule and the sum rule repeatedly, we
deduce that if f(x) is a polynomial then for every a ∈ R, f(x) → f(a) as x→ a.

Finally, the quotient rule tells us that if f and g are polynomials, then
f(x)/g(x) → f(a)/g(a) as x→ a for every a ∈ R for which g(a) ̸= 0.

As with sequences, there are “sandwich” rules that are sometimes helpful.
Here’s a version for convergence at a point.

Theorem 5.3 (Sandwich rule). Suppose that γ > 0 and that g(x) ≤ f(x) ≤ h(x)
for all values of x satisfying 0 < |x − a| < γ. Then if g(x) → l as x → a and if
h(x) → l as x→ a, we have f(x) → l as x→ a.

Proof. Choose ϵ > 0. There exists δ1 > 0 such that if 0 < |x − a| < δ1 then
|g(x) − l| < ϵ, and there exists δ2 > 0 such that if 0 < |x − a| < δ2 then
|h(x)− l| < ϵ. Put δ = min(γ, δ1, δ2). Then if 0 < |x− a| < δ we have

−ϵ < g(x)− l ≤ f(x)− l ≤ h(x)− l < ϵ,

and so |f(x)− l| < ϵ. Hence f(x) → l as x→ a.

There are versions of this result for convergence on the left and on the right.
The necessary modifications should be fairly obvious.

Example 5.21. Assuming that sin(x) has its usual properties, prove that
x2 sin

(
1
x

)
→ 0 as x→ 0.

Solution. Since | sin(x)| ≤ 1 for all values of x, we have −x2 ≤ x2 sin
(
1
x

)
≤ x2

for all x ̸= 0. Both g(x) = −x2 and h(x) = x2 are polynomials and so g(x) →
g(0) = 0 as x→ 0 and h(x) → h(0) = 0 as x→ 0. It follows from the sandwich
rule that x2 sin

(
1
x

)
→ 0 as x→ 0.

We will conclude this section by mentioning divergence to ±∞ at a point a,
giving a few (hopefully) easy definitions that closely resemble their counterparts
for sequences.

Definition 5.13.

• We say that f(x) → +∞ as x→ a+ if and only if
∀A, ∃δ > 0 s.t. ∀x satisfying a < x < a+ δ, f(x) > A.

• We say that f(x) → +∞ as x→ a− if and only if
∀A, ∃δ > 0 s.t. ∀x satisfying a− δ < x < a, f(x) > A.

• We say that f(x) → +∞ as x→ a if and only if
∀A, ∃δ > 0 s.t. ∀x satisfying 0 < |x− a| < a+ δ, f(x) > A.
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• We say that f(x) → −∞ as x→ a+ if and only if
∀A, ∃δ > 0 s.t. ∀x satisfying a < x < a+ δ, f(x) < A.

• We say that f(x) → −∞ as x→ a− if and only if
∀A,∃δ > 0 s.t. ∀x satisfying a− δ < x < a, f(x) < A.

• We say that f(x) → −∞ as x→ a if and only if
∀A,∃δ > 0 s.t. ∀x satisfying 0 < |x− a| < a+ δ, f(x) < A.

As a single illustration of these definitions, see the graph below. It shows a
horizontal line at height A and a corresponding vertical strip of width δ to the
right of a having the property that, if x lies in the strip (i.e. if a < x < a + δ),
then f(x) lies above the horizontal line (i.e. f(x) > A). So it illustrates the case
f(x) → +∞ as x→ a+.

x

f(x)

A

a

δ

Figure 5.17: f(x) → +∞ as x→ a+

A corresponding example is the following.

Example 5.22. Prove that f(x) = 1
x−2

→ +∞ as x→ 2+.

Solution. Choose A. Put δ = 1
|A|+1

. Take any x satisfying 2 < x < 2 + δ so that
0 < x− 2 < δ. Then consider

1

x− 2
>

1

δ
= |A|+ 1 > A.

Hence f(x) = 1
x−2

→ +∞ as x→ 2+.
[Note that although we might wish to simplify the choice of δ to 1

A
, we must be

careful because A could be negative or zero.]
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Exercises for Section 5.3

1. If f(x) =
1

1 + x2
, prove that f(x) → 0 as x→ +∞.

2. If f(x) = x2, prove that f(x) → +∞ as x→ +∞.
3. Assuming the usual properties of sin(x), prove that x sin

(
1
x

)
→ 0 as x→

0+.
4. If f(x) = (x2− a2)/(x− a) (for x ̸= a), prove that f(x) → 2a as x→ a.
5. Provide proofs for the results stated in Theorem 5.1.
6. Prove that f(x) = 1

x−2
→ −∞ as x→ 2−.

7. Suppose that f(x) is monotonically increasing on an interval [a, b], i.e
whenever x, y ∈ [a, b] with x < y then f(x) ≤ f(y). Take any point
ξ ∈ [a, b). Prove that f(x) has a limit from above at ξ, i.e ∃ limx→ξ+ f(x).
Similarly, prove that if ξ ∈ (a, b] then f(x) has a limit from below at ξ, i.e
∃ limx→ξ− f(x).

5.4 Continuity
In everyday English, “continuity” refers to something that persists without abrupt
change. In terms of Cartesian graphs of functions, an informal description lies
in the ability to draw a graph without taking the pencil off the page. Taking the
pencil off the page results in a break in the graph. More mathematically, we might
say that there are no points of discontinuity on a continuous graph. Of course this
is a sort of tautology, since how can we speak of discontinuity before we speak of
continuity? But it does point the way to proceed with a definition of continuity.
Discontinuities happen at individual points, so if we can describe a discontinuity
at an individual point, the absence of discontinuities will define continuity.

In the previous section we defined “f(x) → l as x → ∞” and we repeatedly
made the point that there was no necessity for l to be the same as f(a). Indeed
there was no need for f(x) to be defined for x = a. However, it may happen
that l = f(a) in some circumstances. If l ̸= f(a) we would expect to see a
discontinuity at a. If l = f(a) we would expect an absence of discontinuity at a,
i.e. continuity at the point a. Bearing this in mind we are led to a definition that
describes discontinuity and continuity at an individual point.

Definition 5.14 (Continuity at a point).
Suppose that f(x) → f(a) as x → a. [This implies that f(x) is defined on some
interval (c, d) that contains the point a.] Then we say that f is continuous at the
point a. If f(x) is defined on some interval (c, d) that contains the point a, but
f(x) ̸→ f(a) as x→ a, then we say that f is discontinuous at the point a.
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In a similar way, if f(x) → f(a) as x → a− then we say that f is continuous
on the left at the point a. If f(x) is defined on an interval (c, a], but f(x) ̸→
f(a) as x→ a−, then we say that f is discontinuous on the left at the point a.

Likewise, if f(x) → f(a) as x → a+ then we say that f is continuous on
the right at the point a. If f(x) is defined on an interval [a, d) but f(x) ̸→
f(a) as x → a+, then we say that f is discontinuous on the right at the point
a.

In ϵ, δ terms, the definition of continuity of the function f at the point a can be
expressed as:

∀ϵ > 0, ∃δ > 0 s.t. ∀x satisfying |x− a| < δ, |f(x)− f(a)| < ϵ.

This comes immediately from the earlier definition of f(x) → l as x → a, with
l replaced by f(a). But note that there is now no need to exclude x = a by
the device “0 < |x − a|” because, if x = a, then it is automatically true that
|f(x) − f(a)| = 0 < ϵ. Informally speaking, continuity of f at the point a
means that f maps points near a to points near f(a). Some people find the type
of illustration in Figure 5.18 helpful.

a f(a)f

f maps points near a to points near f(a).

Figure 5.18: Continuity of f at the point a

Example 5.23.

Put f(x) =

{
1 if x is irrational,
0 if x is rational. Prove that f is not continuous at any point

a ∈ R.

Solution. Suppose that f is continuous at some point a. Take ϵ = 1
2
. Then there

exists δ > 0 such that for any x satisfying |x−a| < δ we have |f(x)− f(a)| < 1
2
.

If a is irrational then f(a) = 1 and, if we choose a rational number x satisfying
|x − a| < δ, then we have |f(x) − f(a)| = |0 − 1| = 1, which contradicts
|f(x)− f(a)| < 1

2
.

If a is rational then f(a) = 0 and, if we choose an irrational number x satisfy-
ing |x−a| < δ, then we have |f(x)−f(a)| = |1−0| = 1, which again contradicts
|f(x)− f(a)| < 1

2
.

So we conclude that f cannot be continuous at any point a ∈ R.

Here is another example that looks a bit similar but with a very different result.
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Example 5.24.

Put f(x) =
{

0 if x is irrational,
1
q

if x is rational (x = p
q

in lowest term with q > 0).
Prove that f is continuous at each irrational point, but discontinuous at each ratio-
nal point.

Solution. We deal first with rational points (it’s easier). Suppose that a = p
q

is
rational in its lowest terms (q > 0), so that f(a) = 1

q
. If f were continuous at a,

then by taking ϵ = 1
q
, there would be δ > 0 such that for any x ∈ (a − δ, a + δ)

(i.e. |x−a| < δ) we have |f(x)− 1
q
| < 1

q
. But if we now take x to be irrational and

in (a− δ, a+ δ) we have f(x) = 0, giving |0− 1
q
| < 1

q
, an obvious contradiction.

So f is discontinuous at each rational point a.
The more difficult part is when a is irrational. In this case choose ϵ > 0.

Take a positive integer N > 1
ϵ
. There are only finitely many rational numbers p

q

(in lowest terms) with denominator 0 < q ≤ N and lying in the finite interval
(a− 1, a+ 1). So put

δ = min
(∣∣∣p
q
− a

∣∣∣ : p
q
∈ (a− 1, a+ 1) is in lowest terms, and 0 < q ≤ N.

)
Then δ > 0. If x = p

q
(in lowest terms, q > 0) is rational and |x − a| < δ,

then q > N and so |f(x) − f(a)| = 1
q
− 0 < 1

N
< ϵ. If x is irrational then

|f(x)− f(a)| = 0 < ϵ. So whether or not x is rational or irrational, if |x− a| < δ
we have |f(x)− f(a)| < ϵ. Hence f is continuous at each irrational point a.

Once we have settled on the definition of continuity at a point, it is easy to
define continuity on an interval. Of course the acid test of whether or not this is a
good definition of continuity on an interval is by checking that it leads to the sorts
of conclusions we would expect. Let us see ... But first the definition.

Definition 5.15 (Continuity on an interval).
Suppose that f(x) is defined on the open interval (c, d) (i.e. that is its domain),
and that f(x) is continuous at every point a ∈ (c, d). Then we say that f is
continuous on (c, d).

If f(x) is defined on the closed interval [c, d], and is continuous on (c, d),
continuous on the right at c, and continuous on the left at d, then we say that f is
continuous on [c, d].

In the case of intervals of the form [c, d) or (c, d] we define continuity on the
interval by requiring continuity on (c, d) together with one-sided continuity at the
appropriate end point.

If f is continuous everywhere (i.e. at every point a ∈ R) we may just say that
“f is continuous” without explicitly mentioning the interval R = (−∞,+∞).
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Example 5.25. Prove that f(x) = 1
x

is continuous on any interval (c, d) that does
not contain the point x = 0.

Solution. Suppose that a ̸= 0. We prove that f(x) is continuous at a. This follows
from Theorem 5.2. Since f(x) = 1

x
is a (particularly simple) rational function, we

have f(x) → f(a) = 1
a

as x → a, provided that a ̸= 0. Consequently, f(x) = 1
x

is continuous on any interval (c, d) that does not contain the point x = 0.

Of course f(x) = 1
x

is not continuous at x = 0 since it isn’t even defined at
x = 0. It is easy to show that f(x) → +∞ as x→ 0+. Therefore, even if we were

to define f(0) arbitrarily at 0, for example by setting f(x) =

{
1
x

if x ̸= 0
0 if x = 0

,

then f is not continuous at 0 because f(x) ̸→ f(0) as x→ 0.

By applying the combination rules of Theorem 5.1 from the previous section
to continuous functions, we have the following result.

Theorem 5.4 (Combination rules for continuous functions). Suppose that f and
g are continuous functions at the point a. Then

(i) (multiple rule) if k is any constant, then kf is continuous at a,

(ii) (sum rule) f + g is continuous at a,

(iii) (product rule) fg is continuous at a,

(iv) (quotient rule) if g(a) ̸= 0 then f/g is continuous at a.

Theorem 5.2 from the previous section can be reworded as follows.

Theorem 5.5 (Continuity of rational functions). If f is a polynomial then f is
continuous on R. If g is also a polynomial then the rational function r = f/g is
continuous at every point a for which g(a) ̸= 0.

Theorem 5.3, also from the previous section, gives the following sandwich
rule for continuity.

Theorem 5.6 (Sandwich rule). Suppose that the functions g and h are continuous
at the point a, that g(a) = h(a), and that there exists γ > 0 such that g(x) ≤
f(x) ≤ h(x) for all values of x satisfying |x− a| < γ. Then f is continuous at a.
[Of course the conditions of the theorem ensure that f(a) = g(a) = h(a).]

In the previous section, it was explained why there was no theorem to predict
the limit of a composite function f ◦ g at a point b from knowledge of (i) the limit
a of g at b and (ii) the limit of f at a. The good news is that, with the additional
constraint of continuity, such a result can be established.
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Theorem 5.7 (Composite rule for continuous functions). Suppose that g is con-
tinuous at b, that g(b) = a, and that f is continuous at a. Then the composite
function f ◦ g is continuous at b.
[This is often called the function of a function rule because (f ◦g)(x) = f(g(x)).]

Proof. Figure 5.19 illustrates the result with an informal description of what is
happening. The precise argument is as follows.

b a f(a)g f

f ◦ g

g maps points near b to points near g(b) = a.
f maps points near a to points near f(a) = f(g(b)).

So f ◦ g maps points near b to points near f(g(b)) = (f ◦ g)(b).

Figure 5.19: Continuity of f ◦ g

Choose ϵ > 0. Since f is continuous at a, there exists δ > 0 such that for
any x satisfying |x − a| < δ, we have |f(x) − f(a)| < ϵ. Since g is continuous
at b, for this value of δ > 0, there exists γ > 0 such that if |y − b| < γ then
|g(y) − g(b)| = |g(y) − a| < δ and, consequently, |(f ◦ g)(y) − f ◦ g)(b)| =
|f(g(y))− f(g(b))| = |f(g(y))− f(a)| < ϵ. Hence the composite function f ◦ g
is continuous at b.

Once we have a basic repertoire of continuous functions, Theorem 5.7 is ex-
tremely useful for extending the repertoire. For example, if we knew that sin(x)
was continuous on R then it would follow that sin

(
1

1+x2

)
is also continuous on R.

[Of course sin(x) is continuous on R, but we haven’t proved that yet.]

Example 5.26. Assuming that the function cos(x) has its usual properties and

is continuous on R, prove that the function f(x) =

{
x cos

(
1
x

)
if x ̸= 0,

0 if x = 0
is

continuous on R.

Solution. First we prove that f is continuous at any point a ̸= 0. This follows
because the rational function g(x) = 1

x
is continuous at a ̸= 0, so the composite

function h(x) = cos
(
1
x

)
is continuous at a ̸= 0, and by the product rule, the func-

tion x cos
(
1
x

)
is continuous at a ̸= 0. It remains to prove continuity at 0.



124 CHAPTER 5. FUNCTIONS, LIMITS AND CONTINUITY

Method (a) First Principles. Choose ϵ > 0. Put δ = ϵ and take any x satisfy-
ing |x − 0| = |x| < δ. We then have |f(x) − f(0)| = |f(x)|. If x = 0 then
|f(x)| = 0 < ϵ, while if x ̸= 0, |f(x)| = |x|| cos

(
1
x

)
| ≤ |x| < δ = ϵ. So, whether

or not x = 0, in each case |f(x)− f(0)| < ϵ. Hence f is continuous at 0.

Method (b) One-sided Sandwich Rule. We have −x ≤ x cos
(
1
x

)
≤ x for x > 0.

Both x and −x are (very simple) polynomials and so as x tends to zero (from
above) both tend to their value (namely 0) at x = 0. It follows that x cos

(
1
x

)
→

0 as x→ 0+. A similar argument applies if x < 0 when x ≤ x cos
(
1
x

)
≤ −x, and

this gives x cos
(
1
x

)
→ 0 as x → 0−. Consequently f(x) → 0 = f(0) as x → 0,

so f is continuous at 0.

We now state and prove some important results concerning continuous func-
tions. The first of these (the Intermediate Value Theorem) roughly corresponds to
the informal idea that a graph is continuous if it can be drawn without taking the
pencil off the paper.

Theorem 5.8 (The Intermediate Value Theorem). Suppose that f is continuous
on the closed interval [a, b] and that f(a) ≤ η ≤ f(b). Then there exists ξ ∈ [a, b]
such that f(ξ) = η.

Proof. If η = f(a), we can take take ξ = a, and if η = f(b), we can take take
ξ = b. By excluding these cases we can assume that f(a) < η < f(b). On that
assumption define the set S as follows.

S = {x : x ∈ [a, b] and f(x) < η}.

Then S is a subset of [a, b], a ∈ S (so that S ̸= ∅) and S is bounded above by b.
It follows that S has a least upper bound (supremum) ξ ≤ b. We will prove that
f(ξ) = η. Figure 5.20 illustrates a function f with its associated set S, which in
this case is the union of two intervals. You will see that it looks like f(ξ) = η,
but of course we have to prove that is the case for any function f that satisfies the
conditions of the theorem.

There are four steps in the proof: (i) proving that ξ ̸= a, (ii) proving that ξ ̸= b,
(iii) proving that f(ξ) ≥ η, and (iv) proving that f(ξ) ≤ η. The argument is very
similar in each step.

(i) Because f is continuous on the right at a, taking ϵ = η − f(a), there exists
δ > 0 such that if x ∈ [a, a + δ) then |f(x) − f(a)| < ϵ. It follows that if
x ∈ [a, a + δ) then f(x) < f(a) + ϵ = η, and consequently a + δ/2 ∈ S
and therefore the least upper bound of S (i.e. ξ) cannot be a.
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x

f(x)

f(a)

f(b)

η

a bξ

S

Figure 5.20: The set S

(ii) Because f is continuous on the left at b, taking ϵ = f(b) − η, there exists
δ > 0 such that if x ∈ (b − δ, b] then |f(x) − f(b)| < ϵ. It follows that if
x ∈ (b − δ, b] then f(x) > f(b) − ϵ = η, and consequently the least upper
bound of S (i.e. ξ) cannot be greater than b− δ.

It follows from (i) and (ii) that ξ ̸= a or b, so f is continuous at ξ.

(iii) Suppose that f(ξ) < η. Take ϵ = η − f(ξ). Then there exists δ > 0
such that for any x ∈ (ξ − δ, ξ + δ), |f(x) − f(ξ)| < ϵ. It follows that if
x ∈ (ξ− δ, ξ+ δ) then f(x) < f(ξ)+ ϵ = η, and consequently ξ+ δ/2 ∈ S
and therefore the least upper bound of S (i.e. ξ) cannot be ξ, a contradiction.
Therefore we must have f(ξ) ≥ η.

(iv) Finally suppose that f(ξ) > η. Take ϵ = f(ξ)− η. Then there exists δ > 0
such that for any x ∈ (ξ − δ, ξ + δ), |f(x) − f(ξ)| < ϵ. It follows that if
x ∈ (ξ − δ, ξ] then f(x) > f(ξ) − ϵ = η. But ξ = supS, so there exists
x∗ ∈ S such that x∗ ∈ (ξ − δ, ξ], and because x∗ ∈ S we have f(x∗) < η, a
contradiction. Therefore we must have f(ξ) ≤ η.

It follows from (iii) and (iv) that f(ξ) = η.

There is nothing special about the condition f(a) ≤ f(b). The result is still
true if f(a) ≥ f(b).

Corollary 5.8.1. Suppose that f is continuous on the closed interval [a, b] and that
f(a) ≥ η ≥ f(b). Then there exists ξ ∈ [a, b] such that f(ξ) = η.

Proof. Just apply Theorem 5.8 to the function −f .
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Note that the Intermediate Value Theorem relates to a closed interval [a, b]. It
doesn’t make sense to apply it to an open interval (a, b) because then f may not
even be defined at a and at b and, even if it is, there may be discontinuities at these
end points.

It is hard to overstate the importance of the Intermediate Value Theorem. It is
what underpins numerical methods for solving equations. Suppose that we have
an equation f(x) = 0, where f is a continuous function, and that we can show that
f(a) < 0 and f(b) > 0, so that 0 is an intermediate value between f(a) andf(b).
Then we can be sure that there is at least one solution for x between a and b.

Example 5.27. Prove that f(x) = 4x4−8x2−x+2 has zeros in (−2,−1), (−1, 0),
(0, 1) and (1, 2).

Solution. The function f is a polynomial and so continuous on every interval. We
draw up a table of values.

x −2 −1 0 1 2
f(x) 36 −1 2 −3 32

Since f(−2) = 36 > 0 and f(−1) = −1 < 0, by the Intermediate Value
Theorem, there must exist x1 ∈ [−2,−1] such that f(x1) = 0 and, since x1 ̸= −2
or −1, we have x1 ∈ (−2,−1). In a similar way we deduce that there exists x2 ∈
(−1, 0) such that f(x2) = 0, x3 ∈ (0, 1) such that f(x3) = 0, and x4 ∈ (1, 2)
such that f(x4) = 0. [If we wish, we can get these zeros more accurately by
repeatedly bisecting each of the four intervals.]

In Appendix C we show that the Completeness Axiom ensures that every pos-
itive Real Number has a positive nth root for each positive integer n. The proof
given there is from first principles. Here is a much easier proof using the Interme-
diate Value Theorem

Theorem 5.9. If n is a positive integer and a > 0 then there exists a number b > 0
such that bn = a. In other words, a has a nth root b = a

1
n .

Proof. Define f(x) = xn then f is a polynomial and so is continuous on [0, X]
for any X > 0. If X = 1 + a then f(X) = (1 + a)n ≥ 1 + na by the binomial
theorem, so f(X) > a. We also have f(0) = 0 < a. It follows that there exists
b ∈ [0, 1 + a] such that f(b) = a, i.e. bn = a.

The next two results relate continuity and boundedness. We start with a defi-
nition.
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Definition 5.16. Suppose that f has domain S ⊆ R and co-domain R. Take the
image set f(S) = {y : y = f(x) for some x ∈ S}. If f(S) is bounded above
then we say that f is bounded above on S. If f(S) is bounded below then we say
that f is bounded below on S. If f is bounded above and below on S, then we say
that f is bounded on S. We use the following notation.

sup
x∈S

f = sup{y : y = f(x) for some x ∈ S},

inf
x∈S

f = inf{y : y = f(x) for some x ∈ S}.

In an earlier chapter we proved that a convergent sequence is bounded. Here
we prove that a continuous function on a closed interval is bounded.

Theorem 5.10 (Boundedness of a continuous function on a closed interval).
Suppose that f is continuous on the closed interval [a, b]. Then f is bounded on
[a, b].

Proof. The idea of this proof (there are other proofs) is to creep across the interval
from a to b. With this in mind we define the set S.

S = {x : x ∈ [a, b] and f is bounded on [a, x]}.

Then S ⊆ [a, b] and S is non-empty since a ∈ S. So S has a least upper bound
(supremum) ξ ∈ [a, b]. The aim is to prove that ξ = b. First we prove that ξ ̸= a.

Since f is continuous on the right at a, taking ϵ = 1, we find that there exists
δ > 0 such that if x ∈ [a, a + δ) then |f(x) − f(a)| < 1, which implies that
|f(x)| < |f(a)| + 1. So f is certainly bounded (by |f(a)| + 1) on the interval
[a, a+ δ/2], which implies that (a+ δ/2) ∈ S, and so ξ ≥ a+ δ/2. Hence ξ ̸= a.

Now suppose that ξ < b. Then f is continuous at ξ. Again taking ϵ = 1, we
find that there exists δ > 0 such that if x ∈ (ξ − δ, ξ + δ) then |f(x)− f(ξ)| < 1,
which implies that |f(x)| < |f(ξ)| + 1. So f is certainly bounded on the interval
[ξ − δ/2, ξ + δ/2]. But ξ = supS, so f is bounded on the interval [a, ξ − δ/2].
Putting the two intervals together, we find that f is bounded on [a, ξ + δ/2], so
ξ + δ/2 ∈ S, which contradicts the fact that ξ = supS. It follows that ξ = b, and
we are almost finished (but not quite).

Since f is continuous on the left at b, taking ϵ = 1, we find that there exists
δ > 0 such that if x ∈ (b − δ, b] then |f(x) − f(b)| < 1, which implies that
|f(x)| < |f(b)|+1. So f is certainly bounded on the interval [b− δ/2, b]. But we
now know that supS = b, so f is bounded on the interval [a, b− δ/2]. Putting the
two intervals together, we find that f is bounded on [a, b], which completes the
proof.
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Theorem 5.10 applies to a closed interval [a, b]. The function 1
x

is continuous
on the open interval (0, 1) but it certainly is not bounded on this interval since
1
x

→ +∞ as x → 0+. So we cannot replace the closed interval [a, b] in the
theorem by the open interval (a, b).

Not only is a continuous function on a closed interval necessarily bounded, but
it actually achieves its bounds, i.e. its supremum is actually a maximum value, and
its infimum is actually a minimum value.

Theorem 5.11 (Attainment of bounds). Suppose that f is continuous on [a, b].
Put M = sup

x∈[a,b]
f and m = inf

x∈[a,b]
f . Then there exist ξ and ζ in [a, b] such that

f(ξ) =M and f(ζ) = m.

Proof. We prove the existence of ξ, the proof for ζ is similar. The proof depends
on a cunning trick involving the previous theorem. We know that M = sup

x∈[a,b]
f ,

so f(x) ≤ M for all x ∈ [a, b]. But suppose that f(x) < M for all x ∈ [a, b].
Then M − f(x) > 0 for all x ∈ [a, b] and the function

g(x) =
1

M − f(x)

is continuous on [a, b] by Theorem 5.4. Hence, by the previous theorem (Theorem
5.10), g is bounded on [a, b] and consequently there exists some K ∈ R such that
g(x) < K for all x ∈ [a, b]. This gives

1

M − f(x)
< K, so

1

K
< M − f(x), hence

f(x) < M − 1

K
for all x ∈ [a, b].

But this contradicts the fact that M = sup
x∈[a,b]

f . It follows that there must exist

some point ξ ∈ [a, b] such that f(ξ) =M .

Once again the theorem relates to a closed interval [a, b]. It does not hold for
an open interval. For example, if f(x) = x then sup

x∈(0,1)
f = 1 and inf

x∈(0,1)
f = 0.

But for x ∈ (0, 1) we have 0 < f(x) < 1, so f does not attain its bounds on the
open interval (0, 1).

The following is a simple consequence of Theorem 5.11.

Corollary 5.11.1. Suppose that f is continuous on [a, b]. Then the image set is
the closed interval [m.M ], where m,M are the greatest lower bound (infimum)
and least upper bound (supremum) of f on [a, b].
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Our final theorem in this chapter is the Inverse Function Theorem (part 1).
This gives conditions under which the inverse of a continuous function is itself
continuous. Part 2 of the theorem relates to differentiability and we will cover this
in the next chapter. First we need an easy definition.

Definition 5.17. Suppose that f is defined on an interval I (which may be open
or closed) and has co-domain R. If, for every x1, x2 ∈ I with x1 < x2 we have
f(x1) ≤ f(x2), then we say that f is monotonically increasing on the interval
I . If ≤ can be replaced by <, then we say that f is strictly increasing on I . In
the same way we define monotonically (or strictly) decreasing by the requirement
that f(x1) ≥ f(x2) (or f(x1) > f(x2)) for every x1, x2 ∈ I with x1 < x2.

Theorem 5.12 (The Inverse Function Theorem for continuous functions).
Suppose that f is continuous and strictly increasing on the closed interval [a, b].
Put α = f(a), β = f(b). Then f has an inverse function g that is continuous
and strictly increasing on [α, β] with the properties that g(f(x)) = x for every
x ∈ [a, b] and f(g(y)) = y for every y ∈ [α, β].
[Of course the inverse function is usually denoted as f−1, but g is used here in the
proof to simplify the notation. Figure 5.6 provides an illustration of a continuous
and strictly increasing function along with its inverse.]

Proof. The function f : [a, b] → [α, β] is injective (one-one) because f is strictly
increasing. By the Intermediate Value Theorem (Theorem 5.8) if γ ∈ [α, β] then
there exists c ∈ [a, b] such that f(c) = γ, so f is surjective (onto). Hence f is a
bijective function and so possesses an inverse function g such that g(f(x)) = x
for every x ∈ [a, b] and f(g(y)) = y for every y ∈ [α, β].

Next we show that g is strictly increasing on [α, β]. To do this, take y1, y2 ∈
[α, β] with y1 < y2. Then there exist x1, x2 ∈ [a, b] such that y1 = f(x1) and
y2 = f(x2). We cannot have x1 = x2 since y1 ̸= y2, so either x1 < x2 or vice-
versa. But if x2 < x1 then y2 = f(x2) < f(x1) = y1, a contradiction. Hence if
y1 < y2 we must have x1 < x2, i.e. g(y1) < g(y2). So g is strictly increasing on
[α, β].

Finally we show that g is continuous on [α, β]. To do this take any point
γ ∈ [α, β] and choose ϵ > 0. Initially we will assume that γ ̸= α or β, so that
c = g(γ) ̸= a or b.

Take ϵ∗ ≤ ϵ such that (c − ϵ∗, c + ϵ∗) ⊆ (a, b). Then put γ1 = f(c − ϵ∗)
and γ2 = f(c + ϵ∗). Because f is strictly increasing and f(c) = γ, we have
γ1 < γ < γ2. Put δ = min(γ − γ1, γ2 − γ). Then if |y − γ| < δ, we have
γ1 < y < γ2 and consequently g(γ1) < g(y) < g(γ2), i.e. c− ϵ∗ < g(y) < c+ ϵ∗,
which gives |g(y) − c| < ϵ∗ ≤ ϵ. But c = g(γ), so we have |g(y) − g(γ)| < ϵ if
|y − γ| < δ. Hence g is continuous at γ.
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To complete the proof we need to show that g is continuous on the right at
α and on the left at β. To deal with continuity on the right at α, take ϵ∗ ≤ ϵ
such that a + ϵ∗ < b. Then put α∗ = f(a + ϵ∗). Because f is strictly increasing
and f(a) = α, we have α < α∗. Put δ = α∗ − α. Then if α ≤ y < α + δ,
we have α ≤ y < α∗ and consequently g(α) ≤ g(y) < g(α∗). This gives
0 ≤ g(y)−g(α) < g(α∗)−g(α) = (a+ϵ∗)−a = ϵ∗ < ϵ. Hence |g(y)−g(α)| < ϵ
if α ≤ y < α + δ. Therefore g is continuous on the right at α.

Continuity of g on the left at β may be established in a similar fashion.

Although we have stated the result for a strictly increasing function f , it re-
mains true if we replace “increasing” by “decreasing” throughout.

Corollary 5.12.1. Suppose that f is continuous and strictly decreasing on the
closed interval [a, b]. Put α = f(a), β = f(b). Then f has an inverse func-
tion g that is continuous and strictly decreasing on [β, α] with the properties that
g(f(x)) = x for every x ∈ [a, b] and f(g(y)) = y for every y ∈ [β, α].

Proof. Note that β < α in this case. Apply Theorem 5.12 to the function h = −f
with image set [−α,−β]. If k is the inverse of h as guaranteed by that theorem,
then g (the inverse of f ) is given by g(y) = k(−y).

Corollary 5.12.2. Suppose that n is a positive integer. Then the function g(x) =
x

1
n = n

√
x is continuous on [0,∞).

Proof. The function f(x) = xn is continuous and strictly increasing on R and
so certainly continuous and strictly increasing on any closed interval [0, b] . The
function g is the inverse of f and so continuous on [f(0), f(b)] = [0, bn]. Since
b > 0 is arbitrary, we deduce that g is continuous on [0,∞).

It’s hardly worth stating separately that, in consequence of the previous corol-
lary, if r is a rational number then the function xr is continuous at every point
c > 0 (and also continuous on the right at 0 provided that r > 0). If r = m/n

with m,n integers and n > 0 then xr = (x
1
n )m to which we may apply the previ-

ous corollary and either the combination rules or the composite rule.

EXERCISES 5.4

1. Suppose f is continuous at a and that (xn) is a sequence such that xn →
a as n → ∞. Prove that the sequence (f(xn)) converges to f(a) (i.e.
f(xn) → f(a) as n→ ∞).
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2. Suppose that the function f has the property that for every sequence (xn)
that converges to a, the sequence (f(xn)) converges to f(a). Prove that f
must be continuous at a. [Hint: Assume that f is not continuous at a and
use this assumption to construct a sequence (xn) that converges to a but
for which the sequence (f(xn)) does not converge to f(a).]

Remark. Questions 1 and 2 provide an alternative definition of continuity
at a point:

f is continuous at a if and only if, for every sequence (xn) that con-
verges to a, the corresponding sequence (f(xn)) converges to f(a).

Something similar is possible for the limit of a function f at a point a.
However one has then to specify that the sequences do not contain the
value a because f(a) may not be defined and, even if it is, f(a) may not
be the limiting value.

3. Prove that if f(x) = x4− 4x3− 2x2+10x+3 then the equation f(x) = 0
has solutions in each of the intervals (−2,−1), (−1, 0), (1, 2) and (3, 4).
By repeatedly bisecting the interval (−1, 0) find a subinterval of length 1

64

that contains a solution.
4. For each of the following functions determine where it is continuous and

the image set. Justify your answers. [There is no shame in sketching the
graph to find the answer before proving it is the answer.]

2x2 + 5x− 3,a) x2+1
x2−1

,b)
√
x2 − 1,c) 1√

x2−1
.d)

5. Suppose that f(x) is a monic polynomial of degree n, i.e. it has leading
coefficient 1, so that it has the form f(x) = xn+an−1x

n−1+. . .+a1x+a0.
If n is odd prove that f(x) → +∞ as x → +∞ and f(x) → −∞ as x →
−∞. Deduce that the equation f(x) = 0 has at least one solution.
[Hint: Put M = max(|ai|, i = 0, 1, . . . , n− 1) so that if |x| ≥ 1,

|an−1x
n−1 + . . .+ a1x+ a0| ≤ nM |x|n−1,

which gives xn − nM |x|n−1 ≤ f(x) ≤ xn + nM |x|n−1.]

Remark. The Fundamental Theorem of Algebra asserts that a monic poly-
nomial f(z) of degree nwith coefficients in the field of Complex Numbers
C can be factored into n monic linear factors of the form (z − αi) for
i = 1, 2, . . . , n, where each αi ∈ C. Hence the equation f(z) = 0 has n
roots (although some may be equal to others). The proof requires a course
in Complex Analysis.
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6. The function f has domain {x : x > 0} and it has the following properties:
(a) f(x1)+ f(x2) = f(x1x2) for all x1, x2 > 0, (b) f(2) = 1, and (c) f(x)
is continuous at x = 1.
Prove that f(1) = 0, f(2r) = r for each rational number r, and that f is
continuous on (0,∞).



Chapter 6

Differentiability

6.1 Background and definition

In this chapter we consider what it means to say that a function is differentiable,
rules for calculating derivatives, and theoretical consequences. I assume that you
have already learned something about differentiation and that you have seen the
connection with gradients of graphs and rates of change. Looking at a graph and
discussing its gradient at a given point is usually how differentiation is introduced
to students. We start therefore with a brief look at this informal approach.

Consider the graph shown in Figure 6.1. The aim is to find the gradient of
the graph y = f(x) at the point P , where x = a. To do this we first consider a
neighbouring value of x, namely x = a + h. The quantity h is considered small,
but it can be positive or negative. I can’t show both on one diagram, so I show the
case when h is positive. The triangle shown PQR is right-angled and the slope or
gradient of the hypotenuse PQ is the vertical height f(a+h)−f(a) divided by the

length of the base, namely h. So PQ has gradient
f(a+ h)− f(a)

h
. This remains

true whether or not h is positive or negative, and whether or not P is below, level
with, or above Q. The key idea is that as the size of h is reduced towards zero.
the gradient of PQ approaches the gradient of the graph (i.e. the tangent to the
graph) at the point P . You can envisage Q sliding along the curve towards P .

We are therefore considering the limiting value (if any) of
f(a+ h)− f(a)

h
as h

tends to zero. Of course you must not actually put h = 0 into this formula because
division by zero is undefined. If the limit exists, we denote it by f ′(a) and call
this the derivative of f at a.

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
.

133
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x

y

y = f(x)

a a+ h

P

Q

R

h

f(a+ h)− f(a)

f(a)

f(a+ h)

Figure 6.1: Calculating a gradient

Terminology may be different. If we replace h by δx (read this as a composite
symbol meaning the change in the x-coordinate) and replace f(a + h) − f(a)
by δy (read this as a composite symbol meaning the change in the y-coordinate),

then we can express the gradient of the line PQ as the ratio
δy

δx
. Of course δx

and δy are composite symbols and there is no question of “cancelling” the δs. In

this terminology we would hope that there is a limiting value of
δy

δx
as δx tends to

zero. Of course you must not actually put δx = 0. If the limit does exist it can be

denoted by
dy

dx
(or strictly speaking by

dy

dx

∣∣∣
x=a

since we are calculating the gradi-

ent at the point x = a). It is very important to note that
dy

dx
is a single composite

symbol; you must not treat it as a fraction, dy divided by dx, nor can you “cancel”
the ds. Despite this warning, the notation has several practical advantages. In
certain situations it does behave like a fraction, as we will see.

The two alternative notations for a derivative trace their origins back to Isaac

Newton (f ′(a)) and Gottfried Leibniz
(dy
dx

)
, the principal inventors of Calculus.

We will use either notation as and when convenient. Each has its own advantages.
Time for a formal definition.

Definition 6.1. Suppose that f is a function defined on an open interval containing
the point a. If there exists l ∈ R such that

f(a+ h)− f(a)

h
→ l as h→ 0,

then we say that f is differentiable at the point a, and we denote the limiting value
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l by f ′(a). This value is called the derivative of f at a. If we allow ourselves to

write y = f(x) then an alternative notation for the derivative is
dy

dx

∣∣∣
x=a

.

The definition may be expressed in an alternative form. If we write x for a+h,
so that h = x− a, then the limit l satisfies

f(x)− f(a)

x− a
→ l as x→ a.

Example 6.1. Prove that the function f defined by f(x) = x2 is differentiable at
x = 3 with derivative 6.

Solution. For h ̸= 0 we have

f(3 + h)− f(3)

h
=

(3 + h)2 − 32

h
=

9 + 6h+ h2 − 9

h
=

6h+ h2

h
= 6 + h.

But 6 + h→ 6 as h→ 0, so

f(3 + h)− f(3)

h
→ 6 as h→ 0.

Hence the function f(x) = x2 is differentiable at 3 with derivative 6.

As with continuity, we may look at one-sided definitions.

Definition 6.2. Suppose that f is a function defined on an interval [a, b). If there
exists l ∈ R such that

f(a+ h)− f(a)

h
→ l as h→ 0+,

then we say that f is differentiable on the right at a and we denote the limiting
value l by f ′(a+). This value is called the right-derivative of f at a.

Suppose that g is a function defined on an interval (c, a]. If there exists l ∈ R
such that

g(a+ h)− g(a)

h
→ l as h→ 0−,

then we say that g is differentiable on the left at a and we denote the limiting value
l by g′(a−). This value is called the left-derivative of g at a.

The function f is differentiable at a if and only if it is differentiable on both
the left and the right at a, and the left and right derivatives are equal. The common
value of these derivatives is then f ′(a).
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Example 6.2. Show that f(x) = |x| has left and right derivatives at x = 0, but
these are unequal and so f is not differentiable at x = 0.

Solution. For h > 0 we have

f(0 + h)− f(0)

h
=

|h|
h

= 1 → 1 as h→ 0 + .

Hence the function has a right-derivative f ′(0+) = 1. For h < 0 we have

f(0 + h)− f(0)

h
=

|h|
h

= −1 → −1 as h→ 0− .

Hence the function has a left-derivative f ′(0−) = −1. Since the left and right
derivatives are unequal, f is not differentiable at x = 0.

In geometric terms. the gradient on the right at 0 is +1 (45o), while that on
the left is −1 (−45o). There is no well-defined tangent to the graph at x = 0. See
Figure 6.2.

x

y

f(x) = |x|

Figure 6.2: f(x) = |x|

As with continuity, interest tends to focus on intervals, rather than just the
property at individual points. So we make the following definitions.

Definition 6.3. If the function f is differentiable at each point x ∈ (a, b) then we
say that f is differentiable on (the open interval) (a, b). The function defined by

the values of the derivative is denoted by f ′, or by
df

dx
, and is called the derived

function. If we allow ourselves to write y = f(x) then f ′ may also be denoted by
dy

dx
.

Differentiability of f on a closed interval [a, b] is taken to mean differentia-
bility on the open interval (a, b), plus the existence of one-sided derivatives at the
end points. Intervals [a, b) and (a, b] are dealt with in the same way.

If f is differentiable on R, then we may simply say that f is differentiable.
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Example 6.3. Prove that the function f defined by f(x) = x2 is differentiable at
each point x ∈ R with derivative 2x.

Solution. For h ̸= 0 we have

f(x+ h)− f(x)

h
=

(x+ h)2 − x2

h
=
x2 + 2xh+ h2 − x2

h

=
2xh+ h2

h
= 2x+ h.

But 2x+ h→ 2x as h→ 0, so

f(x+ h)− f(x)

h
→ 2x as h→ 0.

Hence the function f(x) = x2 is differentiable at x with derivative 2x.

Exercises for Section 6.1
1. For f(x) = 1

x
calculate the values of (f(2 + h) − f(2))/h for h =

±0.1,±0.01,±0.001. Compare your answers to −1
4
.

a)

Repeat part a) for f(x) = sin(x) and compare the resulting answers
with cos(2). [Use a calculator with angles set to radians.]

b)

2. Prove that f(x) = 1
x

is differentiable at every point x, except for x = 0,
and give the value of the derivative at x.

3. For the function f(x) = x − ⌊x⌋ determine whether or not the one-sided
derivatives exist at x = 1. In case of existence, determine the one-sided
derivative.

6.2 Basic results on differentiation
It seems unlikely that a function with a discontinuity at x = a can have a well-
defined gradient (tangent to its graph) at the point x = a. This expectation is
bourne out in the following Theorem.

Theorem 6.1. If f is differentiable at a, then f is continuous at a.

Proof. For h ̸= 0 we have

f(a+ h)− f(a) = h× f(a+ h)− f(a)

h
→ 0× f ′(a) = 0 as h→ 0.

Hence f(a+ h) → f(a) as h→ 0, i.e. f is continuous at a.
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Note. It might be thought that the converse is also true. That this is not the case is
shown by the example of f(x) = |x| at x = 0 (see Example 6.2), where we have
continuity without differentiability. However, it was thought for a long time that
a function which is everywhere continuous must (in some sense) be differentiable
almost everywhere. This conjecture was eventually proved false by Karl Weier-
strass in 1872 who constructed a function that was continuous everywhere but
differentiable nowhere - a sort of spiky-everywhere function. Weierstrass’s func-
tion and others like it show that informal arguments based on sketching Cartesian
graphs do not form a sound basis for a rigorous treatment of Calculus. What is
required are precise definitions and proofs based on logical deduction principles.

We have seen in examples and exercises above how to calculate derivatives
of simple functions such as x2 and 1

x
. To make faster progress we need rules

for calculating derivatives of functions. These are given in the following few
theorems. We start with the combination rules for multiples, sums, products and
quotients.

Theorem 6.2 (Combination rules for differentiation). Suppose that f and g are
functions differentiable at the point a. Then

(i) (multiple rule) if k is any constant, then kf is differentiable at awith deriva-
tive kf ′(a),

(ii) (sum rule) f + g is differentiable at a with derivative f ′(a) + g′(a),

(iii) (product rule) fg is differentiable at awith derivative f(a)g′(a)+g(a)f ′(a),

(iv) (quotient rule) if g(a) ̸= 0 then f/g is differentiable at a with derivative
g(a)f ′(a)− f(a)g′(a)

(g(a))2
. [Easiest to remember in words: “bottom times the

derivative of the top minus top times the derivative of the bottom, all over
the bottom squared”.]

Proof. (i)

kf(a+ h)− kf(a)

h
= k

f(a+ h)− f(a)

h
→ kf ′(a) as h→ 0.

(ii)

(f(a+ h) + g(a+ h))− (f(a) + g(a))

h
=
f(a+ h)− f(a)

h

+
g(a+ h)− g(a)

h
→ f ′(a) + g′(a) as h→ 0.
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(iii)

f(a+ h)g(a+ h)− f(a)g(a)

h

=
f(a+ h)g(a+ h)− f(a+ h)g(a) + f(a+ h)g(a)− f(a)g(a)

h

= f(a+ h)
g(a+ h)− g(a)

h
+ g(a)

f(a+ h)− f(a)

h
→ f(a)g′(a) + g(a)f ′(a) as h→ 0 (noting that f is continuous at a).

(iv) We first establish the result for the function 1
g(x)

and then use the product
rule. We have

1
g(a+h)

− 1
g(a)

h
=
g(a)− g(a+ h)

hg(a+ h)g(a)

=
−1

g(a+ h)g(a)
× g(a+ h)− g(a)

h

→ −1

(g(a))2
g′(a) as h→ 0 (noting that g is continuous at a).

Now consider
f(x)

g(x)
= f(x)× 1

g(x)
. Using the product rule we find that the

derivative of f(x)/g(x) equals

f(a)× −1

(g(a))2
g′(a) +

1

g(a)
× f ′(a) =

g(a)f ′(a)

(g(a))2
− f(a)g′(a)

(g(a))2

=
g(a)f ′(a)− f(a)g′(a)

(g(a))2
.

If we write u = f(x) and v = g(x) then we can express the composites rules
in other notations as follows:

(i) for y = ku, dy
dx

= k du
dx

, or y′ = ku′,

(ii) for y = u+ v, dy
dx

= du
dx

+ dv
dx

, or y′ = u′ + v′,

(iii) for y = uv, dy
dx

= u dv
dx

+ v du
dx

, or y′ = uv′ + vu′,

(iv) for y = u/v, dy
dx

= (v du
dx

− u dv
dx
)/v2, or y′ = (vu′ − uv′)/v2.
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Theorem 6.3 (Composite, function-of-a-function, or chain rule).
Suppose that g is differentiable at b, that g(b) = a, and that f is differentiable at a.
Then the composite function f ◦g is differentiable at bwith derivative (f ◦g)′(b) =
f ′(a)g′(b).
[If we write y = f(z) and z = g(x) then y = (f ◦ g)(x) = f(g(x)). The result
states that dy

dx
= dy

dz
× dz

dx
, with the derivatives on the right hand side evaluated at

the corresponding points a and b respectively. This is easy to remember because
it looks like the dz terms cancel out, although this is not what is happening since
both dy

dz
and dz

dx
are single composite symbols.]

Proof. Rather unusually I start with an incorrect proof. I will explain what is
wrong with it. Then I will correct it and give a proper proof. So here’s what you
might try in the first instance, with h ̸= 0 assumed.

(f ◦ g)(b+ h)− (f ◦ g)(b)
h

=
f(g(b+ h))− f(g(b))

h

=
f(g(b+ h))− f(g(b))

g(b+ h)− g(b)
× g(b+ h)− g(b)

h
(6.1)

We have
g(b+ h)− g(b)

h
→ g′(b) as h → 0. Since g is continuous at b, we also

have g(b+ h)− g(b) → 0 as h→ 0. So if we define k(h) = g(b+ h)− g(b) then
k(h) → 0 as h→ 0. But

f(g(b+ h))− f(g(b)) = f(g(b) + k(h))− f(g(b)) = f(a+ k(h))− f(a),

and so

f(g(b+ h))− f(g(b))

g(b+ h)− g(b)
=
f(a+ k(h))− f(a)

k(h)
→ f ′(a) as h→ 0.

Consequently

(f ◦ g)(b+ h)− (f ◦ g)(b)
h

→ f ′(a)g′(b) as h→ 0.

The error lies in equation 6.1 in red above. It is possible for g(b+ h) to equal
g(b) for values of h other than h = 0. In such cases we must avoid dividing by

k(h) = g(b + h) − g(b). The difficulty lies in the fact that
f(a+ k)− f(a)

k
is

undefined for k = 0. However it is true that
f(a+ k)− f(a)

k
→ f ′(a) as k →

0. So we start a correct proof by defining a new function ϕ that coincides with
f(a+ k)− f(a)

k
if k ̸= 0, but is also defined with a “natural” value at k = 0.
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Define ϕ(k) =


f(a+ k)− f(a)

k
if k ̸= 0

f ′(a) if k = 0

Then ϕ is continuous at 0 because [f(a+ k)− f(a)]/k → f ′(a) as k → 0.
With k(h) = g(b+ h)− g(b) we have

(f ◦ g)(b+ h)− (f ◦ g)(b)
h

=
f(g(b+ h))− f(g(b))

h

=
f(g(b) + k(h)))− f(g(b))

h

=
f(a+ k(h))− f(a)

h

= ϕ(k(h))× k(h)

h

= ϕ(k(h))× g(b+ h)− g(b)

h
(6.2)

Equation 6.2 is correct in all cases. If k(h) = g(b + h) − g(b) ̸= 0 then it is the
same as equation 6.1. But if k(h) = g(b+h)− g(b) = 0 then it is correct because
both sides are zero. [Think about this!]

Since g is continuous at b we have k(h) = g(b + h) − g(b) → 0 as h → 0.
Noting that ϕ is continuous at 0, equation 6.2 gives

(f ◦ g)(b+ h)− (f ◦ g)(b)
h

= ϕ(k(h))× g(b+ h)− g(b)

h
→ ϕ(0)g′(b) as h→ 0,

and ϕ(0)g′(b) = f ′(a)g′(b).

The theorem can be applied to a function of a function of a function (etc). For
example if y = f(t), t = g(u), and u = h(x) then dy

dx
= dy

dt
dt
du

du
dx

. It is this that
gives rise to the name “chain rule”.

Equipped with the previous theorems, we can show that a wide variety of
functions are differentiable. We start with integer powers.

Theorem 6.4.
If n is a non-negative integer then fn(x) = xn is differentiable everywhere. If n is
a negative integer then fn(x) = xn is differentiable everywhere except at x = 0.
In each case the derivative is nxn−1 (0 if n = 0).
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Proof. Suppose first that n = 0. Choose a ∈ R and for h ̸= 0 consider
[f0(a+ h)− f0(a)]/h = [1− 1]/h = 0 → 0 as h→ 0.

Next consider the case n = 1. Choose a ∈ R and for h ̸= 0 consider
[f1(a+ h)− f1(a)]/h = [a+ h− a]/h = 1 → 1 as h→ 0.

Now suppose inductively that for some k ≥ 1, fk(x) = xk is differentiable
at a with derivative kak−1. Then by the product rule fk+1(x) = fk(x)f1(x) is
differentiable at a with derivative fk(a)f ′

1(a) + f1(a)f
′
k(a) = ak + akak−1 =

(k + 1)ak. It follows by induction that fn(x) is differentiable at each point a ∈ R
with derivative nan−1.

To deal with n < 0 we use the quotient rule. So suppose n < 0 and put

m = −n. Then by the quotient rule fn(x) =
1

xm
is differentiable everywhere

except at x = 0 with derivative

−mxm−1

x2m
= −mx−m−1 = nxn−1.

Corollary 6.4.1. If f(x) is a polynomial, then f is differentiable on R. If g(x) is
a polynomial then the rational function f(x)/g(x) is differentiable everywhere on
R except for those points x (if any) where g(x) = 0.

Proof. The result follows from Theorem 6.4 by repeated application of the multi-
ple, sum and quotient rules.

Theorem 6.5 (The Inverse Function Theorem for differentiable functions).
Suppose that f is differentiable and strictly increasing on the closed interval [a, b].
If ξ ∈ [a, b] and f ′(ξ) ̸= 0 then the inverse function g is differentiable at η = f(ξ)

with derivative g′(η) =
1

f ′(ξ)
.

[The inverse function is usually denoted as f−1, but g is used here in the proof to
simplify the notation. If ξ = a or b, then the derivatives are one-sided. You are
strongly advised to look back to Theorem 5.12 in the previous chapter, the inverse
function theorem for continuous functions.]

Proof. As in Theorem 5.12, we define α = f(a) and β = f(b). By that previous
theorem, g is continuous and strictly increasing on [α, β]. Initially, take ξ ∈ (a, b)
and let η = f(ξ), so that η ∈ (α, β) and g(η) = ξ. We suppose that f ′(ξ) ̸= 0.
Figure 6.3 provides an illustration.
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x

f(x)

g(x)

a

b
α

β

a

b

α
βξ

ξ

η

η

Figure 6.3: Inverse functions and differentiability

For k ̸= 0 and such that η + k ∈ (α, β) define h by the equation

η + k = f(ξ + h), in other words
g(η + k) = ξ + h i.e.

h = g(η + k)− ξ

= g(η + k)− g(η)

Figure 6.4 shows h and k and their role in determining the derivative of f at ξ,
and the derivative of g at η. You are advised to look at Figure 6.4 before reading
the next paragraph.

Note that h is uniquely determined by k (we could write h = h(k) to empha-
sise that h is a function of k). Since k ̸= 0 and g is strictly increasing, it follows
that h ̸= 0. Moreover, since g is continuous at η, we have h = g(η+ k)− g(η) →
0 as k → 0 and

g(η + k)− g(η)

k
=
h

k
=

h

f(ξ + h)− f(ξ)
.

As k tends to zero, h also tends to zero and so the right hand side of the expression

tends to
1

f ′(ξ)
. Hence

g(η + k)− g(η)

k
→ 1

f ′(ξ)
as k → 0.
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Figure 6.4: A close-up view of h and k

Consequently g is differentiable at η and g′(η) =
1

f ′(ξ)
.

If ξ is one of the end points a or b then η is a corresponding end point, α or β.
The same argument as above applies to the one sided derivatives, taking k > 0 or
k < 0 as appropriate.

Although we have stated the result for a strictly increasing function f , it re-
mains true if we replace “increasing” by “decreasing” throughout.

Corollary 6.5.1. Suppose that f is differentiable and strictly decreasing on the
closed interval [a, b]. If ξ ∈ [a, b] and f ′(ξ) ̸= 0 then the inverse function g is

differentiable at η = f(ξ) with derivative g′(η) =
1

f ′(ξ)
.

Proof. Note that β = f(b) < f(a) = α in this case. Apply Theorem 6.5 to the
function h = −f with image set [−α,−β]. If k is the inverse of h as guaranteed
by that theorem, then g (the inverse of f ) is given by g(y) = k(−y). We get

g′(η) = −k′(−η) = − 1

h′(ξ)
=

1

f ′(ξ)
.

Note. If we write y = f(x), and x = g(y) for the inverse, then the results may
be expressed as dx

dy
= 1

dy
dx

, or dy
dx

· dx
dy

= 1. So here again dy
dx

behaves a bit like a
fraction with the dy and the dx appearing to cancel, although that is not what is
happening. If it were really a case of just cancelling, there would be no need for
the proofs presented above.
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Corollary 6.5.2. Suppose that n is a positive integer. Then the function g(x) =
x

1
n = n

√
x is differentiable on (0,∞) with derivative

(
1
n

)
x

1
n
−1.

Proof. The function f(x) = xn is continuous and strictly increasing on R and
so certainly continuous and strictly increasing on any closed interval [0, b] . The
function g is the inverse of f and so differentiable on [f(0), f(b)] = [0, bn] except
at the point 0. Since b > 0 is arbitrary, we deduce that g is differentiable on
(0,∞). If η = f(ξ) = ξn then ξ = η

1
n and

g′(η) =
1

f ′(ξ)
=

1

nξn−1
=

1

nη1−
1
n

=
( 1
n

)
η

1
n
−1.

[If we write r = 1
n

then the derivative of xr is just rxr−1.]

Corollary 6.5.3. If r is rational then f(x) = xr is differentiable on (0,∞) with
derivative rxr−1.

Proof. We may assume that r = m/n in its lowest terms with m,n integers and
n > 0. Then we take g(x) = xm and h(x) = x

1
n , so that f(x) = g(h(x)) =

(g ◦ h)(x). By the composite rule, f is differentiable on (0,∞), with derivative

f ′(x) = g′(h(x))h′(x) = m(x
1
n )m−1 ×

( 1
n

)
x

1
n
−1 =

(m
n

)
x

m
n
−1 = rxr−1.

Notes.
1. If r = m/n is in its lowest terms with m,n integers, n > 0 and n odd, then
f(x) = xr is differentiable on (−∞, 0) with derivative rxr−1. Of course n has to
be odd because negative numbers do not have an nth root if n is even. You are
asked to prove this result for m = 1 in one of the questions in Exercises 6.2. The
result for general m then follows using the composite rule as in Corollary 6.5.3.
Summarising: for a rational number r, the derivative of xr is rxr−1 whenever the
function and derivative make sense.

2. If α is irrational, we haven’t yet got a definition of xα so, for irrational powers,
so questions of continuity and differentiability must wait. We will address this
issue in the next chapter.

Exercises for Section 6.2
1. For each of the following functions determine the derivative. State any

values for which the function is not differentiable. You can assume that
sin(x) is differentiable with derivative cos(x), that cos(x) is differentiable
with derivative − sin(x), and that exp(x) is differentiable with derivative
exp(x).
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x2 + x+ 3,a) (x2 − 1)/(x2 +1),b) sin(x)/ cos(x),c)

sin(x2),d) cos(
√
x),e) exp(cos(x2)),f)

exp(1/x2),g) sin(x exp(x2)),h) cos(exp(x) + x2).i)

2. Suppose that f(x) = x
1
n , where n is an odd positive integer. Prove that

f is differentiable on (−∞, 0) with derivative 1
n
x

1
n
−1. [Hint: for x < 0,

f(x) = −(−x) 1
n . Use the composite rule and Corollary 6.5.2 with g(z) =

−z 1
n and z(x) = −x.]

3. The function f(x) is given by f(x) =

{
x2 sin

(
1
x

)
if x ̸= 0,

0 if x = 0
. Deter-

mine where f(x) is differentiable, and state the value of of its derivative.
You may assume that sin(x) is differentiable on R and has its usual prop-
erties.

6.3 Rolle’s Theorem and the Mean Value Theorem
The two main results in this section show that the average rate of change of a
differentiable function on a closed interval must be the actual rate of change at
some point in the interval. Rolle’s theorem deals with the case when the average
rate of change is zero. From Rolle’s theorem we obtain the Mean Value Theorem,
which deals with the general case. But first there are some preliminary items.

In the previous chapter we defined what we meant by saying that a function f
is strictly increasing or strictly decreasing on an interval. Here we define what is
meant by saying that a function f is strictly increasing or decreasing at a point.
We also take the opportunity to define local maxima and minima.

Definition 6.4. Suppose that f(x) is continuous at the point x = a.
We say that f is strictly increasing at the point a if ∃δ > 0 s.t. ∀x ∈ (a− δ, a) we
have f(x) < f(a), while ∀x ∈ (a, a+ δ) we have f(a) < f(x).
We say that f is strictly decreasing at the point a if ∃δ > 0 s.t. ∀x ∈ (a− δ, a) we
have f(x) > f(a), while ∀x ∈ (a, a+ δ) we have f(a) > f(x).

We say that f has a local maximum at the point a if ∃δ > 0 s.t. ∀x ∈ (a − δ, a)
and ∀x ∈ (a, a+ δ) we have f(x) < f(a).
We say that f has a local minimum at the point a if ∃δ > 0 s.t. ∀x ∈ (a − δ, a)
and ∀x ∈ (a, a+ δ) we have f(a) < f(x).

Theorem 6.6. Suppose that f is differentiable at a. If f ′(a) > 0 then f is strictly
increasing at a. If f ′(a) < 0 then f is strictly decreasing at a.
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Proof. We give the proof for f ′(a) > 0, the other case is similar.
Since f is differentiable at a, given ϵ > 0,∃δ > 0 s.t. if 0 < |h| < δ, then∣∣∣f(a+ h)− f(a)

h
− f ′(a)

∣∣∣ < ϵ, i.e. −ϵ < f(a+ h)− f(a)

h
− f ′(a) < ϵ. So if

we take ϵ = f ′(a), then for a corresponding δ we have

−f ′(a) <
f(a+ h)− f(a)

h
− f ′(a),

and this gives 0 <
f(a+ h)− f(a)

h
, provided that 0 < |h| < δ. It follows that if

−δ < h < 0 then f(a + h) < f(a), while if 0 < h < δ then f(a + h) > f(a).
Hence f is strictly increasing at a.

Corollary 6.6.1. If f is differentiable at a and it has a local maximum or a local
minimum at a, then f ′(a) = 0.

Proof. If f ′(a) > 0 or if f ′(a) < 0 then f is strictly increasing or strictly decreas-
ing at a and so cannot have a local maximum or a local minimum at a.

Cautions. The corollary is not saying that if f ′(a) = 0 then f has a local maxi-
mum or a local minimum at a. If we consider the function f(x) = x3, it is easy to
see that it is strictly increasing on R, and therefore has no local maxima or minima
- see Figure 6.5. However, f ′(x) = 3x2, so f ′(0) = 0. Note also that the corollary
only applies to functions that are differentiable at a; there may be local maxima
and minima of f at points where f is not differentiable. A further caution is that a
function may have several local maxima and minima; indeed it is possible to have
a local minimum greater than a local maximum as in Figure 6.6. And finally, these
are local maxima and minima, so there may be a maximum or minimum value of
f on a closed interval at one of the end points, or the function may have no overall
maximum or minimum.

Despite the cautionary remarks, points where the derivative is zero clearly
merit some attention, so we give them a name in the following definition.

Definition 6.5. If f is differentiable at a and f ′(a) = 0 then we say that a is a
stationary point of f .

One possible reason for this terminology is that for a distance-time graph,
places where f ′(a) = 0 represent points where the moving body is (at least tem-
porarily) at rest, i.e. stationary.

Clearly we need to be able to distinguish local maxima and minima from other
stationary points of f , and to distinguish between local maxima and local minima.
There are two common tests. Before we get to them we will state and prove Rolle’s
Theorem, and the Mean Value Theorem. These two theorems have important
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x

y
f(x) = x3

f ′(0) = 0, but x = 0

is neither a local maximum
nor a local minimum.

Figure 6.5: The graph of f(x) = x3.

x

y

f(x)local maximum

local minimum

Figure 6.6: A function with several local maxima and minima.

consequences including, but not limited to, tests for local maxima and minima.
Rolle’s theorem is illustrated in Figure 6.7.

Theorem 6.7 (Rolle’s Theorem). Suppose that f is a function that is continuous
on the closed interval [a, b], differentiable on the open interval (a, b), and f(a) =
f(b). Then there exists a point ξ ∈ (a, b) such that f ′(ξ) = 0, i.e. ξ is a stationary
point.
[Observe that the average gradient across [a, b] is [f(b)− f(a)]/(b− a) = 0.]

Proof. Since f is continuous on [a, b], it is bounded on [a, b] (see Theorem 5.10
in the previous chapter). Put

M = sup
x∈[a,b]

f(x), and m = inf
x∈[a,b]

f(x).

If M = m then f is constant on [a, b], and so f ′(x) = 0 at every point x ∈ (a, b).
In such cases we can put ξ = (a+ b)/2.
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x

y

y = f(x)

a bξ

f ′(ξ) = 0

Figure 6.7: Illustrating Rolle’s Theorem

If M ̸= m then either M > f(a) = f(b) or m < f(a) = f(b) (or perhaps
both).

Suppose first that M > f(a) = f(b). By Theorem 5.11 from the previous
chapter, there exists a point ξ ∈ [a, b] for which f(ξ) = M . Clearly ξ ̸= a, b, so
ξ ∈ (a, b) and f is differentiable at ξ. If f ′(ξ) > 0 then f is strictly increasing
at ξ, and so there is a subinterval of (a, b) immediately to the right of ξ in which
f(x) > f(ξ) =M . This contradicts the fact thatM is the supremum. If f ′(ξ) < 0
then f is strictly decreasing at ξ, and so there is a subinterval of (a, b) immediately
to the left of ξ in which f(x) > f(ξ) = M . This also contradicts the fact that M
is the supremum. Hence we must have f ′(ξ) = 0.

The other alternative is thatm < f(a) = f(b). In this case, arguing in a similar
fashion, there is a point ξ ∈ (a, b) for which f(ξ) = m, and then f ′(ξ) = 0.

Theorem 6.8 (The Mean Value Theorem). Suppose that f is a function that is
continuous on the closed interval [a, b] and differentiable on the open interval
(a, b). Then there exists a point ξ ∈ (a, b) such that f ′(ξ) = [f(b)−f(a)]/(b−a).
Figure 6.8 illustrates the result.
[Observe that the average (mean) gradient across [a, b] is [f(b)− f(a)]/(b− a).]

Proof. Put g(x) = f(x)− λx where λ is a constant chosen to make g(a) = g(b).
This entails

f(a)− λa = f(b)− λb,

which gives λ = [f(b)− f(a)]/(b− a).
Then g satisfies the conditions of Rolle’s Theorem, and so there exists a point

ξ ∈ (a, b) such that g′(ξ) = 0. But g′(ξ) = f ′(ξ) − λ. Hence f ′(ξ) = λ =
[f(b)− f(a)]/(b− a).
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y y = f(x)

a bξ

f ′(ξ) =
f(b)− f(a)

b− a

Figure 6.8: Illustrating the Mean Value Theorem

The result can also be expressed as f(b) − f(a) = (b − a)f ′(ξ) or as f(b) =
f(a) + (b − a)f ′(ξ). Sometimes the result is referred to as the First Mean Value
Theorem. Of course this suggests there must be a Second lurking in the wings,
and maybe more. That will have to wait a few pages. Before that we have some
important consequences of the Mean Value Theorem.

Corollary 6.8.1. Suppose that f is a function that is continuous on the closed
interval [a, b], differentiable on the open interval (a, b), and f ′(x) = 0 for every
x ∈ (a, b). Then f is constant on [a, b].

Proof. Suppose that α and β are any points in [a, b] with α < β. Then f satisfies
the conditions of the Mean Value Theorem on the interval [α, β] and so f(β) −
f(α) = (β − α)f ′(ξ) for some ξ ∈ (α, β). But f ′(ξ) = 0 and so we have
f(β) = f(α). It follows that f is constant on [a, b].

Corollary 6.8.2. Suppose that g and h are functions that are continuous on the
closed interval [a, b], differentiable on the open interval (a, b), and g′(x) = h′(x)
for every x ∈ (a, b). Then there exists a constant c such that g(x) = h(x) + c for
every x ∈ [a, b].

Proof. Just apply the previous corollary to the difference f(x) = g(x)−h(x).

This corollary really says that if we know the derivative of a function, then
we know the function itself up to an additive constant. This result looks ahead to
integration and we make the following definition

Definition 6.6. Suppose that F and f are defined on an interval I , and that F is
differentiable on the interval I with derivative f , i.e. F ′(x) = f(x) for all x ∈ I .
Then we say that F is a primitive of f on the interval I . In view of the previous
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corollary, if F1 and F2 are any primitives of the function f on an interval I then
F1(x)− F2(x) must take a constant value on I .

Corollary 6.8.3. Suppose that f is a function that is continuous on the closed
interval [a, b], differentiable on the open interval (a, b), and f ′(x) > 0 for every
x ∈ (a, b). Then f is strictly increasing on [a, b].
[If the condition f ′(x) > 0 is replaced by f ′(x) < 0, then the conclusion is that f
is strictly decreasing on [a, b].]

Proof. Suppose that α and β are any points in [a, b] with α < β. Then f satisfies
the conditions of the Mean Value Theorem on the interval [α, β] and so f(β) −
f(α) = (β − α)f ′(ξ) for some ξ ∈ (α, β). But f ′(ξ) > 0 and so we have
f(β) − f(α) > 0, i.e. f(β) > f(α). It follows that f is strictly increasing on
[a, b].
[The decreasing case is similar.]

We can now give the first derivative test for identifying local maxima and
minima amongst the stationary points of a differentiable function.

Corollary 6.8.4 (First derivative test). Suppose that the function f is differentiable
on an open interval containing the point c and that c is a stationary point of f , i.e.
f ′(c) = 0. Then f has a local maximum at c if

(i) there is some interval Il immediately to the left of c (say Il = (c − δ, c))
such that if x ∈ Il then f ′(x) > 0, and

(ii) there is some interval Ir immediately to the right of c (say Ir = (c, c + γ))
such that if x ∈ Ir then f ′(x) < 0.

[If the inequalities (i) f ′(x) > 0, and (ii) f ′(x) < 0 are reversed then the stationary
point is a local minimum.]

Proof. The previous corollary shows that f is strictly increasing on (c− δ, c] and
strictly decreasing on [c, c+ γ). Hence c is a local maximum of f .
[The local minimum case follows using a similar argument.]

Example 6.4. Show that f(x) = x4 has a local minimum at x = 0.

Solution. We have f ′(x) = 4x3, so f ′(0) = 0. Hence x = 0 is a stationary point
of f . If x < 0 then f ′(x) < 0, while if x > 0 then f ′(x) > 0. So by the first
derivative test, f has a local minimum at x = 0.
Of course no-one would ever bother with this argument in such a simple case be-
cause f(x) = x4 > 0 unless x = 0, so f obviously has a local minimum at x = 0.
However it does provide a simple illustration of the test.

For completeness we state the following definition.
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Definition 6.7. Suppose that the function f is differentiable on an open interval
containing the point c and that c is a stationary point of f , i.e. f ′(c) = 0. If f
is strictly increasing, or strictly decreasing at c (which ensures that c is neither a
local maximum nor a local minimum of f ), then we say that c is an inflexion point
of f .

A trivial example is that f(x) = x3 has an inflexion point at x = 0 (see Figure
6.5).
Remark. An inflexion point can be defined more generally as a point x = a on the
graph of a differentiable function where the graph crosses the tangent to the graph,
so not requiring the point a to be a stationary point. As an easy example, think
about rotating the graph of f(x) = x3 45 degrees clockwise about the origin.
Under this more general definition x = 0 remains an inflexion point even though
it is no longer a stationary point. But we will not spend any time on inflexion
points in this book.

You will notice we called Corollary 6.8.4 the first derivative test. So what’s
the second? - There surely must be one. To explain this, we need to define higher
derivatives.

Definition 6.8 (Higher derivatives). Given a function f defined and differentiable
on some interval, the derived function f ′ may itself be differentiable at some or all
of the points in the same interval. Its derivative is then denoted by f ′′ or f (2). This
is called the second derivative of f . If we write y = f(x) then f ′ is denoted by
dy
dx

and f ′′ by d2y
dx2 . Note that it is d2y

dx2 and not dy2

dx2 . The reason being that we regard
the symbol d

dx
as an operator, i.e. an instruction to differentiate, so the symbol

for differentiating twice is d
dx

d
dx

= d 2

dx2 . In a similar way we define higher order
derivatives for n ≥ 3: f (n), also denoted by dny

dxn .
Sometimes it can be useful to concentrate on this operational aspect of differ-

entiation and you may see the operator symbol d
dx

replaced by D or, if we wish
to emphasise the role of x, by Dx. We won’t be pursuing that here, but just to
suggest how it might help, consider an expression such as d2y

dx2 + 3 dy
dx

+ 2y. Us-
ing the D notation this can be written as (D2 + 3D + 2)y, or even factorised as
(D + 2)(D + 1)y.

To understand what these higher derivatives represent consider the graph
shown in Figure 6.9 that gives the distance someone has travelled in a vehicle
during a time interval. The x-coordinate represents the time from the start, and
the y coordinate represents the distance travelled. The vehicle starts from rest,
picks up speed and eventually slows before coming to rest again. The average
speed is the total distance travelled divided by the total time. But the speed varies.
Of course the speed is the rate of change of position. In this case the speed of
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travel is slowing between point P (at time a) and point Q (at time a+ h) because
the graph is flattening as you move from left to right from P to Q. The average
speed between P and Q is [f(a+h)− f(a)]/h, but the speed at P itself (given by
the slope of the tangent at P ) is f ′(a). Similarly, the speed atQ is f ′(a+h), which
for this graph is clearly less than the speed at P . So there is some deceleration
(negative acceleration) as we move from left to right from P to Q. Acceleration is
just the rate of change of velocity and so the acceleration at P is f ′′(a), which in
this case is negative. In the same way, the third derivative f (3)(a) would measure
the rate of change of acceleration at P .

x = time from start

y = distance travelled
y = f(x)

a a+ h

Q

P

h

f(a)

f(a+ h)

Figure 6.9: Explaining higher derivatives

Economists and politicians often talk about inflation, which is the rate of
change of prices (a first derivative). When inflation is high there is often a focus
on whether or not it is rising or falling. So a politician faced with high inflation
is likely to make a big fuss about inflation falling (a second derivative), hoping to
fool people into thinking things are getting better, rather than the more accurate
view that at least they aren’t getting worse quite as fast as they were. If infla-
tion is falling or rising rapidly, there may even be some sly reference to the third
derivative if it looks favourable.

The moral is that higher derivatives do have meaning. But read what politi-
cians and economists say with great care. In this book were are concerned with
how to calculate higher derivatives and what uses they might have. One of the
uses is connected with locating maximum and minimum values of a function.

As previously mentioned there are two commonly used tests for identifying
local maxima and minima among the stationary points of a differentiable function



154 CHAPTER 6. DIFFERENTIABILITY

f . We can now give the second test, which involves the sign (positive or negative)
of the second derivative f ′′(a). This second test is often easier to apply but it fails
if f ′′(a) = 0. The result is yet another corollary of the Mean Value Theorem.

Corollary 6.8.5 (Second derivative test). Suppose that the function f is differen-
tiable on an open interval containing the point c, that c is a stationary point of f ,
i.e. f ′(c) = 0, and that f has a second derivative at c. Then f has a local maxi-
mum at c if f ′′(c) < 0, and a local minimum at c if f ′′(c) > 0. If f ′′(c) = 0 then
the test is inconclusive - the point c may be a local maximum, a local minimum,
or neither.

Proof. Suppose that f ′′(c) < 0, then by Theorem 6.6, f ′ is strictly decreasing at
c. Sice f ′(c) = 0, there is some interval Il = (c− δ, c) immediately to the left of
c in which f ′(x) > 0, and some interval Ir = (c, c + γ) immediately to the right
of c in which f ′(x) < 0. It then follows from the first derivative test (Corollary
6.8.4) that f has a local maximum at c.

The proof for a local minimum is similar. That the test fails when f ′′(c) = 0
can be seen by considering in turn the functions (i) x3, (ii) x4, and (iii) −x4. Each
has a stationary point at x = 0 but respectively this stationary point is (i) neither
a local maximum nor a local minimum, (ii) a local minimum, and (iii) a local
maximum.

This test is easy to use, easier than the first derivative test in many cases.
However, it is subject to failure if f ′′(c) = 0, so the first derivative test is more
discriminating. There are also higher derivative tests that can resolve cases where
f ′′(c) = 0, but we won’t consider them here. The first derivative test works in
almost all practical cases. But it is possible to find rather pathological functions
where even that test fails. An example of such a function is given in the Exercises
for this section.

Rolle’s Theorem can also be used to prove the following generalisation of the
Mean Value Theorem known as Cauchy’s Mean Value Theorem. This result is
useful in many cases for determining the limiting value (if any) of an expression

such as
f(x)

g(x)
as x tends to some finite value c when f and g are differentiable

functions having the somewhat disagreeable property that f(c) = g(c) = 0. Such
expressions are sometimes called indeterminate forms, possibly not a good name
for them.

Theorem 6.9 (Cauchy’s Mean Value Theorem). Suppose that f and g are func-
tions that are continuous on the closed interval [a, b] and differentiable on the
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open interval (a, b), and that g′(x) ̸= 0 for all x ∈ (a, b). Then there exists a point
ξ ∈ (a, b) such that

f ′(ξ)

g′(ξ)
=
f(b)− f(a)

g(b)− g(a)
.

Proof. Note first that the condition that g′(x) ̸= 0 for all x ∈ (a, b) ensures that
g(b) ̸= g(a), because if g(b) = g(a) then we could apply Rolle’s theorem to
deduce that g′(x) is zero at some point x ∈ (a, b). Then put h(x) = f(x)− λg(x)
where λ is a constant chosen to make h(a) = h(b). This entails

f(a)− λg(a) = f(b)− λg(b),

which gives λ = [f(b)− f(a)]/[g(b)− g(a)].
Then h satisfies the conditions of Rolle’s Theorem, and so there exists a point

ξ ∈ (a, b) such that h′(ξ) = 0. But h′(ξ) = f ′(ξ)− λg′(ξ). Hence

f ′(ξ)

g′(ξ)
= λ =

f(b)− f(a)

g(b)− g(a)
.

Remark. You might think that we could have proved this result by applying
the Mean Value Theorem twice. After all, there is a point ξ such that f ′(ξ) =
[f(b)−f(a)]/(b−a) and there is a point ξ such that g′(ξ) = [g(b)− g(a)]/(b− a),
so why can’t we just divide these two expressions and get f ′(ξ)/g′(ξ) =
[f(b) − f(a)]/[g(b) − g(a)]? The problem is that the ξ that works for f may
not be the same ξ that works for g. If we call these ξf and ξg respectively, to make
it clear that they can be different, then all we’d get would be f ′(ξf )/g

′(ξg) =
[f(b)− f(a)]/[g(b)− g(a)], which is not what we are trying to prove.

An important corollary to Cauchy’s Mean Value Theorem is known as
L’Hôpital’s rule for indeterminate forms.

Corollary 6.9.1 (L’Hôpital’s Rule). Suppose that f and g are functions that are
continuous on the closed interval [a, b] and differentiable on the open interval
(a, b), and that g′(x) ̸= 0 for all x ∈ (a, b), except possibly at c itself. Suppose
also that c ∈ (a, b) and that f(c) = g(c) = 0. Then

lim
x→c

f(x)

g(x)
= lim

x→c

f ′(x)

g′(x)
,

provided that the latter limit exists.

Proof. The functions f and g will satisfy the conditions of Cauchy’s Mean Value
Theorem on any interval [c, x] where c < x ≤ b. So for any such x there is a
corresponding ξ ∈ (c, x) for which

f ′(ξ)

g′(ξ)
=
f(x)− f(c)

g(x)− g(c)
=
f(x)

g(x)
.
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[Note ξ ̸= c, so g′(ξ) ̸= 0.] But ξ → c as x→ c+ because c < ξ < x. Hence

lim
x→c+

f(x)

g(x)
= lim

x→c+

f ′(x)

g′(x)
,

provided that the latter limit exists. This deals with limits on the right at c, and a
similar argument deals with limits on the left at c. So we may conclude that

lim
x→c

f(x)

g(x)
= lim

x→c

f ′(x)

g′(x)
,

provided that the latter limit exists.

Note the condition that f(c) = g(c) = 0. Do not try to apply this result if this
is not the case. Indeed, there is no need to try to apply the result if g(c) ̸= 0. If f
and g are continuous at c then limx→c

f(x)
g(x)

= f(c)
g(c)

if g(c) ̸= 0. One might reflect
that L’Hôpital’s rule is an example of something that mostly works precisely when
you need it (but doesn’t work at all when you don’t need it!).

If you find that f ′(x)
g′(x)

is itself an indeterminate form at x = c, you can reapply

the result (but check the conditions) and consider f ′′(x)
g′′(x)

.

Example 6.5. Find the limiting value as x tends to zero of (i)
sin(x)

x
, and (ii)

1− cos(x)

x2
. You can assume that sin(x) and cos(x) are differentiable with deriva-

tives cos(x) and − sin(x) respectively, and that sin(0) = 0 and cos(0) = 1.

Solution.
(i) Both sin(x) and x take the value 0 at x = 0 and the derivative of x is non-zero.
So L’Hôpital’s rule gives

lim
x→0

sin(x)

x
= lim

x→0

cos(x)

1
,

provided that the latter limit exists, which it does since cos(x) is continuous at 0,

and the value of the limit is cos(0) = 1. So
sin(x)

x
→ 1 as x→ 0.

(ii) Both 1 − cos(x) and x2 take the value 0 at x = 0 and the derivative of x2 is
2x, which is non-zero except at x = 0. So L’Hôpital’s rule gives

lim
x→0

1− cos(x)

x2
= lim

x→0

sin(x)

2x
.

provided that the latter limit exists, which it does by part (i) and has the value 1
2
.

So
1− cos(x)

x2
→ 1

2
as x→ 0.
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The final result in this section is a generalisation of the product rule to higher
derivatives. How might you find the tenth derivative of a product such as
x3 sin(x)? Well, you could go laboriously through finding the first derivative,
then the second, then the third, and so on. But it is easy to get a general formula.

If we use the D notation to denote the differential operator d
dx

and look at
the first few derivatives of a general product, the pattern should become clear
and is then easily proved. So suppose that f(x) and g(x) are functions that are
differentiable multiple times in some interval. Then by the product rule,

D(fg) = D(f)g + fD(g).

Differentiating again gives

D2(fg) =
[
D2(f)g +D(f)D(g)

]
+
[
D(f)D(g) + fD2(g)

]
.

Collecting like terms together gives

D2(fg) = D2(f)g + 2D(f)D(g) + fD2(g).

If you differentiate again (go on - try it) you will get

D3(fg) = D3(f)g + 3D2(f)D(g) + 3D(f)D2(g) + fD3(g).

Hopefully this is beginning to remind you of expressions like

(a+ b)3 = a3 + 3a2b+ 3ab2 + b3,

suggesting that the numbers which appear as coefficients (in this instance 1, 3, 3,
1) are simply the binomial coefficients. This is indeed the case and the general
result is known as Leibniz’ Theorem.

Theorem 6.10 (Leibniz’ Theorem). Suppose that both the functions f(x) and
g(x) are n times differentiable at x = a. Then the nth derivative of the product
f(x)g(x) evaluated at a is given by

Dn(fg) = Dn(f)g+

(
n

1

)
Dn−1(f)D(g)+

(
n

2

)
Dn−2(f)D2(g)+ . . .+ fDn(g),

where Dr(f) denotes the rth derivative of f evaluated at a, and likewise Dr(g)
denotes the rth derivative of g evaluated at a. In alternative notation the result can
be expressed as

(fg)(n)(a) = f (n)(a)g(a) +

(
n

1

)
f (n−1)(a)g′(a) +

(
n

2

)
f (n−2)(a)g′′(a)+

. . .+ f(a)g(n)(a).
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Proof. The proof is by induction. The initial case for n = 1 is just the product
rule. We will assume that the result holds for some integer n = k ≥ 1 and, on this
assumption, prove that it holds for n = k + 1. In order to do this we need a result
about combining the binomial coefficients

(
k

r−1

)
and

(
k
r

)
. We have(

k

r − 1

)
+

(
k

r

)
=

k!

(r − 1)!(k − r + 1)!
+

k!

(r)!(k − r)!

=
k!

(r − 1)!(k − r)!

[ 1

k − r + 1
+

1

r

]
=

k!

r!(k − r + 1)!

[
r + k − r + 1

]
=

(k + 1)!

r!(k − r + 1)!
=

(
k + 1

r

)
.

Having this, we proceed with the induction by assuming the result for n = k and
differentiating once more to get a result for n = k + 1. This gives

Dk+1(fg) =
[
Dk+1(f)g +Dk(f)D(g)

]
+

(
k

1

)[
Dk(f)D(g) +Dk−1(f)D2(g)

]
+

(
k

2

)[
Dk−1(f)D2(g) +Dk−2(f)D3(g)

]
+ . . .+

[
D(f)Dk(g) + fDk+1(g)

]
.

If we now group together like terms we get

Dk+1(fg) = Dk+1(f)g +Dk(f)D(g)
[
1 +

(
k

1

)]
+Dk−1(f)D2(g)

[(k
1

)
+

(
k

2

)]
+Dk−2(f)D3(g)

[(k
2

)
+

(
k

3

)]
+ . . .+D(f)Dk(g)

[( k

k − 1

)
+ 1

]
+ fDk+1(g).

Using the result about combining binomial coefficients gives

Dk+1(fg) = Dk+1(f)g +

(
k + 1

1

)
Dk(f)D(g) +

(
k + 1

2

)
Dk−1(f)D2(g)

+ . . .+ fDk+1(g),

which completes the induction.
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Note. There is an easy, purely combinatorial, argument for establishing the iden-
tity

(
k

r−1

)
+

(
k
r

)
=

(
k+1
r

)
. Since

(
k
r

)
is the number of ways of selecting r distinct

objects from k distinct objects when the order of choice doesn’t matter, we can
select r objects from k + 1 objects in two parts. In the first part we fix our first
choice as one of the objects (say object A) and choose the remaining r−1 objects
from k in

(
k

r−1

)
ways. This covers all choices that contain the selected object (A).

In the second part we set aside the selected object and choose r objects from the
remaining k objects in

(
k
r

)
ways. It follows that

(
k+1
r

)
=

(
k

r−1

)
+
(
k
r

)
.

Example 6.6. Find the tenth derivative of x3 sin(x), assuming that the derivative
of sin(x) is cos(x), and the derivative of cos(x) is − sin(x).

Solution. We apply Leibniz’ Theorem with f(x) = sin(x) and g(x) = x3, so that
g(n)(x) = 0 if n ≥ 4, while f (4)(x) = f(x) = sin(x). Hence

(fg)(10)(x) = f (10)(x)g(x) + 10f (9)(x)g′(x) + 45f (8)(x)g′′(x)+

120f (7)(x)g(3)(x)

= −x3 sin(x) + 30x2 cos(x) + 270x sin(x)− 720 cos(x).

EXERCISES 6.3
1. Prove that the function f(x) = x3 − 3x2 + x + 1 has precisely one local

maximum and one local minimum, and precisely three zeros.
2. Suppose that y = f(x) is a differentiable function that satisfies the differ-

ential equation dy
dx
+2xy = x. Multiply this equation by exp(x2) and show

that it can be written in the form d
dx

(
y exp(x2)

)
= d

dx

(
1
2
exp(x2)

)
. Deduce

that y = 1
2
+ A exp(−x2), where A is some constant. If it is known that

y = 1 when x = 0 (i.e. f(0) = 1) determine the value of the constant A.
[You may assume all the usual properties of the exponential function, such
as exp′(x) = exp(x), exp(x+ y) = exp(x) exp(y), and exp(0) = 1.]

3. The function f is defined as follows.

f(x) =

{
x2
(
2− sin( 1

x
)
)

if x ̸= 0,

0 if x = 0.

Prove that f is differentiable on R and that f ′(0) = 0, so that 0 is a station-
ary point of f . Prove also that f ′(x) changes sign infinitely often in any
interval (a, 0) immediately to the left of 0, and in any interval (0, b) imme-
diately to the right of 0, so that the first derivative test cannot be applied to
determine the nature of the stationary point at x = 0. What is the nature of
this stationary point? [You may assume that the sine and cosine functions
have all their usual properties including derivatives and bounds.]



160 CHAPTER 6. DIFFERENTIABILITY

4. Evaluate the following limits. You may assume the usual properties of the
functions sin(x), cos(x) and the exponential function exp(x).

lim
x→1

x3 − 3x2 + x+ 1

sin(πx)
,a) lim

x→0

exp(x)− 1

exp(2x)− 1
,b)

lim
x→0

(exp(x)− 1)3

sin(x)− x
,c) lim

x→0

x+ cos(x)− 1

sin(x) + 1
.d)

5. Assuming the usual properties of the functions sin(x), cos(x) and the ex-
ponential function exp(x), determine the tenth derivative of exp(x) sin(x).

6.4 Taylor’s Theorem
In the previous section you saw the Mean Value Theorem, sometimes called the
First Mean Value Theorem. The obvious question is “what’s the Second?”. The
First says that, subject to certain conditions, there exists ξ ∈ (a, b) such that

f(b) = f(a) + (b− a)f ′(ξ).

The Second says that, subject to certain conditions, there exists ξ ∈ (a, b) such
that

f(b) = f(a) + (b− a)f ′(a) +
(b− a)2

2
f ′′(ξ).

Having seen this you can probably anticipate that there is an nth Mean Value
Theorem. This says that, subject to certain conditions, there exists ξ ∈ (a, b) such
that

f(b) = f(a) + (b− a)f ′(a) +
(b− a)2

2!
f ′′(a) + . . .

+
(b− a)n−1

(n− 1)!
f (n−1)(a) +

(b− a)n

n!
f (n)(ξ).

With the appropriate conditions attached, this is known as Taylor’s Theorem. If
we write a+ h in place of b and allow that h might be positive or negative or zero
(so that b = a + h might be greater than a or less than a or even equal to a) then
the result has the form

f(a+ h) = Tf,a,n,(h) +Rf,a,n(h).

Here Tf,a,n(h) is called the Taylor Polynomial in the variable h for the function f
at the point a and having n terms (so degree n− 1) and is given by

Tf,a,n(h) = f(a) + hf ′(a) +
h2

2!
f ′′(a) + . . .+

hn−1

(n− 1)!
f (n−1)(a),
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and Rf,a,n(h) = f(a + h) − Tf,a,n(h) is called the nth-Remainder Term in the
variable h for the function f at the point a. It can be given by

Rf,a,n(h) =
hn

n!
f (n)(ξ) for some ξ between a and a+ h.

If we have in mind a particular function f and a particular point a, we abbreviate
Tf,a,n,(h) to Tn(h) and Rf,a,n(h) to Rn(h). The point a is sometimes called the
centre of the expansion.

Before we state Taylor’s Theorem and the conditions under which it holds, we
just mention that the principal difficulty using it is the lack of knowledge about
ξ; all we know is that ξ is some point between a and a + h. There are several
alternative forms for the Remainder Term that attempt to address this issue. We
give a form due to Schlömilch which is capable of producing the form we have
described, but which can give a more useful form in certain cases.

Theorem 6.11. Taylor’s Theorem] Suppose that f and its derivatives up to order
n − 1 are continuous on [a, a + h] and f is differentiable n times on (a, a + h).
Then for any positive integer p, f(a+ h) = Tn(h) +Rn(h), where

Tn(h) = f(a) + hf ′(a) +
h2

2!
f ′′(a) + . . .+

hn−1

(n− 1)!
f (n−1)(a),

and Rn(h) can be expressed in the form

Rn(h) =
hn(1− θ)n−p

p(n− 1)!
f (n)(a+ θh), for some θ ∈ (0, 1).

Notes. Before presenting a proof, we make a few comments.
1. θ will depend on f, a, h, p and n.
2. The version stated assumes h > 0. The result remains true if h < 0 provided
we replace [a, a+h] by [a+h, a] and (a, a+h) by (a+h, a). The result is trivially
true if h = 0.
3. The form given for Rn(h) is due to Schlömilch. If we take p = n it gives

Rn(h) =
hn

n!
f (n)(a+ θh) =

hn

n!
f (n)(ξ) (Lagrange’s form),

where ξ = a+ θh lies between a and a+ h.
3. If we take p = 1 in Schlömilch’s Remainder we get

Rn(h) =
hn(1− θ)n−1

(n− 1)!
f (n)(a+ θh) (Cauchy’s form),

where θ ∈ (0, 1).
5. Lagranges’s form is probably the easiest to remember. Cauchy’s form is useful
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for obtaining the binomial theorem for rational and negative powers, which we
cover below in this section. It is also useful for obtaining the logarithmic series,
which we cover in the next chapter. You might reasonably ask how anyone could
come up with something as complicated looking as Schlömilch’s Remainder. I
confess that I do not know the details of this case, but complicated formulae are
often the result of quite lengthy attempts to unify existing results (thinking here of
the Lagrange and Cauchy remainders). That is why they look less than obvious.

Proof. We deal with the case h > 0, the proof for h < 0 is similar and requires
only minor modifications. We start by defining a function r(x) for x ∈ [0, h]. This
function will be continuous on [0, h] and differentiable on (0, h). We put

r(x) = f(a+ h)−
[
f(a+ x) + (h− x)f ′(a+ x) +

(h− x)2

2!
f ′′(a+ x) + . . .

+
(h− x)n−1

(n− 1)!
f (n−1)(a+ x)

]
Observe that r(0) is precisely the remainder term that we are trying to estimate,
namely f(a+ h)− Tn(h) = Rn(h). Also note that r(h) = 0.

The conditions on f ensure that r is differentiable on (0, h). Although not
instantly obvious it is easy to check that r′(x) is given by the very simple formula

r′(x) = −(h− x)n−1

(n− 1)!
f (n)(a+ x).

Next define the function s(x) by putting

s(x) = r(x)−
(h− x

h

)p

r(0).

Then s is continuous on [0, h] and differentiable on (0, h). Moreover, s(0) =
s(h) = 0. Hence s satisfies the conditions of Rolle’s Theorem (Theorem 6.7) on
the interval [0, h]. So there exists a point ξ ∈ (0, h) such that s′(ξ) = 0. However,

s′(ξ) = r′(ξ) +
p

h

(h− ξ

h

)p−1

r(0).

Consequently

r(0) = −h
p

( h

h− ξ

)p−1

r′(ξ) =
h

p

( h

h− ξ

)p−1 (h− ξ)n−1

(n− 1)!
f (n)(a+ ξ).

This reduces to

r(0) =
hp(h− ξ)n−p

p(n− 1)!
f (n)(a+ ξ).
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Since ξ ∈ (0, h), we may write ξ = θh where θ ∈ (0, 1). Recalling that r(0) is
just the remainder term Rn(h) we get

Rn(h) =
hp(h− θh)n−p

p(n− 1)!
f (n)(a+ θh) =

hn(1− θ)n−p

p(n− 1)!
f (n)(a+ θh),

as required.

Comments.
1. If we take f (0)(h) to be f(h) then we can write Tn(h) in the form

Tn(h) =
n−1∑
r=0

hr

r!
f (r)(a).

2. Suppose that f is a function with derivatives of all orders on [a, a+h] for which
we can show that the remainder term Rn(h) → 0 as n→ ∞. Then we have

f(a+ h) =
∞∑
r=0

hr

r!
f (r)(a).

This follows immediately from Taylor’s Theorem because Rn(h) is the difference
between f(a + h) and Tn(h), and Tn(h) is just the nth partial sum of the series.
The infinite series is then called the Taylor Series expansion for f(a + h) about
the point a.
3. If f is a function with derivatives of all orders on [a, a+h], then it certainly has
derivatives of all orders on any subinterval [a, a + x] where 0 < x ≤ h. Hence if
we can show that Rn(x) → 0 as n→ ∞ for each x ∈ (0, h] it will follow that for
each x ∈ (0, h]

f(a+ x) =
∞∑
r=0

xr

r!
f (r)(a).

4. Both the preceding comments tacitly assume that h > 0, but they remain true if
h < 0 provided that [a, a+h] and [a, a+x] are replaced by [a+h, a] and [a+x, a]
respectively , where x ∈ [h, 0]. (The results are trivially true if h = 0.)
5. Allowing the previous comments, if f is a function with derivatives of all orders
on [a−h, a+h] and we can show thatRn(x) → 0 as n→ ∞ for each x ∈ [−h, h],
then it will follow that for each x ∈ [−h, h]

f(a+ x) =
∞∑
r=0

xr

r!
f (r)(a).

In such circumstances the series is called the Taylor Series for f(a+ x) about the
point a, and its radius of convergence is at least h. We re-state this comment as a
corollary to Theorem 6.11.
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Corollary 6.11.1 (Taylor Series). Suppose that f is a function with derivatives of
all orders on [a− h, a+ h]. For x ∈ [−h, h] define Rn(x) by

Rn(x) = f(a+ x)−
n−1∑
r=0

xr

r!
f (r)(a).

Then, by Taylor’s Theorem, for any positive integer p, Rn(x) may be expressed in
the form

Rn(x) =
xn(1− θ)n−p

p(n− 1)!
f (n)(a+ θx),

where θ may depend on f, a, x, p and n, but lies in the interval (0, 1).
If Rn(x) → 0 as n→ ∞ for each x ∈ [−h, h], then for x ∈ [−h, h]

f(a+ x) =
∞∑
r=0

xr

r!
f (r)(a),

and the power series has radius of convergence at least h. Such a power series is
known as the Taylor series for f(a+ x) about the point a.

If we put a = 0 in Taylor’s Theorem (or in Corollary 6.11.1) we obtain what
is known as Maclaurin’s Theorem (or a Maclaurin Series). At first sight this looks
like a special case of expansion about zero, but it is easily shown to be equivalent.
For example, if we have a function f that we wish to expand about a, we can
simply define g(x) = f(a + x) and then use the Maclaurin version for g, noting
that g(r)(0) = f (r)(a), etc. Despite this equivalence we will state the Maclaurin
version as a separate corollary.

Corollary 6.11.2 (Maclaurin Series). Suppose that f is a function with derivatives
of all orders on [−h, h]. For x ∈ [−h, h] define Rn(x) by

Rn(x) = f(x)−
n−1∑
r=0

xr

r!
f (r)(0).

Then, by Taylor’s Theorem, for any positive integer p, Rn(x) may be expressed in
the form

Rn(x) =
xn(1− θ)n−p

p(n− 1)!
f (n)(θx),

where θ may depend on f, x, p and n, but lies in the interval (0, 1).
If Rn(x) → 0 as n→ ∞ for each x ∈ [−h, h], then for x ∈ [−h, h]

f(x) =
∞∑
r=0

xr

r!
f (r)(0),

and the power series has radius of convergence at least h. Such a power series is
known as the Maclaurin Series for f(x).
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Beware. In both the preceding corollaries it is vital to observe the condition that
the remainder term Rn(x) → 0 as n → ∞ for each x ∈ [−h, h]. If

(
Rn(x)

)
is a non-convergent sequence then the Taylor (or Maclaurin) series will not con-
verge. An easy example of this is the Maclaurin series for f(x) = 1

1+x
, which

we will see is non-convergent if |x| ≥ 1. It is even possible that
(
Rn(x)

)
does

converge but to a non-zero limit. In such cases the corresponding series converges
but the sum of the series will not be equal to the function value f(a+x) (or f(x)).
Such cases are a bit harder to find but we give one in the Exercises for this section.

Note. We will allow ourselves to speak of
∑∞

r=0
xr

r!
f (r)(0) as the Maclaurin series

of f(x) even if we don’t know whether or not it converges to f(x). This just gives
a name to the series. Investigating its convergence is a separate issue. A similar
comment applies to a Taylor series centred at a point a.

On a notational aspect, the use of Tn and Rn is not universal practice. Some
authors use different letters.

Even if your lecturer uses Tn andRn, you need to look at how they are defined.
We have defined

Tn(h) =
n−1∑
r=0

hr

r!
f (r)(a).

If h is replaced by x− a this gives

Tn(x− a) =
n−1∑
r=0

(x− a)r

r!
f (r)(a),

but some authors prefer to call this sum Tn(x) rather than Tn(x − a). Similarly
we defined

Rn(h) = f(a+ h)− Tn(h),

but with x− a replacing h this gives

Rn(x− a) = f(x)− Tn(x− a).

The same authors would call this Rn(x) rather than Rn(x − a). Amidst this pos-
sible confusion there is a bright spot: if a = 0 (i.e. for Maclaurin Series) the two
usages are identical.

You might be experiencing some impatience at this point. We have spent the
last six pages discussing Taylor’s theorem, its consequences, and a lot of warnings.
Now we will get around to using it. Most of our examples will use the Maclaurin
version. We start with the exponential function.
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Theorem 6.12. Suppose that there is a differentiable function f(x) such that for
every x ∈ R, f ′(x) = f(x), and f(0) = 1. Then for every x ∈ R,

f(x) =
∞∑
r=0

xr

r!
.

Proof. The Maclaurin Series of f(x) is

∞∑
r=0

xr

r!
f (r)(0),

and this converges with sum f(x) provided that the remainder term Rn(x) →
0 as n→ ∞. But f ′(x) = f(x) implies that for each positive integer r, f (r)(x) =
f(x), and since f(0) = 1 we get f (r)(0) = 1. So the Maclaurin Series reduces to

∞∑
r=0

xr

r!
.

The Lagrange form of the remainder is

Rn(x) =
xn

n!
f (r)(ξ) =

xn

n!
f(ξ),

where ξ lies between 0 and x. Since f is differentiable, it is continuous and
therefore bounded on the finite closed interval I with end points at 0 and x. If M
is such a bound (i.e |f(z)| < M for z ∈ I) then

|Rn(x)| ≤=
|x|n

n!
M → 0 as n→ ∞.

[Recall that if x is any Real Number, then xn/n! → 0 as n→ ∞.]
Hence for every x ∈ R,

f(x) =
∞∑
r=0

xr

r!
.

Of course the function described in the theorem above is really exp(x), but so
far we haven’t actually defined exp(x). In the next chapter this omission will be
rectified by defining exp(x) as the Maclaurin Series that we have just obtained.
Indeed, the same process will be used to define sin(x) and cos(x). We will show
how the familiar properties of these functions can be obtained directly from these
defining series. The inverse function theorem (Theorem 6.5) can then be used
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to define inverses of these functions, and Maclaurin Series obtained for these in-
verses.

In Corollary 6.5.3 we proved that for any Rational Number r the function xr is
differentiable on (0,∞) with derivative rxr−1. Here it becomes convenient to use
something other than r to denote the exponent. We will use α. The Corollary can
be used to obtain a Maclaurin Series for f(x) = (1 + x)α when α is any Rational
Number and x ∈ (−1, 1). This result is generally known as the binomial series. It
involves generalising the binomial coefficients

(
n
r

)
to the case when the integer n

is replaced by a non-integer α. For a positive integer n we have(
n

r

)
=

n!

(n− r)!r!
=
n(n− 1)(n− 2) . . . (n− r + 1)

r!
,

so if the integer n is replaced by a non-integer α (when α! is undefined), it is
natural to define (

α

r

)
=
α(α− 1)(α− 2) . . . (α− r + 1)

r!
,

where r remains a non-negative integer. Using this notation and taking
(
α
0

)
= 1,

we can state the following result.

Theorem 6.13 (The Binomial Theorem for Rational Powers).
Suppose that f(x) = (1 + x)α, where α is a Rational Number that is not zero
and not a positive integer, i.e. α is either a negative integer or a non-integer.
Then the Maclaurin Series of f(x) is

∑∞
r=0

(
α
r

)
xr and this converges absolutely to

f(x) = (1 + x)α if |x| < 1 and diverges if |x| > 1.
[If α is zero or a positive integer then

(
α
r

)
= 0 for r > α and the series is actu-

ally finite and the result is none other than the familiar(?) binomial theorem (see
Section 3.1) for non-negative integer powers, so that is why this case is excluded.]

Proof. Assume first that |x| < 1. Differentiating f(x) = (1 + x)α r times gives

f (r)(x) = α(α− 1)(α− 2) . . . (α− r + 1)(1 + x)α−r.

In particular
f (r)(0) = α(α− 1)(α− 2) . . . (α− r + 1).

Hence the Maclaurin Series is

∞∑
r=0

xr

r!
α(α− 1)(α− 2) . . . (α− r + 1) =

∞∑
r=0

(
α

r

)
xr,
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and this converges to f(x) = (1 + x)α if and only if the remainder term Rn(x)
converges to zero as n tends to infinity. Cauchy’s formula for the remainder tells
us that Rn(x) can be expressed in the following form for some θ ∈ (0, 1).

Rn(x) =
xn(1− θ)n−1

(n− 1)!
f (n)(θx)

=
xn(1− θ)n−1

(n− 1)!
α(α− 1)(α− 2) . . . (α− n+ 1)(1 + θx)α−n

=
xn

(n− 1)!

( 1− θ

1 + θx

)n−1

(1 + θx)α−1α(α− 1)(α− 2) . . . (α− n+ 1).

But for |x| < 1 we have 0 < (1−θ)/(1+θx) < 1, and 1−|x| < 1+θx < 1+|x| so
that (1+θx)α−1 is bounded above by the maximum of (1−|x|)α−1 and (1+|x|)α−1

(which one depends on whether α < 1 or α > 1). So if M denotes this maximum
we obtain

|Rn(x)| ≤
∣∣∣M xn

(n− 1)!
α(α− 1)(α− 2) . . . (α− n+ 1)

∣∣∣ = an, say.

To prove that the remainder converges to zero, we consider the ratio an+1/an.
This looks a good strategy since most of the complicated expression cancels out.
We get

an+1

an
=

|x||α− n|
n

→ |x| as n→ ∞.

So the limit of the ratio is |x| < 1, and if we pick a number y between |x| and
1, then for all sufficiently large n we will have an+1/an < y. To be a bit more
specific, if we put y = (1 + |x|)/2 then |x| < y < 1, and so there exists N such
that for n ≥ N ,

an+1

an
< y < 1.

Hence for n ≥ N , an ≤ aNy
n−N → 0 as n → ∞. It follows that the Maclaurin

Series converges to (1 + x)α for |x| < 1. By Theorem 4.12 it follows that the
convergence is absolute.

It remains to prove that the series diverges for |x| > 1. In this case the general
term of the series is

(
α
r

)
xr = br, say. We will show that (br) is not a null sequence

and so the series cannot converge. We use the same sort of strategy that we used
for |x| < 1. ∣∣∣br+1

br

∣∣∣ = |x||α− r|
r + 1

→ |x| as r → ∞.

If we put y = (1 + |x|)/2 then 1 < y < |x|, and so there exists R such that for
r ≥ R, ∣∣∣br+1

br

∣∣∣ > y > 1.
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Hence for r ≥ R, |br| ≥ |bR|yr−R and since bR is non-zero (indeed none of the
terms of the series are zero), we have |br| → ∞ as r → ∞. Thus (br) is a non-null
sequence, and so the series cannot converge.

We just remark that the two parts of this result, convergence for |x| < 1 and
divergence for |x| > 1, tell us that the radius of convergence of the series is 1.

We established convergence for |x| < 1 and divergence for |x| > 1. What
happens for |x| = 1 is rather complicated. In fact, for x = 1 the series converges
if α > −1 and diverges if α < −1, while for x = −1 the series converges if
α > 0 and diverges if α < 0. But we won’t prove those assertions here. Of course
if α < 0 then (1+x)α is undefined for x = −1, so it can’t have a Maclaurin Series
valid at this point.

Example 6.7. Find the square root of 1.5 correct to 3 decimal places.

Solution. We apply the Maclaurin Series (i.e. the binomial series) for (1 + x)α

with x = 1
2

and α = 1
2
. Taking terms up to x5 gives the approximate value

1 +
1

4
− 1

32
+

1

128
− 5

2048
+

7

8192
= 1.22498 to 5 decimal places.

The remainder term R6(
1
2
) can be estimated using the Lagrange form of the re-

mainder (it’s the easiest version). This gives

R6(
1
2
) = − 21

1024
ξ6, where 0 < ξ < 1

2
.

So R6(
1
2
) is negative and lies between 0 and −21/65536 = −0.00032 to 5 dec-

imal places. It follows that the square root of 1.5 lies between (approximately)
1.22466 and 1.22498. [“approximately” because rounding errors may affect the
fifth decimal place.] The value correct to 3 decimal places is 1.225.

You can use the result to determine yα for values of y outside the interval (0, 2).
For example, to compute the square root of 20 we can write 20 = 16 × 1.25, so
20

1
2 = 4 × (1.25)

1
2 , and then use the Maclaurin Series for (1 + x)

1
2 with x = 1

4
.

However, using Maclaurin Series like this, or with similar tricks, is probably not
the best way of computing roots.

EXERCISES 6.4
1. Sketch f(x) = sin(x) and Taylor polynomials Tn(x) =

∑n−1
r=0

xr

r!
f (r)(0)

for the expansion of sin(x) about the point a = 0 for n = 4, 6 and 8 (i.e. of
orders 3, 5 and 7) on the same set of axes. The purpose of this question is to
give you some idea of how closely Taylor polynomials can approximate a
function. Assume that the functions sin(x) and cos(x) have all their usual
properties. [You can use a graph plotting package.]
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2. With the same notation as the previous question, calculate T8(0.1) to 16
decimal places. Show that the remainder term R8(0.1) lies between 0 and
−2.481×10−13 (use Lagrange’s form for the remainder). Check that sin(x)
is indeed given by T8(0.1), correct to 12 decimal places.

3. With f(x) = sin(x), find an approximation (correct to 6 decimal places)
to the value of sin(50 o) by expanding the function in a Taylor series about
the value a = π/4. Again, assume that the functions sin(x) and cos(x)
have all their usual properties.

4. Show that if |x| > 1 and if α is a Rational Number then

(1 + x)α = xα
∞∑
r=0

(
α

r

)(1
x

)r

.

Take the first 5 terms of the series to get an approximate value for
√
5.

Compare this with what you get on a calculator.
5. This lengthy question concerns the Maclaurin series of the function

f(x) =

{
exp(−1/x2), x ̸= 0,
0, x = 0.

You will show that the Maclaurin series converges, but not to f(x). You
may assume that exp(x) > 0 for every x ∈ R, exp(0) = 1, exp(x) > 1
for x > 0, and that exp is differentiable on R with derivative exp′(x) =
exp(x). The first four parts of this question enable you to determine
the derivatives f (n)(0). Easier arguments become possible once we have
defined the exponential function and investigated some of its properties,
which we will do formally in the next chapter.

(a) Use induction on n to prove that if x > 0 and if n is a non-negative
integer then gn(x) = exp(x)− xn

n!
is strictly positive.

(b) Use the result of part (a) to prove that if u > 0 and if n is a non-
negative integer then exp(u)

un > un

(2n)!
, and hence that exp(u)

un → ∞
as u→ ∞.

(c) Use the result of part (b) to prove that, for any non-negative integer
n, exp(−1/x2)

x2n → 0 as x→ 0.

(d) Use the result of part (c) to prove that, for any non-negative integer
r, exp(−1/x2)

xr → 0 as x→ 0.

(e) Use the result of part (d) to prove that f is differentiable on R with
derivative

f ′(x) =

{
2x−3 exp(−1/x2), x ̸= 0,
0, x = 0.

.
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Then show that f is twice differentiable on R with derivative

f ′′(x) =

{
(4x−6 − 6x−4) exp(−1/x2), x ̸= 0,
0, x = 0.

.

More generally, prove that for n ≥ 1 the function f is n times differ-
entiable on R with a derivative of the form

f (n)(x) =

{
ϕn(x) exp(−1/x2), x ̸= 0,
0, x = 0.

,

where ϕn(x) is a finite sum of multiples of negative powers of x.

(f) Deduce that the Maclaurin series of f(x) converges, but not to f(x)
(except for the trivial case x = 0).

(g) Sketch the graph of f(x) for x ∈ [−5, 5]. [You can use a graph
plotting package.]

6. Suppose that s(x) and c(x) are differentiable functions satisfying the con-
ditions

s′(x) = c(x), c′(x) = −s(x), s(0) = 0, c(0) = 1.

Obtain the Maclaurin series for s(x) and c(x), and prove that they are valid
for all x ∈ R. [Of course these functions are really sin(x) and cos(x).]

6.5 Power series and differentiation
Wouldn’t it be nice if we could differentiate an infinite series of differentiable

functions term by term? Given F (x) =
∞∑
n=0

fn(x), where each function fn is

differentiable, it would be nice to be able to assert that F is itself differentiable

and that its derivative is F ′(x) =
∞∑
n=0

f ′
n(x). After all, this is what happens for a

finite sum. Well, the bad news is that is not always true for an infinite sum, but the
good news is that it is true for power series. The precise result for power series
is given in Theorem 6.15 below. I just remind you that every power series has a
radius of convergenceR (which can be 0 or ∞) and that a power series with radius
of convergence R > 0 converges absolutely within its radius of convergence. The
initial step in proving the main result is the following theorem.

Theorem 6.14. Suppose that
∑∞

n=0 anx
n has radius of convergence R. Then∑∞

n=1 nanx
n−1 also has radius of convergence R.
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Proof. We establish the result by showing (a) that
∑∞

n=1 nanx
n−1 diverges if

|x| > R and (b) that
∑∞

n=1 nanx
n−1 converges if |x| < R.

(a) In the case R = ∞, there is nothing to prove. So assume that R ̸= ∞.
Take any x such that |x| > R and suppose that

∑∞
n=1 nanx

n−1 converges. Then
nanx

n−1 → 0 as n → ∞, and so there exists a constant A > 0 such that
|nanxn−1| < A for every n ∈ N, and hence |anxn| < A|x|. Now take any y
between |x| and R, for example y = (|x|+R)/2, so that |x| > y > R. Then

|anyn| = |anxn|
∣∣∣y
x

∣∣∣n < A|x|
∣∣∣y
x

∣∣∣n.
Hence, using the comparison test with the geometric series

∑∞
n=0

∣∣ y
x

∣∣n, which has
common ratio

∣∣ y
x

∣∣ < 1, we see that
∑∞

n=1 |anyn| converges. But since y > R,
this contradicts the assumption that

∑∞
n=0 anx

n has radius of convergence R. It
follows that

∑∞
n=1 nanx

n−1 diverges if |x| > R.

(b) In the case R = 0 there is nothing to prove. So assume that R > 0. Take any
x such that 0 < |x| < R. Again choose y between |x| and R, so that |x| < y < R.
Then

∑∞
n=0 any

n converges so that anyn → 0 as n→ ∞, and consequently there
exists a constant A > 0 such that |anyn| < A for every n ∈ N. It follows that

|nanxn−1| = n
|anyn|
|x|

∣∣∣x
y

∣∣∣n < n
A

|x|

∣∣∣x
y

∣∣∣n.
Taking nth roots, this gives

|nanxn−1|
1
n < n

1
n

( A
|x|

) 1
n
∣∣∣x
y

∣∣∣ → ∣∣∣x
y

∣∣∣ as n→ ∞.

Since
∣∣x
y

∣∣ < 1, it follows from Cauchy’s nth root test that
∑∞

n=1 nanx
n−1 con-

verges for any x with |x| < R.

Of course the result can be reapplied repeatedly. A single repetition gives the
following corollary.

Corollary 6.14.1. Suppose that
∑∞

n=0 anx
n has radius of convergence R. Then∑∞

n=2 n(n− 1)anx
n−2 also has radius of convergence R.

We obtained the result of Theorem 6.14 with differentiation in mind. So far we
haven’t mentioned integration, the subject of a future chapter. But with integration
in mind we state the following corollary.

Corollary 6.14.2. Suppose that
∑∞

n=0 anx
n has radius of convergence R. Then∑∞

n=0
an
n+1

xn+1 also has radius of convergence R.
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Proof. Define b0 = 0, and bn+1 = an
n+1

for n = 0, 1, 2, . . .. Then the series∑∞
n=0

an
n+1

xn+1 can be expressed as
∑∞

n=0 bn+1x
n+1 =

∑∞
n=0 bnx

n. By Theorem
6.14, if this series has radius of convergence R′, then the series

∑∞
n=0 nbnx

n−1

also has radius of convergence R′. However,

∞∑
n=0

nbnx
n−1 =

∞∑
n=1

n
an−1

n
xn−1 =

∞∑
n=0

anx
n.

So
∑∞

n=0 anx
n has radius of convergence R′. But, by assumption, the radius of

convergence of this series is R, so we deduce that R′ = R.

Comment. Once we have proved the next theorem it will follow that F (x) =∑∞
n=0

an
n+1

xn+1 is a primitive for f(x) =
∑∞

n=0 anx
n, i.e. F ′(x) = f(x) for

|x| < R.

Now we come to the main result of this section.

Theorem 6.15 (Term-by-term differentiation of power series).
Suppose that f(x) =

∑∞
n=0 anx

n has radius of convergence R > 0. Then f is
differentiable on (−R,R) with derivative f ′(x) =

∑∞
n=1 nanx

n−1.
[This clearly requires that

∑∞
n=1 nanx

n−1 should also have radius of convergence
R, which explains the need for Theorem 6.14.]

Proof. We will prove the result by showing that for each x ∈ (−R,R),

∣∣∣f(x+ h)− f(x)

h
−

∞∑
n=1

nanx
n−1

∣∣∣ → 0 as h→ 0.

In order to do this, we need an estimate for the expression
(x+ h)n − xn

h
−nxn−1.

This expression is zero for n = 1. For n ≥ 2 an estimate can be obtained from
the Second Mean Value Theorem, i.e. Taylor’s Theorem with n = 2 (that’s the
n of Taylor’s theorem), and Lagrange’s form of the remainder, which asserts that
under suitable conditions on a function g we have

g(x+ h) = g(x) + hg′(x) +
h2

2
g′′(ξ), for some ξ between x and x+ h.

We apply this result to the function g(x) = xn, which certainly satisfies the con-
ditions of Taylor’s Theorem for every positive integer n ≥ 2. This gives

(x+ h)n = xn + nhxn−1 +
n(n− 1)

2
h2ξn−2, for some ξ between x and x+ h.
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From this it follows that

(x+ h)n − xn

h
− nxn−1 =

h

2
n(n− 1)ξn−2, for some ξ between x and x+ h.

(6.3)
We can now complete the proof. Take any x ∈ (−R,R) and then take y

between |x| and R, so that |x| < y < R, giving x ∈ (−y, y). Now take any h ̸= 0
such that x + h ∈ (−y, y). Note that for any number ξ between x and x + h we
have |ξ| < y. Then∣∣∣f(x+ h)− f(x)

h
−

∞∑
n=1

nanx
n−1

∣∣∣ = ∣∣∣ ∞∑
n=2

an

[(x+ h)n − xn

h
− nxn−1

]∣∣∣
≤

∞∑
n=2

|an|
∣∣∣(x+ h)n − xn

h
− nxn−1

∣∣∣
≤

∞∑
n=2

|an|
∣∣∣h
2

∣∣∣n(n− 1)yn−2 by equation 6.3

=
∣∣∣h
2

∣∣∣ ∞∑
n=2

n(n− 1)|anyn−2|.

Since
∑∞

n=0 anx
n has radius of convergence R, it follows (see Corollary 6.14.1)

that
∑∞

n=2 n(n − 1)anx
n−2 also has radius of convergence R. So we deduce that∑∞

n=2 n(n− 1)|anyn−2| converges to a finite sum, S, say. Hence∣∣∣f(x+ h)− f(x)

h
−

∞∑
n=1

nanx
n−1

∣∣∣ ≤ ∣∣∣h
2

∣∣∣S → 0 as h→ 0.

Therefore
f(x+ h)− f(x)

h
→

∞∑
n=1

nanx
n−1 as h→ 0,

which establishes that f is differentiable at each x ∈ (−R,R) with derivative∑∞
n=1 nanx

n−1.

Corollary 6.15.1. Suppose that f(x) =
∑∞

n=0 anx
n has radius of convergence

R > 0. Then f has derivatives of all orders on (−R,R), and these derivatives can
be obtained by term-by-term differentiation of the series.

Just before moving on to the Exercises for this section we mention that the
same series can be represented in slightly different ways. Consider for example
the series S =

∑∞
n=1 an. The n that appears here is a dummy variable. It can

be replaced by any other (sensible) dummy variable. If we choose to replace n
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by r + 1, then r must vary from 0 to ∞ in order that n varies from 1 to ∞. So
we can write S =

∑∞
r=0 ar+1, and having done that we can change the dummy

variable from r back to n again, giving the somewhat strange looking result that
S =

∑∞
n=1 an =

∑∞
n=0 an+1. Of course nothing here alters the fact that S =

a1 + a2 + a3 + . . .. As another example consider T =
∑∞

n=0 a2n+1. Replacing
n by r − 1 here gives T =

∑∞
r=1 a2r−1, and then changing r back to n leaves us

with T =
∑∞

n=0 a2n+1 =
∑∞

n=1 a2n−1. A further point is that terms that are zero
can be omitted, so if a0 = 0 then

∑∞
n=0 an =

∑∞
n=1 an.

EXERCISES 6.5

1. If f(x) =
∑∞

n=0
xn

n!
, prove that f ′(x) = f(x).

2. If s(x) =
∑∞

n=0(−1)n x2n+1

(2n+1)!
and c(x) =

∑∞
n=0(−1)n x2n

(2n)!
, prove that

s′(x) = c(x) and c′(x) = −s′(x).
3. If l(x) =

∑∞
n=1(−1)n−1 xn

n
, prove that l′(x) = 1

1+x
for |x| < 1.
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Chapter 7

Familiar Functions

In this chapter we give rigorous definitions of the familiar functions of Real Anal-
ysis: exp, sin, cos and their inverses. You will have seen references to these defi-
nitions in earlier chapters and indeed we have already covered some of the proofs.
But here we bring it all together. We start with the exponential function.

7.1 The exponential function

Definition 7.1. For each x ∈ R we define

exp(x) =
∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+ . . . .

If we put an = xn/n! then for x ̸= 0

∣∣∣an+1

an

∣∣∣ = |x|
n+ 1

→ 0 as n→ ∞.

It follows by D’Alembert’s ratio test that the radius of convergence of the series
defining exp(x) is infinity, so that the series converges (absolutely) for all values
of x. Hence the definition is a good for every x ∈ R.
Note. The ratio test is valid for complex an. So the series can be used to define
exp(z) for z ∈ C.

We proceed to verify all the usual properties of exp.

Theorem 7.1 (Product rule). For every x, y ∈ R, exp(x) · exp(y) = exp(x + y).
[The result was one of the exercises in Section 4.4 of Chapter 4.]

177
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Proof. The result follows from Theorem 4.19, which deals with the Cauchy prod-
uct of two absolutely convergent series. To start rather informally, we write

exp(x) · exp(y) =
(
1 + x+

x2

2!
+ . . .+

xn

n!
+ . . .

)
×(

1 + y +
y2

2!
+ . . .+

yn

n!
+ . . .

)
= 1 + (1 · y + x · 1) +

(
1 · y

2

2!
+ xy +

x2

2!
· 1
)
+ . . .

= 1 + (y + x) +
(y + x)2

2!
+ . . .

In rather more detail, the general term in the Cauchy product is

1 · y
n

n!
+
x

1!
· yn−1

(n− 1)!
+ . . .

xi

i!
· yn−i

(n− i)!
+ . . .+

xn

n!
· 1.

This can be written as

1

n!

(
yn + xyn−1 n!

1!(n− 1)!
+ . . .+ xiyn−i n!

i!(n− i)!
. . .+ xn

)
,

or more suggestively as

1

n!

(
x0yn

(
n

0

)
+ x1yn−1

(
n

1

)
+ . . .+ xiyn−i

(
n

i

)
+ . . .+ xny0

(
n

n

))
.

But the sum

x0yn
(
n

0

)
+ x1yn−1

(
n

1

)
+ . . .+ xiyn−i

(
n

i

)
+ . . .+ xny0

(
n

n

)
is just the binomial expansion of (x+ y)n. It follows that

exp(x) · exp(y) =
∞∑
n=0

(x+ y)n

n!
= exp(x+ y).

Theorem 7.2 (Differentiation). The function exp(x) is differentiable on R and
exp′(x) = exp(x). [The result was one of the exercises in Section 6.5 of Chapter
6.]

Proof. The result follows from Theorem 6.15 which asserts that a power series
may be differentiated term-by-term within its radius of convergence. Applying
term-by-term differentiation gives

exp′(x) =
∞∑
n=1

nxn−1

n!
=

∞∑
n=1

xn−1

(n− 1)!
=

∞∑
n=0

xn

n!
= exp(x).
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Theorem 7.3 (Basic properties of exp).

(a) exp(0) = 1 and exp(x) > 0 for all x ∈ R.

(b) exp(x) is strictly increasing on R.

(c) exp(x) → +∞ as x→ +∞.

(d) exp(x) → 0 as x→ −∞.

(e) For any Rational Number k, exp(x)
xk → +∞ as x → +∞. [This really says

that exp(x) grows faster than any power of x as x increases.]

Proof.

(a) Put x = 0 in the defining power series to see that exp(0) = 1. Clearly if
x > 0 then each term xn

n!
is positive, and so exp(x) > 0 if x > 0. But

exp(x) · exp(−x) = exp(x − x) = exp(0) = 1, so if x < 0 we have
exp(x) = 1

exp(−x)
> 0.

(b) For every x ∈ R we have exp′(x) = exp(x) > 0. It follows that exp(x) is
strictly increasing on R.

(c) For x > 0, from the power series definition, exp(x) > x → +∞ as x →
+∞.

(d) For x < 0, exp(x) = 1
exp(−x)

→ 0 as x→ −∞.

(e) Given a Rational number k, let n denote the first positive integer greater
than k. Then for x > 0 we have

exp(x)

xk
>
xn/n!

xk
=
xn−k

n!
→ +∞ as x→ +∞.

The graph of the function exp(x) is illustrated in Figure 7.1.

Definition 7.2. We define Euler’s number e to be exp(1), so that

e = 1 + 1 +
1

2!
+

1

3!
+ . . . .

An approximate value for e can be obtained from the defining series. This
gives e ≈ 2.718 281 828 (correct to 9 decimal places). In fact e is an irrational
number, as we prove in the next theorem.

Theorem 7.4. The number e is irrational.
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Figure 7.1: The exponential function.

Proof. Suppose that e is a Rational Number. Then we may write e = p
q

where p
and q are positive integers without a common factor. Since e lies between 2 and
3, it is not an integer, so we may assume that q ̸= 1. Consider the equation

e =
p

q
= 1 + 1 +

1

2!
+ . . .+

1

q!
+

1

(q + 1)!
+

1

(q + 2)!
+ . . . .

Multiply this by q! to get

q!
p

q
= q!

(
1 + 1 +

1

2!
+ . . .+

1

q!

)
+

1

(q + 1)
+

1

(q + 1)(q + 2)
+ . . . .

This can be written as

q!
(p
q
− 1− 1− 1

2!
− . . .− 1

q!

)
=

1

(q + 1)
+

1

(q + 1)(q + 2)
+ . . . .

The left-hand side of this equation is an integer. The right-hand side is greater
than zero and less than the sum of the geometric series

1

(q + 1)
+

1

(q + 1)2
+

1

(q + 1)3
+ . . . =

( 1

q + 1

) 1

1− 1
q+1

=
1

q
< 1.

So we have a contradiction and conclude that e is not a Rational Number.

Comment. It can be shown that er is an irrational number for each non-zero
Rational Number r. [Aigner, Martin; Ziegler, Günter M. (1998). Proofs from The
Book (4th ed.). Berlin, New York: Springer-Verlag. pp. 27–36. doi:10.1007/978-
3-642-00856-6. ISBN 978-3-642-00855-9.]
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Theorem 7.5. If x ∈ R and if r is a Rational Number then (exp(x))r = exp(rx).
In particular (taking x = 1),

er = exp(r).

Proof. The result is trivial if r = 0 or if r = 1. So suppose initially that r is a
positive integer greater than 1. Then using Theorem 7.1 (r − 1) times we get

(exp(x))r = (exp(x))(exp(x)) . . . (exp(x)) (r factors)
= exp(rx).

Next suppose that r is a negative integer. Then

(exp(x))r =
1

(exp(x))−r

=
1

exp(−rx)
(since −r is a positive integer)

= exp(rx).

Next suppose that r = 1
q
, where q is a positive integer. Then

(
exp(rx)

)q
=

(
exp

(x
q

))q
= exp

(qx
q

)
(since q is a positive integer)

= exp(x), and taking qth roots of this gives

exp(rx) =
(
exp(x)

) 1
q

= (exp(x))r.

Finally suppose that r = p
q
, where p is an integer and q is a positive integer. Then

exp(rx) = exp
(px
q

)
=

(
exp

(x
q

))p (since p is an integer)

=
(
exp(x)

) p
q (since q is a positive integer)

= (exp(x))r.

Comment. We have just proved that er = exp(r) for any Rational Number r. But
we can’t assert that eα = exp(α) for an irrational number α, because we have no
definition of irrational powers such as eα. But exp(α) is well-defined, so we do
the natural thing and make the following definition.
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Definition 7.3. If α is an irrational number, then we define eα to be exp(α).

In view of this definition and the preceding theorem we have ex = exp(x) for
any Real Number x, be it rational or irrational. So Theorem 7.1 can be written as
ex · ey = e(x+y) and Theorem 7.2 can be written as y = ex =⇒ dy

dx
= ex.

Comment. We have just defined our first irrational power, namely an irrational
power of the number e. But we still have no definition of ax if a ̸= e and x is
irrational. We will deal with this issue after discussing the logarithm function,
which is the inverse of the exponential function. In Chapter 3 we showed that the
sequence

(
(1 + 1

n
)n)

)
converges to a limit between 2 and 3. We will prove that

the limit is e, again after discussing the logarithm function.

EXERCISES 7.1
1. Use the defining series to obtain the value of e correct to 4 decimal places

and prove that your value is that accurate.

7.2 The logarithm function

The logarithm function loge(x) is defined as the inverse of the exponential func-
tion exp(x), which is continuous and strictly increasing. Recall results about in-
verse functions from earlier chapters, especially Chapter 5, Theorem 5.12 and
Chapter 6, Theorem 6.5. The exponential function has domain R and its im-
age set is the interval (0,∞) because exp(x) → 0 as x → −∞ and exp(x) →
+∞ as x → +∞. Therefore, loge(x) has domain (0,∞) and image set R. Note
that this means that loge(x) is undefined for x ≤ 0. Because exp(x) is strictly
increasing, continuous and differentiable, so is loge(x).

If η = exp(ξ) then ξ = loge(η) and

log′e(η) =
1

exp′(ξ)
=

1

exp(ξ)
=

1

η
.

Put another way, if y = loge(x) then dy
dx

= 1
x
.

Some authors denote the function loge simply as log, others use ln. We will
call it “log(arithm) to the base e”, others call it the “natural log(arithm)”, which
explains the alternative notation ln. Key properties of the logarithm function can
be deduced fairly easily from properties of the exponential function. Figure 7.2
illustrates the graph of loge(x).

Theorem 7.6 (Basic properties of loge).
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Figure 7.2: The logarithm function.

(a) loge(1) = 0, loge(e) = 1, and if x, y > 0 then loge(xy) = loge(x)+loge(y),
and loge

(
1
x

)
= − loge(x)

(b) For any Rational Number r and x > 0, loge
(
xr
)
= r loge(x)

(c) loge(x) → +∞ as x→ +∞.

(d) loge(x) → −∞ as x→ 0+.

(e) For any positive Rational Number k, loge(x)
xk → 0 as x → +∞. [This really

says that loge(x) grows slower than any positive power of x as x increases.]

Proof.

(a) Since exp(0) = 1, loge(1) = 0.
Since exp(1) = e, loge(e) = 1.
For x, y > 0 put X = loge(x) and Y = loge(y), so that x = exp(X) and
y = exp(Y ). Then xy = exp(X) · exp(Y ) = exp(X + Y ), so loge(xy) =
X + Y = loge(x) + loge(y).

With the same notation,
1

x
=

1

exp(X)
= exp(−X), so loge

(
1
x

)
= −X =

− loge(x).

(b) Suppose that r = p
q

where p is an integer and q is a positive integer. Then
with X = loge(x),

(xr)q = xp =
(
exp(X)

)p
= exp(pX) =

(
exp

(pX
q

))q

.
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Taking qth roots gives xr = exp(rX), and then taking logarithms gives
loge

(
xr
)
= rX = r loge(x).

(c) Choose A ∈ R. We will prove that if x > exp(A) then loge(x) > A. To do
this, observe that since exp is strictly increasing, if exp(X) > exp(A) then
X > A. With X = loge(x) this implies that if exp(loge(x)) > exp(A) then
loge(x) > A, i.e. if x > exp(A), then loge(x) > A.

(d) Choose A ∈ R. We will prove that if 0 < x < exp(A) then loge(x) < A.
To do this, observe that since exp is strictly increasing, if exp(X) < exp(A)
then X < A. With X = loge(x) this implies that if exp(loge(x)) < exp(A)
then loge(x) < A, i.e. if x < exp(A), then loge(x) < A.

(d) From part (e) of Theorem 7.3 we have

exp(kX)

X
→ +∞ as X → +∞.

With X = loge(x) , and noting that X → +∞ as x→ +∞, we obtain

exp(k loge(x))

loge(x)
→ +∞ as x→ +∞,

i.e.
xk

loge(x)
→ +∞ as x→ +∞,

which gives
loge(x)

xk
→ 0 as x→ +∞.

Comment. In days gone by (pre the 1960s), logarithms were used extensively to
simplify multiplications of ugly numbers. Without any calculator how would you
multiply (for example) 376.8 by 27.91? You could do it by long multiplication, but
much easier to consult a book of tables, look up the logarithms of the two numbers,
add them, and then look up the “anti-logarithm” (effectively the exponential) of
the sum. Because addition is much simpler to do by hand than multiplication, this
was by far the best method. The logarithms used were to base 10, rather than to
base e, and the associated function is log10(x), the inverse of the function 10x.
Base 10 is preferable for calculations since we count in the decimal system using
base 10. We will now explain how to define functions such as 10x and log10(x),
more generally ax and loga(x) for any a > 0. Note that we already know what ar

means for an Rational Number r, and we already know what ex means even when
x is irrational (it means exp(x)).

Definition 7.4. If a > 0 and x is an irrational number, we define

ax = exp(x loge(a)).
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We must check a few things for consistency. First, if a = e, this definition
gives ex = exp(x loge(e)), but loge(e) = 1, so it gives ex = exp(x), a defi-

nition we had earlier. Second, if x is rational then ax =
(
exp(loge(a))

)x

=

exp(x loge(a)) by Theorem 7.5. Hence

ax = exp(x loge(a)) for any x ∈ R.

If we take logarithms of this we get another useful result

loge(a
x) = loge

(
exp(x loge(a))

)
= x loge(a).

Using the results in this and in the previous section it is easy to verify all the
usual properties of ax for a > 0. In particular

ax · ay = a(x+y),

(ax)y = axy,

d

dx
(ax) = loge(a) · ax.

Moreover, if x > 0 and α is an irrational number then

d

dx
(xα) =

d

dx
(exp(α loge(x))

=
(α
x

)(
exp(α loge(x)

)
by the composite rule

=
(α
x

)
xα = αxα−1.

By combining this with the result of Corollary 6.5.3 from Chapter 6, we find that
the derivative of xα is αxα−1 whenever the function and derivative make sense,
whether or not α is a Rational or irrational number.

In Figure 7.3 we show the graphs of 2x, ex and 4x on the same set of axes. You
will see they are somewhat similar, but the gradients at x = 0 are respectively less
than 1, equal to 1, and greater than 1. Another way of characterising e is that it is
the unique positive number a for which ax has gradient 1 at x = 0.

It is also easy to show that for a > 1 the function ax has an inverse. We denote
this inverse by loga(x), it is defined and differentiable on (0,∞). Key values are
loga(1) = 0 and loga(a) = 1. For x, y > 0, we have loga(xy) = loga(x)+loga(y)
and for any α ∈ R, loga(xα) = α loga(x).

We can get a formula for loga(x) in terms of loge(x) as follows. Put y =
loga(x). Then x = ay, so loge(x) = loge(a

y) = y loge(a) = loga(x) loge(a).
Hence

loga(x) =
loge(x)

loge(a)
.
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Figure 7.3: The functions 2x, ex, 4x.

Use of logarithm tables.
In days of yore tables were produced showing log10(x) for x ∈ (1, 10). About 20
A4 pages would be required to display a tabulation from x = 1.001 to x = 9.999
in steps of 0.001, with the values of log10(x) given correct to 6 decimal places.
To calculate 376.8× 27.91, we read log10(3.768) = 0.576111 and log10(2.791) =
0.445760. Adding these values gives 1.021871. Look-up the number with loga-
rithm 0.021871, which is 1.05165 (some interpolation needed here), multiply by
10 to take account that the logarithm was 1.021871 rather than 0.021871, to get
10.5165. Finally take account of the fact that we dropped a factor 103 to get the
answer 10 516.5. This compares with the precise value 10 516.488.

Because we normally count in the decimal system, some computations are
much easier using logarithms to base 10 than to base e. For example to calculate
the cube root of 83.67, we look up the logarithm (to base 10) of 8.367, which is
0.922570, add 1 (using log10(83.67) = log10(10)+ log10(8.367)) to get 1.922570,
and then divide by 3 (for the cube root) to get 0.640857. Finally look up the
number with this logarithm to get the answer 4.3738. The process of extracting
an integer power of 10 from 83.67 is very easy, but if we used logarithms to base
e we’d either have to extract an integer power of e, which is considerably more
difficult, or know the value of loge(10) and undertake an awkward addition.

That limit again.
We said in Chapter 3, section 3.6 that we would prove that(

1 +
1

n

)n

→ e as n→ ∞.

We actually prove a bit more than this in the following result.
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Theorem 7.7. For any a ∈ R,(
1 +

a

x

)x

→ ea as x→ +∞.

This entails (
1 +

a

n

)n

→ ea as n→ ∞,

where n takes positive integer values. And taking a = 1 in this gives(
1 +

1

n

)n

→ e as n→ ∞.

Proof. We start by considering the limiting value (if any) of
loge(1 + ay)

y
as

y → 0. This is an indeterminate form since both loge(1 + ay) and y are dif-
ferentiable functions of y with common value 0 at y = 0. These functions satisfy
the conditions for applying L’Hôpital’s rule, their derivatives are respectively a

1+ay

and 1 and so we find that

lim
y→0

loge(1 + ay)

y
= lim

y→0

a
1+ay

1
,

provided that the latter limit exists, which it does because 1 + ay → 1 as y → 0.
So we have

loge(1 + ay)

y
→ a as y → 0.

If we write y = 1
x

then y → 0 as x→ +∞, so that

x loge

(
1 +

a

x

)
→ a as x→ +∞.

The exponential function exp is continuous at a, so

exp
(
x loge

(
1 +

a

x

))
→ ea as x→ +∞.

But

exp
(
x loge

(
1 +

a

x

))
= exp

(
loge

((
1 +

a

x

)x))
=

(
1 +

a

x

)x

.

Hence (
1 +

a

x

)x

→ ea as x→ +∞.
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Comment. The result also holds good for x→ −∞. To see this, note that, in the
proof, y → 0 as x → −∞. Alternatively, replace x by −x and a by −a in the
result.

Although it would be nice to give a Maclaurin series for loge(x), we cannot do
this because log( x) is undefined for x ≤ 0, so it is hopeless trying to get a power
series for loge(x) valid in some open interval containing 0. So we do the next best
thing and try for a Maclaurin series for loge(1+x). Hopefully that might converge
for |x| < 1, although we can’t allow |x| > 1 because then 1 + x can be less than
0.

Theorem 7.8. For −1 < x ≤ 1,

loge(1 + x) = x− x2

2
+
x3

3
− x4

4
+ . . . =

∞∑
n=1

(−1)n−1x
n

n
.

Proof. Note that if f(x) = loge(1 + x) then f ′(x) = 1
1+x

= (1 + x)−1, f ′′(x) =

(−1)(1 + x)−2, f (3)(x) = (−2)(−1)(1 + x)−3, and more generally for n ≥ 1,
f (n)(x) = (−1)n−1

(
(n − 1)!

)
(1 + x)−n. It follows that for n ≥ 1, we have

f (n)(0) = (−1)n−1(n−1)!, while f(0) = loge(1) = 0. Consequently the Maclau-
rin series for f is

∞∑
n=1

(−1)n−1(n− 1)!
xn

n!
=

∞∑
n=1

(−1)n−1x
n

n
.

However, we still have to prove that this converges to f(x). To do this we examine
the remainder term Rn(x) in the Taylor expansion of the function about the point
0. We split the argument into two cases. The first deals with |x| < 1, and the
second deals with the special case x = 1.

In the case |x| < 1 we use Cauchy’s formula for the nth remainder, which tells
us that Rn(x) can be expressed in the following form for some θ ∈ (0, 1).

Rn(x) =
xn(1− θ)n−1

(n− 1)!
f (n)(θx)

=
xn(1− θ)n−1

(n− 1)!
(−1)n−1

(
(n− 1)!

)
(1 + θx)−n

= (−1)n−1xn
( 1− θ

1 + θx

)n−1

(1 + θx)−1.

But for |x| < 1 we have 0 < (1− θ)/(1 + θx) < 1, and 1− |x| < 1 + θx so that
(1 + θx)−1 is bounded above by the (1− |x|)−1. It follows that

|Rn(x)| ≤
|x|n

1− |x|
→ 0 as n→ ∞.



7.3. CIRCULAR OR TRIGONOMETRIC FUNCTIONS 189

Hence the Maclaurin series for loge(1 + x) converges to loge(1 + x) for |x| < 1.
In the special case x = 1 we use Lagrange’s formula for the nth remainder,

which tells us that Rn(x) can be expressed in the following form for some ξ ∈
(0, 1).

Rn(1) =
1n

n!
f (n)(ξ)

=
1

n!
(−1)n−1

(
(n− 1)!

)
(1 + ξ)−n

=
(−1)n−1

n
(1 + ξ)−n

It follows that |Rn(1)| ≤ 1
n

→ 0 as n → ∞. Hence the Maclaurin series for
loge(1 + x) converges to loge(1 + x) for x = 1. In other words, the sum of the
alternating harmonic series is loge(2):

loge(2) = 1− 1

2
+

1

3
− 1

4
+ . . . =

∞∑
n=1

(−1)n−1 1

n
.

EXERCISES 7.2
1. Prove that for a, b > 1, loga(b) =

1
logb(a)

.

2. Prove that for |x| < 1,

loge

(1 + x

1− x

)
= 2

(
x+

x3

3
+
x5

5
+ . . .

)
= 2

∞∑
n=0

x2n+1

2n+ 1
.

Hence show that if y > 0 then

loge(y) = 2
∞∑
n=0

1

2n+ 1
·
(y − 1

y + 1

)2n+1

.

Use this series to obtain an approximate value for loge(2) with an error
less than 10−5. How many terms of the alternating harmonic series would
be needed to achieve similar accuracy?

3. Prove that the rearranged alternating harmonic series

1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+

1

5
− 1

10
− 1

12
+ . . . ,

where each positive term is followed by two negative terms, converges
with sum 1

2
loge(2).
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7.3 Circular or trigonometric functions

The principal functions treated in this section are the sine and cosine functions.
These are known as circular or trigonometric functions. We define them using
power series, just as we did for the exponential function. After deducing their
main properties we examine the connection with the familiar geometric definitions
of these functions in terms of circles and triangles. From the Real Analysis point
of view these geometric definitions are not sufficiently precise because they rely
on appealing to pictures and intuition.

Definition 7.5. For each x ∈ R we define

sin(x) =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
= x− x3

3!
+
x5

5!
+ . . . , and

cos(x) =
∞∑
n=0

(−1)n
x2n

(2n)!
= 1− x2

2!
+
x4

4!
+ . . .

If we put an = (−1)nx2n+1/(2n+ 1)! then for x ̸= 0∣∣∣an+1

an

∣∣∣ = |x2|
(2n+ 3)(2n+ 2)

→ 0 as n→ ∞.

It follows by D’Alembert’s ratio test that the radius of convergence of the series
defining sin(x) is infinity, so that the series converges (absolutely) for all values
of x.

Similarly, if we put bn = (−1)nx2n/(2n)! then for x ̸= 0∣∣∣bn+1

bn

∣∣∣ = |x2|
(2n+ 2)(2n+ 1)

→ 0 as n→ ∞.

It follows by D’Alembert’s ratio test that the radius of convergence of the series
defining cos(x) is infinity, so that the series converges (absolutely) for all values
of x.

Hence these definitions of sin(x) and cos(x) are good for every x ∈ R. Some
properties are easily seen from the defining series. We have sin(0) = 0, cos(0) =
1, sin is an odd function, i.e. sin(−x) = − sin(x), while cos is an even function,
i.e. cos(−x) = cos(x).

Note. The ratio test is valid for complex an and bn. So the series can be used to
define sin(z) and cos(z) for z ∈ C.

We proceed to verify all the usual properties of sin and cos.



7.3. CIRCULAR OR TRIGONOMETRIC FUNCTIONS 191

Theorem 7.9 (Addition formulae). For every x, y ∈ R,

(a) sin(x+ y) = sin(x) cos(y) + cos(x) sin(y),

(b) cos(x+ y) = cos(x) cos(y)− sin(x) sin(y).

[If you had a very strong stomach for algebra you may have proved the first of
these in one of the exercises in Section 4.4 of Chapter 4.]

Proof. The result follows from Theorem 4.19, which deals with the Cauchy prod-
uct of two absolutely convergent series. You are strongly advised to look back at
the general term in the product exp(x) exp(y) from the proof of Theorem 7.1. The
algebra here is similar, but nastier.

(a) The (n+ 1)th term in the Cauchy product of sin(x) cos(y) is

un = x · (−1)ny2n

(2n)!
− x3

3!
· (−1)n−1y2n−2

(2n− 2)!
+ . . .+

(−1)nx2n+1

(2n+ 1)!
· 1

= (−1)n
[ xy2n
(2n)!

+
x3y2n−2

3!(2n− 2)!
+ . . .+

x2n+1

(2n+ 1)!

]
=

(−1)n

(2n+ 1)!

[(2n+ 1

1

)
xy2n +

(
2n+ 1

3

)
x3y2n−2+

. . .+

(
2n+ 1

2n+ 1

)
x2n+1

]
The (n+ 1)th term in the Cauchy product of cos(x) sin(y) is

vn = 1 · (−1)ny2n+1

(2n+ 1)!
− x2

2!
· (−1)n−1y2n−1

(2n− 1)!
+ . . .+

(−1)nx2n

(2n)!
· y

= (−1)n
[ y2n+1

(2n+ 1)!
+

x2y2n−1

2!(2n− 1)!
+ . . .+

x2ny

(2n)!

]
=

(−1)n

(2n+ 1)!

[(2n+ 1

0

)
y2n+1 +

(
2n+ 1

2

)
x2y2n−1+

. . .+

(
2n+ 1

2n

)
x2ny

]
Adding these expressions for un and vn gives

un + vn = wn =
(−1)n

(2n+ 1)!

[ 2n+1∑
r=0

(
2n+ 1

r

)
xry2n+1−r

]
=

(−1)n

(2n+ 1)!
(x+ y)2n+1
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Hence the resulting series for sin(x) cos(y) + cos(x) sin(y) is

∞∑
n=0

wn =
∞∑
n=0

(−1)n
(x+ y)2n+1

(2n+ 1)!
= sin(x+ y).

(b) The result for cos(x + y) can be proved in the same way as for part (a).
You will learn more by doing it than by reading another page of algebra
here. So try it for yourself. There is an easy way of getting it from part
(a) by differentiation that we will cover after the next theorem (Theorem
7.10).

Theorem 7.10 (Differentiation). The functions sin(x) and cos(x) are differen-
tiable on R, sin′(x) = cos(x) and cos′(x) = − sin(x). [These results formed one
of the exercises in Section 6.5 of Chapter 6.]

Proof. The result follows from Theorem 6.15 which asserts that a power series
may be differentiated term-by-term within its radius of convergence. Applying
term-by-term differentiation gives

sin′(x) =
∞∑
n=0

(−1)n
(2n+ 1)x2n

(2n+ 1)!
=

∞∑
n=0

(−1)n
x2n

(2n)!
= cos(x)

cos′(x) =
∞∑
n=1

(−1)n
(2n)x2n−1

(2n)!
=

∞∑
n=1

(−1)n
x2n−1

(2n− 1)!

= −
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
= − sin(x)

Corollary 7.10.1. For every x, y ∈ R,

cos(x+ y) = cos(x) cos(y)− sin(x) sin(y).

As a consequence of this, for each x ∈ R, cos2(x) + sin2(x) = 1, | sin(x)| ≤ 1
and | cos(x)| ≤ 1.

Proof. By Theorem 7.9 part(a), we have

sin(x+ y) = sin(x) cos(y) + cos(x) sin(y).

Differentiating with respect to x while holding y constant gives

cos(x+ y) = cos(x) cos(y)− sin(x) sin(y).
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If we replace y by −x and bear in mind that cos is an even function, while sin is
an odd function, we get

cos(x− x) = cos(x) cos(x) + sin(x) sin(x).

But cos(x − x) = cos(0) = 1, so we find that cos2(x) + sin2(x) = 1. It follows
that cos2(x) ≤ 1 and that sin2(x) ≤ 1, which gives | sin(x)| ≤ 1 and | cos(x)| ≤
1.

Remark. The addition formulae give rise to half-angle formulae:

sin(2x) = 2 sin(x) cos(x),

cos(2x) = cos2(x)− sin2(x) = 1− 2 sin2(x) = 2 cos2(x)− 1.

Finding π.
How is π defined? At school it would have been defined using circles, as the ratio
of the circumference to the diameter. But this really won’t do for a rigorous course
of Real Analysis. So here we will define π by using properties of the functions sin
and cos. To be precise we will define π/2 as the least positive number for which
cos(x) is zero. In order to do this we must show that cos(x) is zero for some
positive value(s) of x. The first step is to show that cos(x) is strictly decreasing
on the interval [0, 2].

Theorem 7.11. The function sin(x) is strictly positive for x ∈ (0, 2) and the
function cos(x) is strictly decreasing on [0, 2].

Proof. Since cos′(x) = − sin(x), it suffices to show that sin(x) is strictly positive
for x ∈ (0, 2). We have

sin(x) =
(
x− x3

3!

)
+
(x5
5!

− x7

7!

)
+ . . .

= x
(
1− x2

3× 2

)
+
x5

5!

(
1− x2

7× 6

)
+ . . . .

For x ∈ (0, 2) each of the bracketed terms is strictly positive, and so sin(x) >
0.

Theorem 7.12. There is a positive number, which we will denote as π/2, lying
between

√
2 and

√
3 at which the cosine function takes the value zero. Moreover

cos(x) > 0 for x ∈ [0, π/2).

Proof.

cos(
√
2) =

(
1− 2

2

)
+

22

4!

(
1− 2

6× 5

)
+

24

8!

(
1− 2

10× 9

)
+ . . . > 0.



194 CHAPTER 7. FAMILIAR FUNCTIONS

cos(
√
3) =

(
1− 3

2
+

32

4!

)
− 33

6!

(
1− 3

8× 7

)
− 35

10!

(
1− 3

12× 11

)
+ . . . .

But (
1− 3

2
+

32

4!

)
= −1

2
+

3

8
< 0,

which gives cos(
√
3) < 0.

Because the cosine function is continuous, by the Intermediate Value Function
it has a zero between

√
2 and

√
3. Since cos(0) = 1 and cos is strictly decreas-

ing on [0, 2], it follows that this is the only zero in [0, 2]. Denoting this zero as
π/2 we have, in particular, that cos(x) > 0 for x ∈ [0, π/2), and (of course)
cos(π/2) = 0.

To 4 decimal places this locates π between 2
√
2 = 2.8284 and 2

√
3 = 3.4642,

so not very precise. We will get a more precise estimate when we discuss the
inverse functions.

Theorem 7.13 (Properties of π).

(a) sin(π/2) = 1, sin(π/4) = cos(π/4) = 1√
2
.

(b) sin(x+ π/2) = cos(x) and cos(x+ π/2) = − sin(x) (∀x ∈ R),

(c) sin(x+ π) = − sin(x) and cos(x+ π) = − cos(x) (∀x ∈ R),

(d) Both sin and cos are periodic with period 2π, i.e.

sin(x+ 2π) = sin(x) and cos(x+ 2π) = cos(x) (∀x ∈ R).

Moreover there is no smaller period, i.e if 0 < a ≤ 2π and if sin(x + a) =
sin(x) (∀x ∈ R), then a = 2π, and likewise for cos.

Proof. (a) Since cos(π/2) = 0 and for all x ∈ R, sin2(x) + cos2(x) = 1,
it follows that sin2(π/2) = 1. Because sin(π/2) > 0, we deduce that
sin(π/2) = 1.
We also have cos(π/2) = cos2(π/4) − sin2(π/4) = 1 − 2 sin2(π/4).
Consequently 2 sin2(π/4) = 1 and because sin(π/4) > 0 it follows that
sin(π/4) = 1√

2
.

But cos2(π/4) = 1− sin2(π/4) = 1
2
, and noting that cos(π/4) > 0, we get

cos(π/4) = 1√
2
.

(b) These follow from the addition formulae:

sin(x+ π/2) = sin(x) cos(π/2) + cos(x) sin(π/2) = cos(x),

cos(x+ π/2) = cos(x) cos(π/2)− sin(x) sin(π/2) = − sin(x).
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Note in particular that sin(π) = cos(π/2) = 0 and cos(π) = − sin(π/2) =
−1.

(c) Again from the addition formulae:

sin(x+ π) = sin(x) cos(π) + cos(x) sin(π) = − sin(x),

cos(x+ π) = cos(x) cos(π)− sin(x) sin(π) = − cos(x).

Note in particular that sin(2π) = − sin(π) = 0 and cos(2π) = − cos(π) =
1.

(d) Again from the addition formulae:

sin(x+ 2π) = sin(x) cos(2π) + cos(x) sin(2π) = sin(x),

cos(x+ 2π) = cos(x) cos(2π)− sin(x) sin(2π) = cos(x).

To prove that there is no smaller period, suppose that 0 < a < 2π. Then
0 < a

4
< π

2
< 2 and hence cos(a/4) > 0 and sin(a/4) > 0. We deduce that

sin
(a
2

)
= 2 sin

(a
4

)
cos

(a
4

)
> 0.

Therefore

cos(a) = cos2
(a
2

)
− sin2

(a
2

)
< 1− 0 = 1 = cos(0).

Hence a is not a period for the cosine function. If it were a period for the
sine function then sin(x + a) = sin(x) for all x ∈ R, and differentiation
would give cos(x + a) = cos(x), i.e. a would have to be a period for the
cosine function, which it isn’t. Hence a is not a period for the sine function.
Thus 2π is the smallest period for both sin and cos.

At this point we have enough information to sketch the graphs of sin(x) and
cos(x). These are shown in Figure 7.4.

We can define the remaining circular or trigonometric functions (tangent, cotan-
gent, secant, cosecant) as follows.

Definition 7.6.

tan(x) =
sin(x)

cos(x)
, cot(x) =

cos(x)

sin(x)
, sec(x) =

1

cos(x)
, cosec(x) =

1

sin(x)
.
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−π −π/2 π/2 π
| | | |

1

−1

−

−

x

y

sin(x)

cos(x)

Figure 7.4: sin(x) and cos(x).

Of course these definitions are only valid when they make sense. For example,
tan(π/2) is undefined because cos(π/2) = 0. Note that the three functions with
the co prefix (cosine, cotangent, cosecant) decrease on (0, π/2), while the other
three (sine, tangent, secant) increase on this interval. The only one of these with
which we will really concern ourselves is tan(x). From the earlier results on
sin and cos, it is easy to see that tan is an odd function, which is periodic with
(shortest) period π, and that it is undefined at all odd multiples of π/2. Since
tan(x) = sin(x)/ cos(x), by the quotient rule we have

tan′(x) =
cos2(x) + sin2(x)

cos2(x)
.

This can be expressed in several alternative forms. We can write it as
cos2(x)/ cos2(x) + sin2(x)/ cos2(x) = 1 + tan2(x), or we can recognise that
cos2(x)+sin2(x) = 1 and write it as 1/ cos2(x) and this can be written as sec2(x).
So to summarise:

tan′(x) = 1 + tan2(x) =
1

cos2(x)
= sec2(x).

The graph of tan(x) is illustrated in Figure 7.5.

Reconciling analytical and geometric definitions.
The next set of familiar functions to be discussed are the inverse circular functions.
However, before we move on to these we will spend a few pages showing that the
functions we have defined as sin and cos by means of power series really are the
familiar functions that you met at school. To do this we really need to set rigorous
analysis aside and examine the geometric definitions of these functions. I will
refer to the familiar geometric versions as s(x) and c(x) with the aim of showing
that these are indeed given by the power series.
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−π −π/2 π/2 π
| | | |

x

y

tan(x)

Figure 7.5: tan(x).

The functions s(θ) and c(θ) are defined in Figure 7.6 as the y and x coordinates
(respectively) of a point P on the circumference of a circle of unit radius centred
on the origin O and such that the radial line OP makes an angle θ (radians) with
the x-axis.

Using these geometric definitions we will argue that s(θ) and c(θ) are differ-
entiable and that s′(θ) = c(θ) and c′(θ) = −s(θ). From these it is an easy step to
show that s and c have the same power series representations as our definitions for
sin(θ) and cos(θ). We will assume that s and c obey all the addition formulae you
grew to know and love in your earlier existence. These can be proved using geo-
metric diagrams involving triangles, and proofs may be found in most elementary
textbooks dealing with these functions. In particular we assume that

s(a+ b) = s(a)c(b) + c(a)s(b) and c(a+ b) = c(a)c(b)− s(a)s(b).
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O−1

1

−1

x

y

P

θ

Q R

OQ = c(θ)
QP = s(θ)

Arc RP = θ

Figure 7.6: s(θ) and c(θ).

From these it can be deduced that

s(a)− s(b) = 2c
(a+ b

2

)
s
(a− b

2

)
and

c(a)− c(b) = −2s
(a+ b

2

)
s
(a− b

2

)
.

Looking at triangleOQP in Figure 7.6, Pythagoras’ Theorem gives s2(θ)+c2(θ) =
1, so that |s(θ)| ≤ 1 and |c(θ)| ≤ 1 for any θ ∈ R. Also note from the geometry
of Figure 7.6 that

s(θ) → 0 as θ → 0, c(θ) → 1 as θ → 0.

Consequently s(θ + h) = s(θ)c(h) + c(θ)s(h) → s(θ) as h → 0, and
c(θ + h) = c(θ)c(h) − s(θ)s(h) → c(θ) as h → 0, so that both s and c are
continuous functions.

The main step in the argument is to show that s(θ)/θ → 1 as θ → 0. To do
this consider Figure 7.7 in which we assume that |θ| < π/2 and that θ ̸= 0. The
Figure is drawn with θ > 0, but the argument applies, with minor changes, for
θ < 0.

Arguing from Figure 7.7, we see that QP is shorter than arc RP , hence
s(θ) < θ, giving

s(θ)

θ
< 1.

Also, arc RP is shorter than the combined length of RS plus SP . But SP is
shorter than ST since ST is the hypotenuse of the triangle SPT . So arc RP is
shorter thanRS+ST = RT . TrianglesOQP andORT are similar, soQP/OQ =
RT/OR, i.e. s(θ)/c(θ) = RT/1, giving RT = s(θ)/c(θ). Because arc RP is
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O

x

y

P

θ

Q R

S

T

OP = OR = 1
OQ = c(θ)
QP = s(θ)

Arc RP = θ
OS bisects θ

Figure 7.7: Estimating s(θ)/θ

shorter than RT we get θ < s(θ)/c(θ). From this we obtain

c(θ) <
s(θ)

θ
.

So we now have

c(θ) <
s(θ)

θ
< 1.

Since c(θ) → 1 as θ → 0, we deduce that s(θ)/θ → 1 as θ → 0.
We are now well equipped to prove that s(θ) is differentiable with derivative

c(θ). To do this take h ̸= 0, and use the formula for s(a)− s(b) to get

s(θ + h)− s(θ)

h
=

2c
(
θ + h

2

)
s
(
h
2

)
h

= c
(
θ +

h

2

)s(h
2

)
h
2

→ c(θ) · 1 as h→ 0,

since c is continuous and s(h/2)/(h/2) → 1 as h → 0. Hence s(θ) is differen-
tiable with derivative c(θ).

Similarly for h ̸= 0

c(θ + h)− c(θ)

h
=

−2s
(
θ + h

2

)
s
(
h
2

)
h

= −s
(
θ+

h

2

)s(h
2

)
h
2

→ −s(θ) ·1 as h→ 0,

since s is continuous and s(h/2)/(h/2) → 1 as h → 0. Hence c(θ) is differen-
tiable with derivative −s(θ).

It follows from s′ = c and c′ = −s that both s and c have derivatives of
all orders. Using Taylor’s Theorem to expand about the point a = 0 with La-
grange’s form of the remainder, we find that for the function s(θ) the nth re-

mainder Rn can be expressed as Rn =
θn

n!
s(n)(ξ) for some ξ. But s(n) is one

of s, c,−s,−c, so |Rn| ≤
∣∣∣θn
n!

∣∣∣ → 0 as n → ∞. Hence s(θ) is given by the
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Maclaurin series s(θ) =
∞∑
n=0

θn

n!
s(n)(0). Bearing in mind that s(0) = 0, c(0) = 1

this gives s(θ) =
∞∑
n=0

(−1)n
θ2n+1

(2n+ 1)!
= sin(θ). In the same way we prove that

c(θ) =
∞∑
n=0

(−1)n
θ2n

(2n)!
= cos(θ).

EXERCISES 7.3

1. Use the addition formulae to prove the following identities.

(a) sin(x− y) = sin(x) cos(y)− cos(x) sin(y),

(b) cos(x− y) = cos(x) cos(y) + sin(x) sin(y),

(c) tan(x+ y) =
tan(x) + tan(y)

1− tan(x) tan(y)
,

(d) tan(x− y) =
tan(x)− tan(y)

1 + tan(x) tan(y)
.

(For part (c) we assume that none of x, y, x+ y is an odd multiple of π/2.
Similarly for part (d) with x− y replacing x+ y.)

2. Prove that for all x ∈ R, sin(π/2− x) = cos(x) and that cos(π/2− x) =
sin(x).

3. Prove that

sin(a)− sin(b) = 2 cos
(a+ b

2

)
sin

(a− b

2

)
and

cos(a)− cos(b) = −2 sin
(a+ b

2

)
sin

(a− b

2

)
.

4. Prove that tan(x) is strictly increasing on (−π/2, π/2), that tan(π/4) = 1,
tan(x+π/2) = − cot(x), and tan(x+π) = tan(x) (so that tan is periodic
with period π). Prove also that there is no smaller (positive) period of the
tan function.

7.4 Inverse circular functions

First a comment on notation: we will denote the inverse circular functions by
using the prefix “arc”, so arcsin is the inverse of the sin function. There are
alternative notations, the most common of which is to append a −1 superscript as
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in sin−1. Unfortunately it is easy to confuse sin−1(x) with
1

sin(x)
, especially as

sin2(x) is taken to mean
(
sin(x)

)2.
Each of the functions sin, cos and tan is a many-one function. To get injec-

tive (one-to-one) functions suitable for defining inverses, we need to restrict their
domains. It would be nice to do this symmetrically about zero, and this works for
both sin and tan, which are odd functions. For these functions we will restrict the
domains to [−π/2, π/2] and (−π/2, π/2) respectively (the end points −π/2 and
π/2 are excluded for tan because tan(x) is undefined for x = ±π/2). However,
for cos this symmetric approach does not work because cos is an even function and
so still many-one on [−π/2, π/2], for example cos(−π/4) = cos(π/4) = 1/

√
2.

Instead, for cos(x) we restrict the domain to [0, π], on which the function is injec-
tive (one-to-one).

Both sin and tan are strictly increasing on their restricted domains, and also
continuous and differentiable there. The function cos is strictly decreasing on
[0, π] and again continuous and differentiable there. So all three restricted func-
tions have inverses whose properties follow from general results about inverse
functions covered in earlier chapters, especially Chapter 5, Theorem 5.12 and
Chapter 6, Theorem 6.5.

The inverse sine function arcsin is strictly increasing on [−1, 1] with image
set [−π/2, π/2], it is continuous on its domain and differentiable on (−1, 1) with

derivative given by arcsin′(x) =
1

cos(y)
, where sin(y) = x, so that cos(y) =√

1− sin2(y) =
√
1− x2, and note that we take the positive square root since

cos(y) > 0 for y ∈ (−π/2, π/2). Hence

arcsin′(x) =
1√

1− x2
for x ∈ (−1, 1).

The inverse cosine function arcsin is strictly decreasing on [−1, 1] with im-
age set [0, π], it is continuous on its domain and differentiable on (−1, 1) with

derivative given by arccos′(x) =
1

− sin(y)
, where cos(y) = x, so that sin(y) =√

1− cos2(y) =
√
1− x2, and note that we take the positive square root since

sin(y) > 0 for y ∈ (0, π). Hence

arccos′(x) = − 1√
1− x2

for x ∈ (−1, 1).

The inverse tangent function arctan is strictly increasing on (−∞,∞) = R
with image set (−π/2, π/2), it is continuous and differentiable on its domain with

derivative given by arctan′(x) =
1

sec2(y)
, where tan(y) = x, so that sec2(y) =
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1 + tan2(y) = 1 + x2 (look back to the previous section where we discussed the
derivative of tan). Hence

arctan′(x) =
1

1 + x2
for x ∈ R.

Figure 7.8 shows the graphs of arcsin(x) and arccos(x), and Figure 7.9 shows
the graph of arctan(x).

−π/2

π/2

π

−

−

−

1−1
| |

x

y

arcsin(x)

arccos(x)

Figure 7.8: arcsin(x) and arccos(x).

−π/2

π/2

−

−

x

y

arctan(x)

Figure 7.9: arctan(x).

Calculating the value of π.
The arctan function can be used to calculate the value of π to sufficient accuracy
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for most practical purposes. The first step is to prove that tan(π/6) = 1/
√
3. This

can be done using the addition formulae.

0 = cos
(π
2

)
= cos

(π
3
+
π

6

)
= cos

(π
3

)
cos

(π
6

)
− sin

(π
3

)
sin

(π
6

)
=

[
cos2

(π
6

)
− sin2

(π
6

)]
cos

(π
6

)
−
[
2 sin

(π
6

)
cos

(π
6

)]
sin

(π
6

)
= cos

(π
6

)[
cos2

(π
6

)
− 3 sin2

(π
6

)]
.

But cos
(π
6

)
> 0, so we have 3 sin2

(π
6

)
= cos2

(π
6

)
, giving tan2

(π
6

)
=

1

3
,

and since tan
(π
6

)
> 0, we get tan

(π
6

)
=

1√
3

. From this it follows that

arctan
( 1√

3

)
=
π

6
.

Next we get a power series for arctan(x), valid for |x| < 1. We already have
that for |x| < 1, by the binomial theorem

arctan′(x) =
1

1 + x2
= 1− x2 + x4 − x6 + . . . =

∞∑
n=0

(−1)nx2n.

Put

F (x) = x− x3

3
+
x5

5
− x7

7
+ . . . =

∞∑
n=0

(−1)n
x2n+1

2n+ 1
.

By Chapter 6, Corollary 6.14.2, this power series has radius of convergence R =
1. Hence F is differentiable on (−1, 1) with derivative given by

F ′(x) = 1− x2 + x4 − x6 + . . . =
∞∑
n=0

(−1)nx2n = arctan′(x).

It follows that both F (x) and arctan(x) are primitives for arctan′(x) for |x| < 1.
But then, from Chapter 6, Corollary 6.8.1, we find that F (x)− arctan(x) takes a
constant value on (−1, 1). Since F (0)− arctan(0) = 0, the value of this constant
is zero. Hence for |x| < 1,

arctan(x) = x− x3

3
+
x5

5
− x7

7
+ . . . =

∞∑
n=0

(−1)n
x2n+1

2n+ 1
.
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We can now use the value arctan
( 1√

3

)
=
π

6
and the power series with x =

1√
3

to obtain a numerical series for π/6. This gives

π

6
=

1√
3

[
1− 1

3 · 3
+

1

5 · 32
− 1

7 · 33
+ . . .

]
=

1√
3

∞∑
n=0

(−1)n

(2n+ 1) · 3n
.

Hence, noting that 6/
√
3 = (2× 3)/

√
3 = 2

√
3, we obtain

π = 2
√
3

∞∑
n=0

(−1)n

(2n+ 1) · 3n
.

The terms of this series alternate in sign and their absolute values are strictly
decreasing. Hence successive partial sums provide over-estimates and under-
estimates for the value of π. If we take the partial sum as far as n = 7, the
value is 3.14157 (to 5 decimal places), while going to n = 8 gives 3.14160 (to 5
decimal places), so we can conclude that π = 3.1416 correct to 4 decimal places.

Comment. We evaluated π using a series for arctan(1/
√
3). We can get π to

almost any accuracy needed for practical purposes from this series. However,
getting millions of decimal digits of π has become a challenge for computer sci-
entists and mathematicians in recent years, and this series is not adequate for this
purpose. On the day I wrote this (International pi day, 14th march 2024), it seems
that the first 105 trillion (1.05 × 1014) digits were known. No doubt that, by the
time you read this, the number will have grown again. In one of the Exercises for
this section we show how one can get a series for π that converges more quickly
than the one we have used. But considerable ingenuity is needed if one wants to
get very large numbers of digits.

A summary of the history of the quest for π up to around 1995 is given in
“The Quest for π” by David H. Bailey, Jonathan M. Borwein, Peter B. Borwein
and Simon Plouffe in The Mathematical Intelligencer, vol. 19, no. 1 (Jan. 1997),
pg. 50–57. This is a very readable paper and is available on the internet (currently
at https://www.davidhbailey.com//dhbpapers/pi-quest.pdf).

EXERCISES 7.4
1. Obtain a power series in x for arcsin(x).
2. Prove that sin(π/6) = 1/2. (Look at how we proved tan(π/6) = 1√

3
.)

3. Use the results of the previous questions to prove that

π = 3
∞∑
n=0

(2n)!

(n!)2(2n+ 1)24n
.
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By taking the first six terms of this series, get an approximate value for π
and show that the error lies between 0 and 0.0001.

4. Prove that
π

4
= 4 arctan

(1
5

)
− arctan

( 1

239

)
.

This known as Machin’s formula.
[Hint: Use the addition formulae for tan(x ± y) from Exercises 7.3. Put
θ = arctan(1

5
) and show that tan(4θ) = 120/119, then put ϕ =

arctan( 1
239

), and compute tan(4θ − ϕ).]
5. It will not have escaped your notice that series like the one for arctan(x)

converge much more rapidly if x is “small” (like 1
5

or 1
239

) rather than
“large” (just less than 1). So the formula from the previous question
(Machin’s formula) gives a faster way to get a lot of decimal places for
π. Get π correct to within 10−10 by this method.

7.5 Hyperbolic functions and their inverses
These functions may be less familiar to the reader than were the exponential,
logarithm and circular functions. Here are the basic definitions.

Definition 7.7. For x ∈ R we define

sinh(x) =
exp(x)− exp(−x)

2
and cosh(x) =

exp(x) + exp(−x)
2

.

The other hyperbolic functions are defined in terms of these as follows.

tanh(x) =
sinh(x)

cosh(x)
, coth(x) =

cosh(x)

sinh(x)
,

sech(x) =
1

cosh(x)
, cosech(x) =

1

sinh(x)
.

A few comments are in order. First on pronunciation, sinh is pronounced as
“shine” or “sinch” (both are common). cosh is easy - just say “cosh”. tanh is more
difficult, either use “than” (the “th” is a soft version pronounced as in “thanks”,
rather than the harder “th” of “than”) or use “tanch”. Don’t worry too much about
the others as they are rarely used: “coth”, “shec” and “coshec” will get you by.

Second, note that sinh is an odd function, in fact the odd part of exp, while
cosh is an even function, the even part of exp, so that exp(x) = cosh(x)+sinh(x).
Since exp(x) > 0 for all x ∈ R, it follows that cosh(x) > 0 for all x ∈ R. We will
show shortly that cosh(x) ≥ 1 for all x ∈ R. On the other hand, sinh(x) = 0 if
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and only if exp(x) = exp(−x). But this can only happen if exp(2x) = 1, and the
only solution is therefore x = 0. Thus the definitions of coth(x) and cosech(x)
need to be qualified by the statement that these functions are undefined for x = 0.

Third, why are these functions named so similarly to the circular functions
sin, cos, etc? There is a very good reason that requires some knowledge of com-
plex numbers. We will discuss this in the final section of this chapter. If you don’t
know anything about complex numbers you can skip it, but I hope your curiosity
might be raised.

Fourth, why are they called hyperbolic functions? That is easier to explain. If
we write x = cosh(t) and y = sinh(t) and then eliminate the parameter t (see
below), we get x2 − y2 = 1. The resulting graph is an hyperbola. Compare this
with the circular functions: taking x = cos(θ) and y = sin(θ), elimination of the
parameter θ gives x2 + y2 = 1, corresponding to a circle.

Identities and derivatives.
Since these functions are defined in terms of the exponential function, they are
continuous and differentiable on their domains. Some easy arithmetic gives
cosh2(x) − sinh2(x) = 1 for all x ∈ R. There are many other identities that
are similar to those for the circular functions, and a few of these are covered in the
exercises for this section.

It is also easily seen that sinh′(x) = cosh(x) and cosh′(x) = sinh(x), while

tanh′(x) =
cosh2(x)− sinh2(x)

cosh2(x)
. This can be written in various forms:

tanh′(x) = 1− tanh2(x) =
1

cosh2(x)
= sech2(x).

Power series.
From the power series for exp(x) we get

sinh(x) =
exp(x)− exp(−x)

2

=
1

2

[(
1 + x+

x2

2!
+
x3

3!
+ . . .

)
−

(
1− x+

x2

2!
− x3

3!
+ . . .

)]
= x+

x3

3!
+
x5

5!
+ . . .

=
∞∑
n=0

x2n+1

(2n+ 1)!
.



7.5. HYPERBOLIC FUNCTIONS AND THEIR INVERSES 207

Similarly,

cosh(x) =
exp(x) + exp(−x)

2

=
1

2

[(
1 + x+

x2

2!
+
x3

3!
+ . . .

)
+
(
1− x+

x2

2!
− x3

3!
+ . . .

)]
= 1 +

x2

2!
+
x4

4!
+ . . .

=
∞∑
n=0

x2n

(2n)!
.

These series are valid for all x ∈ R. The series look rather like those for sin and
cos, but they lack the alternating signs on the individual terms. From the series for
cosh(x) it is obvious that cosh(x) > 1 for x ̸= 0, while cosh(0) = 1. The graphs
of sinh(x) and cosh(x) are sketched in Figure 7.10, and that of tanh is sketched
in Figure 7.11.
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−2 −1 1 2

sinh(x)

cosh(x)

Figure 7.10: sinh(x) and cosh(x).

The graph of cosh(x) looks a bit like a parabola. However it is much steeper
at the extremities. Indeed the derivative or cosh(x) is sinh(x) which behaves like
exp(x)/2 for large positive x, and this is much larger than the derivative of x2, a
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Figure 7.11: tanh(x).

measly 2x. The shape of the cosh graph is called a catenary. It is the shape taken
up by a heavy chain or cable, secured at both ends, and hanging freely under the
influence of gravity.

Inverse hyperbolic functions.
First a comment on notation: we will denote the inverse hyperbolic functions by
using the prefix “arg”, so argsinh is the inverse of the sinh function. There are
alternative notations, the most common of which is to append a −1 superscript as

in sinh−1. Unfortunately it is easy to confuse sinh−1(x) with
1

sinh(x)
, especially

as sinh2(x) is taken to mean
(
sinh(x)

)2.
The functions sinh and tanh are injective (one-to-one) and both are strictly

increasing. So they have strictly increasing inverses that are continuous on their
domains. The image set of sinh is R, so this is the domain of argsinh, while the
image set of tanh is (−1, 1) so this is the domain of argtanh.

The function cosh is many-one (because it is an even function), so we must
restrict its domain to get an injective function. We do this by taking the restricted
domain as [0,∞). The restricted function is strictly increasing on this domain, so
the inverse will also be strictly increasing, as well as continuous. The image set is
[1,∞) and this is the domain of argcosh.

Derivatives of the inverse hyperbolic functions.
Using the general result about differentiability of inverse functions (Chapter 6,

Theorem 6.5) we find that, apart from a single exceptional point for argcosh(x),
all three of these are differentiable on their domains. The exceptional point for
argcosh(x) is the left-hand end point of its domain, namely x = 1, where the
one-sided derivative does not exist (because cosh′(0) = sinh(0) = 0).

The function argsinh(x) is differentiable on R with derivative given by

argsinh′(x) =
1

cosh(y)
, where sinh(y) = x, so that cosh(y) =

√
1 + sinh2(y) =



7.5. HYPERBOLIC FUNCTIONS AND THEIR INVERSES 209

√
1 + x2, and note that we take the positive square root since cosh(y) > 0 for

y ∈ R. Hence

argsinh′(x) =
1√

1 + x2
for x ∈ R.

The function argcosh(x) is differentiable on (1,∞) with derivative given by

argcosh′(x) =
1

sinh(y)
, where cosh(y) = x, so that sinh(y) =

√
cosh2(y)− 1 =

√
x2 − 1, and note that we take the positive square root since sinh(y) > 0 for

y > 0. Hence

argcosh′(x) =
1√

x2 − 1
for x ∈ (1,∞).

The function argtanh(x) is differentiable on (−1, 1) with derivative given by

argtanh′(x) =
1

1− tanh2(y)
, where tanh(y) = x. Hence

argtanh′(x) =
1

1− x2
for x ∈ (−1, 1).

The graphs of argsinh(x) and argcosh(x) are sketched in Figure 7.12, and that
of argtanh is sketched in Figure 7.13.
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Figure 7.12: argsinh(x) and argcosh(x).

Because the hyperbolic functions are defined in terms of the exponential func-
tion, it is reasonable to ask if the inverse hyperbolic functions can be expressed in
terms of the logarithm function (i.e. the inverse of the exponential function). This
can be done quite easily.

Logarithmic formulae for the inverse hyperbolic functions.
Suppose that y = argsinh(x), so that x = sinh(y) = (exp(y)− exp(−y))/2.

This gives (exp(y))2 − 2x exp(y) − 1 = 0. Solving this quadratic equation for
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Figure 7.13: argtanh(x).

exp(y) gives exp(y) = x +
√
x2 + 1, where the positive square root must be

taken since exp(y) > 0 (∀y ∈ R). Inverting the exponential function, gives
y = loge

(
x+

√
x2 + 1

)
. Hence

argsinh(x) = loge
(
x+

√
x2 + 1

)
for x ∈ R.

Similarly if y = argcosh(x) (so that x ≥ 1 and y ≥ 0) then x = cosh(y) =
(exp(y) + exp(−y))/2. This gives (exp(y))2 − 2x exp(y) + 1 = 0. Solving this
quadratic equation for exp(y) gives exp(y) = x +

√
x2 − 1, where the positive

square root must be taken since exp(y) ≥ 1 (∀y ∈ [0,∞)). [See one of the
exercises below for a precise justification for rejecting the negative root.] Inverting
the exponential function, gives y = loge

(
x+

√
x2 − 1

)
. Hence

argcosh(x) = loge
(
x+

√
x2 − 1

)
for x ∈ [1,∞).

Finally if y = argtanh(x) (so that x ∈ (−1, 1)) then x = tanh(y) =
(exp(y) − exp(−y))/(exp(y) + exp(−y)). This gives x(exp(2y) + 1) =
exp(2y) − 1, which leads to exp(2y) = (1 + x))/(1 − x) and hence to

y =
1

2
loge

(1 + x

1− x

)
. Thus

argtanh(x) =
1

2
loge

(1 + x

1− x

)
for x ∈ (−1, 1).
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EXERCISES 7.5

1. Prove the following identities.

cosh2(x)− sinh2(x) = 1 (∀x ∈ R).a)

sinh(a+ b) = sinh(a) cosh(b) + cosh(a) sinh(b) (∀a, b ∈ R).b)

cosh(a+ b) = cosh(a) cosh(b) + sinh(a) sinh(b) (∀a, b ∈ R).c)

2. Prove that if x > 1 then x−
√
x2 − 1 < 1.

3. Obtain power series in x, valid for |x| < 1, for (a) argsinh(x) and (b)
argtanh(x). Why is this not possible for argcosh(x)?

7.6 Familiar functions and Complex Numbers

If you know nothing about complex numbers you should probably skip this sec-
tion. However if you have some knowledge of how complex numbers work, then
this is for you. It shines a light on why the exponential, circular and hyperbolic
functions are so closely related.

Any complex number may be written in the form x + iy, where x, y are Real
Numbers and i represents a square root of −1, so that i2 = −1. The Real Number
x is called the real part of z, and the Real Number y (not iy) is called the imaginary
part of z. If y = 0 then we say that z = x + i0 = x is real. If x = 0, then we say
that z = 0 + iy = iy is imaginary. [The term “imaginary” is used for historical
reasons - there is nothing more imaginary about such numbers than there is about
Real Numbers.]

The modulus of z = x + iy (for x, y ∈ R) is the non-negative Real Num-
ber |z| =

√
x2 + y2. Many results about power series apply when we allow the

terms to be complex numbers. In particular, each power series has a radius of
convergence R (which may be infinite). If R > 0 then for |z| < R the series will
converge absolutely and the resulting sum function f(z) will be continuous and
differentiable within the resulting circle of convergence.

The exponential function exp(z) =
∑∞

n=0
zn

n!
has radius of convergence R =

∞. The addition formula continues to apply, so that exp(z)·exp(w) = exp(z+w),
and we can define ez = exp(z) for complex z. If we replace z by iz in the series
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and note that i2 = −1, i3 = −i, i4 = 1, etc., we get

exp(iz) =
∞∑
n=0

(iz)n

n!

= 1 + iz + i2
z2

2!
+ i3

z3

3!
+ i4

z4

4!
+ i5

z5

5!
+ i6

z6

6!
+ i7

z7

7!
+ . . .

= 1 + iz − z2

2!
− i

z3

3!
+
z4

4!
+ i

z5

5!
− z6

6!
− i

z7

7!
+ . . .

=
[
1− z2

2!
+
z4

4!
− z6

6!
+ . . .

]
+ i

[
z − z3

3!
+
z5

5!
− z7

7!
+ . . .

]
= cos(z) + i sin(z).

Replacing z by −z in this gives

exp(−iz) = cos(z)− i sin(z).

Hence adding the expressions for exp(iz) and exp(−iz) gives

cos(z) =
exp(iz) + exp(−iz)

2
= cosh(iz),

while subtracting gives

sin(z) =
exp(iz)− exp(−iz)

2i
= −i sinh(iz).

So cos(z) is the even part of exp(iz) and i sin(z) is the odd part of exp(iz). If
we replace z by iz in these identities we obtain cosh(z) = cos(iz) and sinh(z) =
−i sin iz. So you can see that in the field C of complex numbers, there is a very
close connection between the hyperbolic and circular functions.

If z is a real number (i.e z = x+ i0 where x ∈ R) then we have

exp(ix) = cos(x) + i sin(x).

But in these circumstances both cos(x) and sin(x) are Real Numbers, so that
cos(x) is the real part of exp(ix), and sin(x) is the imaginary part of exp(ix).

The exponential function exp(z) is periodic with period 2πi. This is because
exp(2πi) = cos(2π) + i sin(2π) = 1, and consequently

exp(z + 2πi) = exp(z) · exp(2πi) = exp(z) ∀z ∈ C.

A complication arising from this is that the domain of exp needs to be restricted
in order to define an inverse function (a complex logarithm), and this is usually
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done by choosing the domain to be {z = x + iy : −π < y ≤ π}. We will not
investigate this more fully here. However, we have said sufficient to indicate that
all the familiar functions in this Chapter are intimately related to one principal
function, namely the exponential function.

To conclude this section we mention that exp(iπ) = cos(π) + i sin(π) = −1.
This can be written in the following form, known as Euler’s identity

eiπ + 1 = 0.

This beautiful formula connects the additive identity (0), the multiplicative iden-
tity (1), the two most famous mathematical constants (π and e), and a square root
of −1 (i).
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Chapter 8

Further chapter to be added

The Riemann Integral
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Chapter 9

Answers to the Exercises

Exercises 2.2

1. Write the statement as

∃p, q ∈ N s.t. p2 = 2q2.

The negation is
∀p, q ∈ N, p2 ̸= 2q2.

2. Write P as

∀n ∈ N,∃p > n s.t. p and p+ 2 are both prime numbers.

Then ¬P can be expressed as

∃n ∈ N s.t. ∀p > n, p and p+ 2 are not both prime numbers.

Of course the phrase that “p and p + 2 are not both prime numbers” can
be expressed in alternative forms such as “at most one of p and p + 2 is
prime” or “at least one of p and p+ 2 is composite”.

3. Write Q as
∃D ∈ N s.t. ∀n ∈ N, ∃p, q both prime numbers greater than n s.t.
|p− q| ≤ D.
Then ¬Q can be expressed as

∀D ∈ N,∃n ∈ N s.t. ∀p, q both prime numbers greater than n, |p−q| > D.

Alternatively,
∀D ∈ N,∃n ∈ N s.t. ∀p, q both greater than n, if |p − q| ≤ D then p and
q cannot both be prime numbers.

217
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Exercises 2.3

1. (−a)(−b)−ab can be written as (−a)(−b)−ab+(−a)b− (−a)b because
the associative law (A3) applies (so we don’t have to specify how terms are
bracketed) and because the last two terms cancel (A7), and 0 is an additive
identity (A5). The expression can be re-ordered using the commutative
law (A2) to write it as (−a)(−b) + (−a)b− ab− (−a)b.
We have (−a)(−b) + (−a)b = (−a)((−b) + b) by the distributive law
(A4), and since (−b) + b = 0 (by A7), this comes to (−a)0.
Now consider −ab − (−a)b. Since [−ab − (−a)b] + [ab + (−a)b] =
[−ab + ab] + [(−a)b − (−a)b] = 0 + 0 = 0 (using A2, A3, A5 and A7),
we have −ab − (−a)b = −[ab + (−a)b] = −(a + (−a))b = −0b = −b0
(using A2, A4 and A7).
So (−a)(−b) − ab = (−a)0 − b0. The terms on the right are each equal
to 0. To see this consider x0 = x(0 + 0) = x0 + x0 (using A4 and A5),
where x is any element of R. By adding −x0 we get 0 = x0 − x0 =
x0 + x0 − x0 = x0 (using A3, A5 and A7), so x0 = 0 for any x ∈ R.
It follows that (−a)(−b) − ab = 0 + 0 = 0 (by A5). But then by A7,
(−a)(−b) = ab. [It’s a good job we don’t teach it like this in schools!]

2. On division by 3, a positive integer n has a remainder of 0, 1 or 2, so n has
one of the three forms n = 3r, n = 3r + 1, or n = 3r + 2, where r is a
positive Integer. But then n2 has the corresponding form 9r2, 9r2+6r+1,
or 9r2 + 12r + 4, and the latter two possibilities are not divisible by 3
(they both leave remainder 1). So if n2 is divisible by 3, n itself must be
divisible by 3. Conversely, if n is divisible by 3 then n has the form 3r and
so n2 = 9r2 = 3(3r2), so n2 is divisible by 3.

3. Suppose that
√
3 is a Rational Number. Then

√
3 = p/q for some positive

Integers p and q. By cancelling, we can assume that p and q have no
common factors, in particular they are not both divisible by 3. By squaring
we find that 3 = p2/q2, so p2 = 3q2 and consequently p2 is divisible by 3.
So p itself is divisible by 3, meaning that p = 3r for some Integer r. But
then p2 = 9r2 and combining this with p2 = 3q2 we get 3q2 = 9r2 and so
q2 = 3r2. Thus q2 is divisible by 3, and so q itself is divisible by 3. But
this is a contradiction since p and q have no common factors. Hence

√
3

cannot be a Rational Number.

4. The quick answer is that n = 2 provides a counterexample since n2 = 4 is
divisible by 4, even though n itself is not divisible by 4. A more detailed
explanation is that if n has a remainder 2 on division by 4 then n has the
form n = 4r + 2 for some Integer r, so n2 = 16r2 + 16r + 4, which is
divisible by 4.
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5. If 1
x

is a Rational Number then there are Integers p ̸= 0 and q ̸= 0 such that
1
x
= p

q
. But then x = q

p
must be a Rational Number. So if x is irrational, 1

x

must also be irrational.
If z = a + bx with b ̸= 0, then x = (z − a)/b. Consequently if a, b, z
are all Rational Numbers, then so is x. Hence if x is irrational but a, b are
Rational Numbers, then z must be irrational.

6. 3/7 = 0.428571.
7. If x = 27.5327 then 100x = 2753.27. Write 100x above x, line up the

decimal points and subtract:

100x = 2753.272727 . . .

x = 27.532727 . . .

99x = 2725.74

So x = 272574/9900 and we can take p = 272574, q = 9900, or cancel
down to get x = 15143/550 and take p = 15143, q = 550.

8. The length of the recurring section cannot be any longer than 17 because
there are only 17 possible remainders when dividing by 17. By calculator
we find that 1/17 = 0.0588235294117647058823529411764705 · · · . By
inspection, the recurring section is 0588235294117647 of length 16.

9. The set S contains all numbers of the form n
n+1

for n = 1, 2, 3, . . .. All
these numbers are less than 1, so S is bounded above by 1. It seems likely
that this is the least upper bound since n

n+1
will get arbitrarily close to 1

as n increases. So we prove that 1 is the least upper bound by taking any
ϵ > 0 and showing that there is an element n

n+1
of S for which n

n+1
> 1− ϵ

(so that 1 − ϵ is not an upper bound). This inequality is equivalent to
1 − n

n+1
< ϵ, that is 1

n+1
< ϵ, and this will certainly be true if n + 1 > 1

ϵ
.

Indeed, if n > 1
ϵ

then n + 1 > 1
ϵ
, and the corresponding element of S,

namely n
n+1

, will exceed 1− ϵ.
10. The set T only contains negative numbers, so it is certainly bounded above

by 0. It also contains a maximum element, namely −1
2
, so this is the least

upper bound of T .
11. By the Archimedean Axiom, there is some q ∈ N such that q > 1

b−a
. But

then qb− qa > 1 and so the interval between qa and qb has length greater
than 1 and must therefore contain some integer p. We have qa < p < qb,
so that r = p

q
is a Rational Number satisfying a < r < b.

12. Take a Rational Number r satisfying a < r < b. By the previous result
there is also a Rational Number s satisfying a < s < r and another Ra-
tional Number t satisfying r < t < b. By the Archimedean axiom there
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is some n ∈ N such that n > 1
t−s

. But then nt − ns > 1, so the inter-
val between ns and nt contains the (irrational) number ns + 1√

2
. Since

ns < ns+ 1√
2
< nt we have a < s < z < t < b, where z = s+ 1

n
√
2

is an
irrational number.

Exercises 2.4

1. For n = 1 the sum is
∑1

i=1 i
2 = 12 = 1, while n(n+ 1)(2n+ 1)/6 = 1×

2× 3/6 = 1. So the formula is correct for n = 1. Now assume it is correct
when n is some positive integer k, i.e.

∑k
i=1 i

2 = k(k+1)(2k+1)/6 . We
want to prove it is correct for the next value n = k + 1. We have

k+1∑
i=1

i2 =
k∑

i=1

i2 + (k + 1)2

= k(k + 1)(2k + 1)/6 + (k + 1)2 (by the inductive assumption)
= (k + 1)(k(2k + 1) + 6(k + 1))/6

= (k + 1)(2k2 + 7k + 6)/6

= (k + 1)(k + 2)(2k + 3)/6

= n(n+ 1)(2n+ 1)/6 when n = k + 1.

Hence, by induction, the formula holds for every positive integer n.
2. There are many ways to prove the result, one of which is to use induction.

Using a calculator we find that 25! > 1.5 × 1025 so n! > 10n for n =
25. Assuming that k! > 10k for some positive Integer k ≥ 25, we find
(k + 1)! = (k + 1) × k! ≥ 26 × 10k > 10 × 10k = 10k+1. Hence, by
induction, n! > 10n for n ≥ 25.

3. The flaw in the “proof” is in the step from k to k + 1 when k = 1. If
there are just two people in the room, X and Y, and we send out person X,
then we are left with Y having birthday d. But if we bring X back into the
room and send out Y, there is no-one left in the room that we are certain
has birthday d. The moral is to be careful about the inductive step from k
to k + 1, in particular that it doesn’t make unwarranted assumptions about
k.

Exercises 2.5

1. Consider (
√
x−√

y)2 ≥ 0. Expanding the bracket gives x−2
√
xy+y ≥ 0.

Rearranging this gives (x+ y)/2 ≥ √
xy. In fact there is equality between

the geometric and arithmetic means if and only if x = y because if x ̸= y
then (

√
x−√

y)2 > 0
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2. This can happen if pupil P’s score is below the mean in Class X, but above
the mean in Class Y. Moving a pupil will not affect the overall mean score
across all Classes. So Mr. Fixit’s bonus could be paid even though the
overall mean score might have declined.

Exercises 3.2

1. The sequence is certainly bounded below by 0 since the terms are all pos-
itive. For large n we might expect n/(n2 + 1) to be close to 0, so we try
to prove that 0 is the greatest lower bound. Take any ϵ > 0. We will have
n/(n2 + 1) < 0 + ϵ if n/n2 < ϵ, i.e. if 1/n < ϵ. But this will be true if
n is chosen greater than 1/ϵ. So if n > 1/ϵ, then the corresponding term
n/(n2+1) of the sequence is less than 0+ϵ. Consequently 0 is the greatest
lower bound of the sequence.

2. If A ∈ R we can prove that A is not an upper bound of the sequence
simply by choosing an even positive Integer n that exceeds |A| because
then (−1)nn = n > |A| ≥ A. Similarly we can prove that A is not a lower
bound of the sequence by choosing an odd positive Integer n that exceeds
|A| because then (−1)nn = −n < −|A| ≤ A.

Exercises 3.3

1. Choose ϵ > 0. Put N = |a|+1
ϵ

. Take any n > N and consider | a
n
− 0| =

|a|
n
< |a|+1

n
< |a|+1

N
= ϵ. Hence 1

n
→ 0 as n → ∞. [The reason for

using |a| rather than just a is that a could be negative. The reason for the
additional +1 is that a could be 0 and without the +1 we’d get N = 0, a
very undesirable denominator!]

2. Choose ϵ > 0. Put N = 2/ϵ. Take any n > N and consider∣∣∣ n2

n2 + n+ 1
−1

∣∣∣ = ∣∣∣ −n− 1

n2 + n+ 1

∣∣∣ = n+ 1

n2 + n+ 1
<
n+ n

n2
=

2

n
<

2

N
= ϵ.

Hence n2

n2+n+1
→ 1 as n→ ∞. [The choice of N is really made for you at

the end of the previous line.]

3. Dividing top and bottom of xn = 2n+7
7n−3

gives xn =
2+ 7

n

7− 3
n

. For large n we

expect 7
n

and 3
n

to be close to 0, so it looks likely that the limit is 2/7. To
prove this, choose any ϵ > 0. Put N = 2/ϵ. Take any n > N and consider∣∣∣2n+ 7

7n− 3
− 2

7

∣∣∣ = ∣∣∣ 49 + 6

7(7n− 3)

∣∣∣ = 55

7(7n− 3)
<

8

7n− 3
≤ 8

7n− 3n
=

2

n
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and 2
n
< 2

N
= ϵ. Hence 2n+7

7n−3
→ 2

7
as n → ∞. [There are many possible

choices for N . For example, we might argue that 7n− 3 is close to 7n if n
is large - in fact 7n − 3 > 6n if n > 3. So we might assume that N ≥ 3.
Then we have 55

7(7n−3)
< 55

42n
< 55

42N
≤ ϵ if we put N = max(3, 55

42ϵ
). Just

do whatever is easiest!]

4. Informally, for large n the terms of the sequence are alternately close to 1
and −1. So, whatever the supposed limit, we can’t always be close to it for
large n. We can make this clear by choosing a measure of closeness (i.e.
ϵ) that is well below 2. Here is a formal argument.
Suppose that (−1)n n

n+1
→ l as n→ ∞. Take ϵ = 0.1. Then ∃N s.t. ∀n >

N,
∣∣∣(−1)n n

n+1
− l

∣∣∣ < 0.1. So take n > max(N, 10) even (so that n+ 1 is
odd) and we have both∣∣∣ n

n+ 1
− l

∣∣∣ < 0.1 and
∣∣∣− n+ 1

n+ 2
− l

∣∣∣ < 0.1.

Hence∣∣∣ n

n+ 1
−

(
− n+ 1

n+ 2

)∣∣∣ = ∣∣∣( n

n+ 1
− l

)
+
(n+ 1

n+ 2
+ l

)∣∣∣
≤

∣∣∣( n

n+ 1
− l

∣∣∣+ ∣∣∣n+ 1

n+ 2
+ l

∣∣∣ < 0.1 + 0.1 = 0.2,

by the triangle inequality. But the left hand side is at least 10
11

+ 11
12

>
1. So we have a contradiction: 1 < 0.2. We deduce that the sequence(
(−1)n n

n+1

)
does not converge.

5. If l > A, put ϵ = l − A so that ϵ > 0. Since xn → l as n → ∞,
∃N s.t. ∀n > N, |xn − l| < ϵ. Take n∗ = ⌊N⌋ + 1 so that n∗ > N and
consequently −ϵ < xn∗ − l < ϵ, which gives xn∗ > l − ϵ = A. But this
contradicts the assumption that xn < A for every n ∈ N. We deduce that
l ≤ A.
We cannot generally assert l < A as shown by the sequence

(
n

n+1

)
. Here

we have n
n+1

< A = 1 for every n ∈ N, and n
n+1

→ l = 1 as n → ∞, so
l = A in this case.

Exercises 3.4

1. The sequence
(
(−1)n

)
is certainly bounded since |(−1)n| = 1 for all n ∈

N (so the sequence is bounded above by 1 and below by −1). However,
the sequence is not convergent (see Example 3.4).
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2. Since | sin(n)| ≤ 1 for all n ∈ N, we have

0 ≤ | sin(n)|
n

≤ 1

n
.

So by the sandwich rule, | sin(n)|
n

→ 0 as n → ∞. Consequently sin(n)
n

→
0 as n→ ∞ (see the comments after Theorem 3.6).

3. Since
n!

nn
=

1

n
· 2
n
· 3
n
· · · n

n
we have 0 <

n!

nn
≤ 1

n
, and so by the sandwich

rule
n!

nn
→ 0 as n→ ∞.

Exercises 3.5

1. Divide the numerator and denominator by the dominant term n2 to get

xn =
2n2 + (−1)nn+ 7

3n2 − 7n+ 1
=

2 + (−1)n

n
+ 7

n2

3− 7
n
+ 1

n2

.

Since 1
n
→ 0 as n→ ∞, by the combination rules we have 1

n2 = 1
n
× 1

n
→

0 as n → ∞, and consequently 7
n2 → 0 as n → ∞. Since (−1)n forms

a bounded sequence, (−1)n

n
→ 0 as n → ∞. Then, again applying the

combination rules, 2 + (−1)n

n
+ 7

n2 → 2 as n → ∞ and 3 − 7
n
+ 1

n2 →
3 as n→ ∞, and finally xn → 2

3
as n→ ∞.

[Your instructor may or may not want you to specify every individual step
in such a solution. You need to ask them what they want. My personal
view is that once you’ve seen this sort of use of the combination rules, you

could simply say that “by the combination rules xn =
2 + (−1)n

n
+ 7

n2

3− 7
n
+ 1

n2

→

2 + 0 + 0

3 + 0 + 0
=

2

3
as n→ ∞.”]

2. Here the dominant term is n3 so dividing numerator and denominator by
this, and then using the combination rules, we get

xn =
n2 + 5n− 3

2n3 + 5n2 − n+ 3

=
1
n
+ 5

n2 − 3
n3

2 + 5
n
− 1

n2 +
3
n3

→ 0 + 0 + 0

2 + 0 + 0 + 0
= 0 as n→ ∞.
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Exercises 3.6

1. We have

yn
yn+1

=
n!an

nn
· (n+ 1)n+1

(n+ 1)!an+1

=
n!(n+ 1)n+1

ann(n+ 1)n!
, since (n+ 1)! = (n+ 1)n!

=
(n+ 1)n

ann
=

1

a
·
(
1 +

1

n

)n

But
(
1 + 1

n

)n

is strictly increasing, so
(
1 + 1

n

)n

≥
(
1 + 1

1

)1

= 2.

Consequently, yn
yn+1

≥ 2
a
> 1. Hence yn+1 < yn (∀n ∈ N), i.e. (yn) is a

strictly decreasing sequence. It is clearly bounded below (by 0) so it must
converge. Suppose that the limit is l, so that yn → l as n→ ∞. Of course
this implies that yn+1 → l as n → ∞ (it’s the same sequence apart from
the first term). However, we have

yn =
1

a

(
1 +

1

n

)n

yn+1

so l = e
a
l by the combination rules and using the result of Example 3.6.

This gives l(1− e
a
) = 0 but e

a
̸= 1, so we must have l = 0.

2. Applying the hint in the question we get(2
1

)1(3
2

)2(4
3

)3

· · ·
(n+ 1

n

)n

< en, i.e.

21 · 32 · 43 · · ·nn−1 · (n+ 1)n

11 · 22 · 33 · 44 · · ·nn
< en, i.e.

1

2
· 1
3
· 1
4
· · · 1

n
· (n+ 1)n < en

Hence n!en > (n+ 1)n = nn
(
1 +

1

n

)n

> 2nn, and this gives
n!en

nn
> 2.

[This and the previous exercise are related to Stirling’s Theorem which

states that
n!en

nn
√
n
→

√
2π as n→ ∞. But we don’t yet have enough tools

at our disposal to prove that here. For large n, Stirling’s Theorem provides
a relatively good approximation to n!, namely

√
2πn

(n
e

)n

. ]

Exercises 3.7
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1. The dominant term is 3n, so we divide the numerator and the denominator
by 3n to get

xn =
4n2

3n
+ 1

5n3

3n
+ 2

.

Since n2

3n
and n3

3n
form basic null sequences, it follows from the combination

rules that xn → 4×0+1
5×0+2

= 1
2

as n → ∞. So the sequence (xn) converges
with limit 1

2
.

2. The dominant term is n!, so we divide the numerator and the denominator
by n! to get

yn =
5n2

n!
+ (−2)n

n!
6n

n!
+ 5

.

Since n2

n!
, (−2)n

n!
and 6n

n!
form basic null sequences, it follows from the com-

bination rules that yn → 5×0+0
0+5

= 0 as n → ∞. So the sequence (yn)
converges with limit 0.

Exercises 3.8

1. Suppose first that m < 1. Then x1 < 1. Assuming that xk < 1, we have
xk+1 = 1

2
(1 + xk) <

1
2
(1 + 1) = 1. So, by induction, xn < 1 for all n.

Now consider xn+1−xn = 1
2
(1+xn)−xn = 1

2
(1−xn) > 0 since xn < 1.

So (xn) is strictly increasing if m < 1.
Next suppose that m > 1. Then x1 > 1. Assuming that xk > 1, we have
xk+1 = 1

2
(1 + xk) >

1
2
(1 + 1) = 1. So, by induction, xn > 1 for all n.

Now consider xn+1−xn = 1
2
(1+xn)−xn = 1

2
(1−xn) < 0 since xn > 1.

So (xn) is strictly decreasing if m > 1.
If m = 1 then x1 = 1, and a very easy induction gives xn = 1 for all n.
In each case the sequence (xn) is convergent and the limit l satisfies the
equation l = 1

2
(1 + l), so that l = 1.

2. Since x1 > 0 it should be clear that xn > 0 for all n. Applying the hint,
we have for n ≥ 1

x2n+1 −m =
1

4

(
x2n + 2m+

m2

x2n

)
−m

=
1

4

(
x2n − 2m+

m2

x2n

)
=

1

4

(
xn −

m

xn

)2

≥ 0.
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We also have x21 = m2 = m × m > 1 × m = m, since m > 1. Hence
xn ≥

√
m for all n.

To prove that (xn) is monotonically decreasing, consider

xn+1 − xn =
1

2

(
xn +

m

xn

)
− xn

=
1

2

(m
xn

− xn

)
=

1

2

(m− x2n
xn

)
≤ 0.

Combining results, we see that (xn) is monotonically decreasing and
bounded below by

√
m. Consequently it is a convergent sequence with

some limit l ≥
√
m. The recurrence relation gives l = 1

2
(l + m

l
), which

reduces to l2 = m. Since l > 0, it follows that l =
√
m.

[This recurrence relation provides a method for finding the square root of
any number m > 1, and hence of any positive number. The initial value
x1 = m is best replaced by a closer approximation to

√
m to reduce the

number of iterations required to get a good approximation.]

Exercises 3.9

1. (i) If xn = n2 + (−1)nn, then (xn) is eventually positive since n2 > n for
n > 1. Also

1

xn
=

1/n2

1 + (−1)n/n
→ 0

1 + 0
= 0 as n→ ∞.

Hence, by Theorem 3.14, xn → +∞ as n→ ∞.
(ii) If xn = n+ (−1)nn2 then , arguing as in part (i), |xn| → +∞ as n →
∞. But for n even, xn > 0, while for n > 1 odd, xn < 0. Hence (xn)
oscillates infinitely.
(iii) With xn = 1 + (−1)n we have |xn| ≤ 2, so the sequence is bounded.
If xn → l as n → ∞ then xn − 1 = (−1)n → l − 1 as n → ∞. But as
already shown in Example 3.4 the sequence

(
(−1)n

)
does not converge.

Thus (xn) oscillates finitely.
(iv) Since (

√
n+ 1 +

√
n)(

√
n+ 1−

√
n) = 1, we have

0 <
√
n+ 1−

√
n =

1√
n+ 1 +

√
n
<

1

2
√
n
.
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But 1√
n
→ 0 as n → ∞ (you can check this from the definition of conver-

gence). Hence, by the sandwich rule,
√
n+ 1−

√
n→ 0 as n→ ∞.

(v) Since (
√
n2 + n+ n)(

√
n2 + n− n) = n, we have

√
n2 + n− n =

n√
n2 + n+ n

=
1√

1 + 1
n
+ 1

→ 1√
1 + 0 + 1

=
1

2
as n→ ∞.

If you are suspicious about
√

1 + 1
n
→ 1 as n → ∞, use the inequalities

1 <
√

1 + 1
n
< 1 + 1

n
and the sandwich rule.

(vi) Using the same technique as before we have

xn =
√
n3 + n2 −

√
n3 =

n2

√
n3 + n2 +

√
n3
.

Very loosely speaking, the denominator in the last expression is of order
n3/2, making xn roughly of size n1/2. So it looks likely that (xn) diverges
to +∞. We therefore consider

1

xn
=

√
n3 + n2 +

√
n3

n2
=

√
1
n
+ 1

n2 +
√

1
n

1
→ 0

1
= 0 as n→ ∞.

Since xn > 0 for all n and
(

1
xn

)
is null, it follows from Theorem 3.14 that

xn → +∞ as n→ ∞.
[Comment: Parts (iv), (v) and (iv) of this question are closely related. The
terms of the sequence in part (iv) are approximately equal to 1/(2

√
n) for

large n. The terms in part (v) are
√
n times larger, and so approximately

1/2 for large n. The terms in part (vi) are a factor
√
n larger again, and so

approximately
√
n/2 for large n.]

2. We have 1+xn

xn
= 1

xn
+ 1 → 0 + 1 = 1 as n→ ∞ using Theorem 3.14.

3. We have

sn+1 − sn =
1

2n + 1
+

1

2n + 2
+ . . .+

1

2n+1
(2n terms)

>
1

2n+1
+

1

2n+1
+ . . .+

1

2n+1
(2n terms)

=
2n

2n+1
=

1

2

It follow that (sn) is strictly increasing. The sequence cannot be bounded
above because if A is the least upper bound, then there must be a positive
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integer m such that sm > A− 1
4
, but then sm+1 > A+ 1

4
, a contradiction.

(Indeed, it is easy to show that sn > 1 + n
2

for n ≥ 1.) Hence sn →
+∞ as n→ ∞.

4. We have t1 = 1 and when n = 1, 2 − 1
n
= 1. Hence for n = 1 it is true

that tn ≤ 2− 1
n

. Now assume the inequality holds for a positive integer k,
i.e. tk ≤ 2− 1

k
. Then

tk+1 = tk +
1

(k + 1)2

≤ 2− 1

k
+

1

(k + 1)2
by the inductive hypothesis

≤ 2− 1

k + 1
.

For the last step note 1
k+1

+ 1
(k+1)2

= k+2
(k+1)2

< 1
k

since k(k+2) < (k+1)2.
It follows, by induction, that tn ≤ 2− 1

n
for every positive integer n. Con-

sequently (tn) is bounded above by 2. Clearly (tn) is strictly increasing,
so (tn) converges to its least upper bound, which is at most 2. (In fact the
limit is π2/6, but we can’t prove that here.)

Exercises 3.10

1.
((

1
(2n)!

) 1
2n

)
is a subsequence of

((
1
n!

) 1
n

)
, which is a basic null sequence.

Hence ( 1

(2n)!

) 1
2n → 0 as n→ ∞.

But then by the product rule( 1

(2n)!

) 1
n
=

[( 1

(2n)!

) 1
2n
]2

→ 0 as n→ ∞.

2. Suppose that xnr → l as n → ∞ is a convergent subsequence of (xn).
Then (xnr) is bounded above by some number A. But for each r ∈ N
we have r ≤ nr. Since (xn) is monotonically increasing, this gives xr ≤
xnr ≤ A. Hence the entire sequence is bounded above by A. By Theorem
3.10 this establishes that (xn) is a convergent sequence with some limit
x. But every subsequence of a convergent sequence has the same limit
(Theorem 3.15), so x = l.

3. The sequence
(
(1+ 2

n
)n
)

has a subsequence
(
(1+ 2

2n
)2n

)
=

(
(1+ 1

n
)2n

)
.

We know that (1+ 1
n
)n → e as n→ ∞ so, by the product rule, (1+ 1

n
)2n →
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e2 as n → ∞. It then follows from the previous question that (1 + 2
n
)n →

e2 as n→ ∞.

4. See Example 3.6 and modify what was done there to prove that
(
(1+ 2

n
)n
)

is increasing. There is no need to prove boundedness.

5. We have
(
1 + 1

n−1

)n−1 → e as n→ ∞. Therefore

(
1+

1

n− 1

)n

=
(
1+

1

n− 1

)n−1(
1+

1

n− 1

)
→ e×(1+0) = e as n→ ∞.

Hence (
1− 1

n

)n

=
1(

1 + 1
n−1

)n → 1

e
as n→ ∞.

6. In the light of the preceding questions it seems reasonable to guess that
(1 + x

n
)n → ex as n → ∞, at least for integer values of x. We look at this

in more detail when we consider the function exp(x) in a later chapter.

7. Since (xn) is bounded, lim sup
n→∞

xn and lim inf
n→∞

xn both exist. They have

different values because otherwise (xn) would be convergent (Theorem
3.18). Also, there are subsequences of (xn) that converge to each of these
values (Theorems 3.16 and 3.17).

8. Take xn1 to be the first member of the sequence to exceed 1. Then define
xnr for r > 1 to be the first member of the sequence to exceed xnr−1 + 1.
This is possible since (xn) is unbounded above. Moreover, xnr > r for
each positive integer r. Therefore, given any real number A, there exists
R (namely R = |A|+ 1) such that if r > R then xnr > r > |A|+ 1 > A.
Hence xnr → +∞ as r → ∞.

9. In view of the previous two questions, if (xn) does not converge to l it
must have a subsequence (xnr) that converges to some other limit l′ ̸= l or
diverges to ±∞. But at least one of the subsequences S1, S2, . . . , Sk, say
Si, must contain an infinite number of the terms of the subsequence (xnr)
and so Si cannot converge to l, a contradiction. Hence (xn) must converge
to l.

Exercises 3.11

1. First consider |xm − xn| where (without loss of generality) m ≤ n. By the
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triangle inequality we have

|xm − xn| ≤ |xm − xm+1|+ |xm+1 − xm+2|+ |xm+2 − xm+3|+ . . .

. . .+ |xn−1 − xn|

≤ 1

2m
+

1

2m+1
+

1

2m+2
+ . . .+

1

2n−1

=
1

2m

[
1 +

1

2
+

1

22
+ . . .+

1

2n−m−1

]
=

1

2m

[1− 1
2n−m

1− 1
2

]
by summing the geometric series

<
1

2m−1

Now choose ϵ > 0. Take N to be the the first (i.e. least) integer such that
2N > 1

ϵ
. Then if m,n > N we have |xm − xn| < 1

2N
< ϵ. Hence (xn) is a

Cauchy sequence and therefore convergent.

Exercises 4.1

1. We have 1
i(i+2)

= 1
2

(
1
i
− 1

i+2

)
. Hence

Sn =
1

1 · 3
+

1

2 · 4
+ . . .+

1

n(n+ 2)

=
1

2

[(
1− 1

3

)
+
(1
2
− 1

4

)
+
(1
3
− 1

5

)
+ . . .

+
( 1

n− 2
− 1

n

)
+
( 1

n− 1
− 1

n+ 1

)
+
( 1
n
− 1

n+ 2

)]
=

1

2

[
1 +

1

2
− 1

n+ 1
− 1

n+ 2

]
→ 1

2

[
1 +

1

2

]
=

3

4
as n→ ∞.

Hence the series converges with sum 3/4.
2. The nth partial sum of this series can be expressed as

Sn =
1

2

[
1 +

1

2
+

1

22
+ . . .+

1

2n−1

]
=

1

2

[1− 1
2n

1− 1
2

]
= 1− 1

2n

→ 1 as n→ ∞.

Hence the series converges with sum 1.
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3. The nth partial sum of this series can be expressed as

Sn =
1

2

[
1− 1

2
+

1

22
+ . . .+

(
− 1

2

)n−1]
=

1

2

[1− (
− 1

2

)n
1 + 1

2

]
=

1

3

[
1−

(
− 1

2

)n]
→ 1

3
as n→ ∞.

Hence the series converges with sum 1/3.

Exercises 4.2

1. a) (Thinks:

n!

nn
=
n

n
· (n− 1)

n
· (n− 2)

n
· · · 2

n
· 1
n
<

2

n
· 1
n
=

2

n2
for n > 2;

try non-limit version of the comparison test with the convergent se-
ries

∑∞
n=1

1
n2 .)

If an = n!
nn then for n > 2, an < 2

n2 and so by the comparison test the
series converges.

b) (Thinks: n/(n3+1) behaves like 1/n2 and so the square root behaves
like 1/n, suggesting divergence; try comparison test with the diver-
gent series

∑∞
n=1

1
n

.)

If an =

√(
n

n3+1

)
then an/( 1n) =

√(
n3

n3+1

)
→ 1 as n→ ∞, and so

the series diverges.

c) (Thinks: n√
4n5+1

behaves like 1√
4n3

= 1
2n3/2 , suggesting convergence;

try comparison test with the convergent series
∑∞

n=1
1

n3/2 .)

If an = n√
4n5+1

then an/ 1
n3/2 = n5/2

√
4n5+1

=
√

n5

4n5+1
→ 1

2
as n → ∞,

and so the series converges.

d) (Thinks:
√
n is small compared with n2, so 1√

n2+
√
n

will probably

behave like 1√
n2

= 1/n; try comparison test with the divergent series∑∞
n=1

1
n

.)
If an = 1√

n2+
√
n

then an/( 1n) =
n√

n2+
√
n
= 1√

1+n−3/2
→ 1 as n →

∞, and so the series diverges.
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e) (Thinks: each term roughly 1/3 of its predecessor; try the ratio test.)
If an = n/3n, then an+1/an = n+1

n
· 3n

3n+1 = n+1
n

· 1
3
→ 1

3
as n→ ∞,

and so the series converges.

f) (Thinks: nth power suggests nth root test.)
If an =

(
n

2n+1

)n

then (an)
1
n = n

2n+1
→ 1

2
as n → ∞, and so the

series converges.
2. Put an = (

√
n+ 1−

√
n) and note that (

√
n+ 1−

√
n)(

√
n+ 1+

√
n) =

(n+ 1)− n = 1. Hence

an =
1√

n+ 1 +
√
n
>

1√
4n+

√
n
=

1

3
√
n
.

And because
∞∑
n=1

1√
n

diverges, it follows from the comparison test that

∞∑
n=1

an diverges.

From the previous working we see that an =
1√

n+ 1 +
√
n

and so (an)

is monotonically decreasing and tends to zero. It follows from Leibniz’

alternating series test that
∞∑
n=1

(−1)nan converges.

3. Since an
n

≥ 0 for all n ∈ N, the partial sums of the series
∑∞

n=1
an
n

are
monotonically increasing. We prove that these partial sums are bounded
above and it then follows that the series must be convergent.
There are 9 1-digit numbers (1 to 9), all of these have no zero in their
decimal representation, and the smallest of these numbers is 1.
So

∑9
n=1

an
n
≤ 9

1
.

There are 90 2-digit numbers (10 to 99). To avoid a zero in the decimal
representation, there are 9 choices for each digit, so 92 2-digit numbers
have no zero, and the smallest 2-digit number is 10.
Hence

∑99
n=10

an
n
≤ 92

10
.

There are 900 3-digit numbers (100 to 999). To avoid a zero in the deci-
mal representation, there are 9 choices for each digit, so 93 3-digit numbers
have no zero, and the smallest 3-digit number is 100 = 102.
Hence

∑999
n=100

an
n
≤ 93

102
.

Proceeding in this way, there are 9 × 10m−1 m-digit numbers (10m−1 to
10m−1). To avoid a zero in the decimal representation, there are 9 choices
for each digit, so 9m m-digit numbers have no zero, and the smallest m-
digit number is 10m−1.
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Hence
∑10m−1

n=10m−1
an
n
≤ 9m

10m−1 .

It follows that the partial sums of
∞∑
n=1

an
n

are bounded above by the sum of

the convergent geometric series

9

1
+

92

10
+

93

102
+ . . . = 9

∞∑
n=0

( 9

10

)n

= 9
( 1

1− 9
10

)
= 90.

Hence the series
∞∑
n=1

an
n

converges.

It is perhaps surprising that
∞∑
n=1

an
n

converges even though
∞∑
n=1

1

n
diverges.

The reason is that almost every large n has a zero somewhere in its decimal
representation - think of decimals that are 100 digits long - the chance of
one or more zeros in the decimal expansion is 1− (0.9)100 = 0.99997 to 5
decimal places. This might get you thinking of other ways to thin-out the

harmonic series and get convergence. An obvious thing to try is
∞∑
n=1

1

pn
,

where pn is the nth prime number. In fact this series still diverges, but the
proof is not easy.

Exercises 4.3

1. a) The expression cos(n) does not alternate in sign: cos(1) > 0, cos(2) <
0, cos(3) < 0, and so on. This series is not alternating.

b) The expression cos(nπ/2) does not alternate in sign: cos(π/2) =
0, cos(π) = −1, cos(3π/2) = 0, cos(2π) = 1, and so on. This series
is not alternating.

c) The expression sin((2n + 1)π/2) does alternate in sign: sin(π/2) =
1, sin(3π/2) = −1, sin(5π/2) = 1, and so on. This series is alternat-
ing.

d) The function tan(x) is undefined for x = π/2, 3π/2, 5π/2, . . . so this
series is undefined and certainly not alternating.

2. a) Since
∣∣∣cos(n)
n2

∣∣∣ ≤ 1

n2
, and

∞∑
n=1

1

n2
converges, this series is absolutely

convergent by the comparison test.

b) By the same argument as in part a), this series is also absolutely con-
vergent.
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c) The terms of this series alternate in sign, the absolute value of the
nth term is 1

n
, and 1

n
forms a decreasing null sequence. By Leibniz’

alternating series test the series converges, but since
∑∞

n=1
1
n

(the
harmonic series) is divergent, the convergence of the given series is
not absolute, i.e. the series converges conditionally.

d) This series is ill-defined and questions of convergence do not arise.

3. a) For any x ∈ R,
∣∣∣ (−1)n

n2 + x2

∣∣∣ ≤ 1

n2
. So the series converges absolutely

by the comparison test (with
∞∑
n=1

1

n2
) for every Real Number x.

b) If |x| ≤ 1 then 1+x2n ≤ 2 and so
n

1 + x2n
≥ n

2
→ ∞ as n→ ∞. So

the terms of the series are not null, and the series therefore diverges
if |x| ≤ 1.

If |x| > 1 we can employ the ratio test with an =
n

1 + x2n
. We have

an+1

an
=
n+ 1

n

1 + x2n

1 + x2n+2
=

(
1+

1

n

)( x−2n + 1

x−2n + x2

)
→ 1

x2
as n→ ∞.

But
1

x2
< 1, so the series converges by the limit form of the ratio test

if |x| > 1.

c) If |x| ≥ 1 then |xn!| ≥ 1 and the series diverges because the terms
do not tend to zero. If |x| < 1 then |xn!| ≤ |x|n, and so the se-
ries converges (absolutely) by comparison with the geometric series
∞∑
n=1

|x|n.

d) The ratio test with an = n2x
3n

2n
and x ̸= 0 gives

∣∣∣an+1

an

∣∣∣ = (n+ 1

n

)2 |x|3

2
→ |x|3

2
as n→ ∞.

Hence the series converges (absolutely) if |x| < 3
√
2 and diverges if

|x| > 3
√
2. (The radius of convergence of this series is 3

√
2.) In the

cases |x| = 3
√
2, |an| = n2, so that (an) is not a null sequence and the

series therefore diverges.
4. Taking the absolute value of each term, the resulting series is the geometric

series
∑∞

n=0(
1
2
)n, with common ratio 1

2
, which is convergent. So the series

given in the question is absolutely convergent.
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Taking the series formed from the positive terms we have 1+ 1
8
+ 1

64
+ . . ..

This is a geometric series with common ratio 1
8

which converges to 1
1− 1

8

=
8
7
. But then 1

2
+ 1

16
+ 1

128
+. . . = 1

2
× 8

7
= 4

7
and 1

4
+ 1

32
+ 1

256
+. . . = 1

4
× 8

7
= 2

7
.

So the given series converges to the sum 8
7
− 4

7
− 2

7
= 2

7
.

5. For x ̸= 0, we have
∣∣∣(n+ 2)xn+1

(n+ 1)xn

∣∣∣ = (n+ 2

n+ 1

)
|x| → |x| as n → ∞. So,

by the ratio test, the series converges if |x| < 1 and diverges if |x| > 1.
If |x| = 1, the terms of the series do not form a null sequence, and so the
series diverges if |x| = 1. To determine the sum of the series we calculate
Sn − 2xSn + x2Sn as follows.

Sn = 1 + 2x+ 3x2 + 4x3 + . . .+ nxn−1

−2xSn = − 2x− 4x2 − 6x3 − . . .− 2(n− 1)xn−1 − 2nxn

+x2Sn = + x2 + 2x3 + . . .+ (n− 2)xn−1 + (n− 1)xn + nxn+1

Now add the three lines, combining like powers of x to get

(1− 2x+ x2)Sn = 1 + (n− 3)xn + nxn+1.

If |x| < 1 we deduce that (1 − 2x + x2)Sn → 1 as n → ∞, and so

Sn → 1

1− 2x+ x2
=

1

(1− x)2
as n → ∞. Hence, when convergent, the

sum of the series is
1

(1− x)2
.

6. We dealt with exp(x) in Example 4.12.
For sin(x) put an = (−1)nx2n+1

(2n+1)!
. Then for x ̸= 0,

∣∣∣an+1

an

∣∣∣ = x2

(2n+ 3)(2n+ 2)
→ 0 as n→ ∞.

By D’Alembert’s ratio test, it follows that the series converges for all x,
i.e. the radius of convergence is infinite.
For cos(x) put an = (−1)nx2n

(2n)!
. Then for x ̸= 0,

∣∣∣an+1

an

∣∣∣ = x2

(2n+ 2)(2n+ 1)
→ 0 as n→ ∞.

By D’Alembert’s ratio test, it follows that the series converges for all x,
i.e. the radius of convergence is infinite.
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7. Use the ratio test for x ̸= 0 with an =
n!xn

nn
. We have

∣∣∣an+1

an

∣∣∣ = (n+ 1)!

n!
· nn

(n+ 1)n+1
· |x|

= (n+ 1) ·
( n

n+ 1

)n

· 1

n+ 1
· |x|

=
1

(1 + 1
n
)n

· |x|

But, from example 3.6 of Chapter 3,
(
1 +

1

n

)n

→ e as n → ∞, so∣∣∣an+1

an

∣∣∣ → |x|
e

as n → ∞. Hence the series converges if |x| < e and

diverges if |x| > e, so the radius of convergence is e (the value of e is
approximately 2.718).
If you think carefully about this result, you will see that the series in
the question has the same radius of convergence as the geometric series∑∞

n=1(
x
e
)n. So, speaking very loosely, n!/nn behaves a bit like 1/en for

large n. In fact it can be shown that n!en/(
√
2πn)nn → 1 as n → ∞,

so that (
√
2πn)

(
n
e

)n is a reasonable approximation to n! for large n. This
result is known as Stirling’s Theorem or Stirling’s Approximation.

8. We have (with decimals to 6dp):
1 > 0.875, 1− 1

2
< 0.875, 1− 1

2
+ 1

3
= 0.833333 < 0.875,

1− 1
2
+ 1

3
+ 1

5
= 1.033333 > 0.875, 1− 1

2
+ 1

3
+ 1

5
− 1

4
= 0.783333 < 0.875,

1− 1
2
+ 1

3
+ 1

5
− 1

4
+ 1

7
= 0.926190 > 0.875,

1− 1
2
+ 1

3
+ 1

5
− 1

4
+ 1

7
− 1

6
= 0.759524 < 0.875,

1− 1
2
+ 1

3
+ 1

5
− 1

4
+ 1

7
− 1

6
+ 1

9
= 0.870635 < 0.875,

1− 1
2
+ 1

3
+ 1

5
− 1

4
+ 1

7
− 1

6
+ 1

9
+ 1

11
= 0.961544 > 0.875,

1− 1
2
+ 1

3
+ 1

5
− 1

4
+ 1

7
− 1

6
+ 1

9
+ 1

11
− 1

8
= 0.836544 < 0.875.

So the first ten terms of the rearrangement in the correct order are

1− 1

2
+

1

3
+

1

5
− 1

4
+

1

7
− 1

6
+

1

9
+

1

11
− 1

8
.

Exercises 4.4

1. The xn term in the Cauchy product is

1 · x
n

n!
+
x

1!
· xn−1

(n− 1)!
+ . . .

xi

i!
· xn−i

(n− i)!
+ . . .+

xn

n!
· 1.
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This can be written as

xn

n!

(
1 +

n!

1!(n− 1)!
+ . . .+

n!

i!(n− i)!
. . .+ 1

)
,

or more suggestively as

xn

n!

((n
0

)
+

(
n

1

)
+ . . .+

(
n

i

)
+ . . .+

(
n

n

))
,

where
(
n
i

)
denotes a binomial coefficient. But the sum(

n

0

)
+

(
n

1

)
+ . . .+

(
n

i

)
+ . . .+

(
n

n

)
is just the binomial expansion of (1 + 1)n, and so this sum comes to 2n. It
follows that the Cauchy product

(exp(x))2 =
∞∑
n=0

(xn
n!

· 2n
)
=

∞∑
n=0

(2x)n

n!
= exp(2x).

2. The general term in the Cauchy product is

1 · y
n

n!
+
x

1!
· yn−1

(n− 1)!
+ . . .

xi

i!
· yn−i

(n− i)!
+ . . .+

xn

n!
· 1.

This can be written as

1

n!

(
yn + yn−1x

n!

1!(n− 1)!
+ . . .+ yn−ixi

n!

i!(n− i)!
. . .+ xn

)
,

or more suggestively as

1

n!

(
ynx0

(
n

0

)
+ yn−1x1

(
n

1

)
+ . . .+ yn−ixi

(
n

i

)
+ . . .+ y0xn

(
n

n

))
.

But the sum

ynx0
(
n

0

)
+ yn−1x1

(
n

1

)
+ . . .+ yn−ixi

(
n

i

)
+ . . .+ y0xn

(
n

n

)
is just the binomial expansion of (y + x)n. It follows that the Cauchy
product

exp(x) · exp(y) =
∞∑
n=0

(y + x)n

n!
= exp(x+ y).
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3. Denote the nth term in the Cauchy product by cn. The first few terms are
c1 = 1 · 1 = 1, c2 = −1 · 1√

2
− 1√

2
· 1,

c3 = 1 · 1√
3
+ 1√

2
· 1√

2
+ 1√

3
· 1.

Observe that |c1| = 1, |c2| = 2√
2
=

√
2 > 1, and |c3| = 2 · 1√

3
+ 1

2
> 3

2
> 1.

With these in mind we try to prove that (cn) is not a null sequence. It will
suffice to consider only odd-numbered terms. We have

c2n+1 = 1 · 1√
2n+1

+ 1√
2
· 1√

2n
+ . . .+ 1√

k
· 1√

2n+2−k
+ . . .+ 1√

2n+1
· 1.

We need to estimate the general term 1√
k
· 1√

2n+2−k
in this sum. This is

likely to be smallest for the middle term, i.e. when k = n + 1. So we try
to prove that for k = 1, 2, . . . , 2n+ 1 we have

1√
k
· 1√

2n+ 2− k
≥ 1√

n+ 1
· 1√

n+ 1
=

1

n+ 1
.

It is certainly true that (n+ 1− k)2 ≥ 0, which gives
(n + 1)2 − 2k(n + 1) + k2 ≥ 0, and hence (n + 1)2 ≥ k(2n + 2 − k).
Taking roots and then reciprocals gives what we wanted, namely

1√
k(2n+ 2− k)

≥ 1

n+ 1
.

Consequently each term in the expression for c2n+1 is at least 1
n+1

, and
there are precisely 2n+1 such terms, so c2n+1 ≥ 2n+1

n+1
. It follows that (cn)

is not a null sequence and so
∑∞

n=1 cn is divergent.

Exercises 5.1

1. a) This mapping is not surjective (d is not in the image set), and it is not
a function because 2 has two images, c and e.

b) This mapping is not surjective (c is not in the image set), but it is a
many-one function.

c) This mapping is surjective, but it is a many-one function.

d) This mapping is surjective, and it is an injective function, and so
bijective. The inverse function is ϕ−1 = {(a, 2), (b, 1), (c, 4), (d, 3)}
with domain {a, b, c, d} and co-domain {1, 2, 3, 4}.

e) This is a bijective function with inverse ϕ−1(x) = 3
√
x, domain R,

and co-domain R.

f) This mapping is not surjective (−1 is not in the image set). It is a
many-one function (both −1 and 1 have the same image).
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g) This mapping is not a function (1 has two images, namely −1 and 1).
However, it is surjective.

h) This mapping is surjective, but it is a many-one function (both −1
and 1 have the same image.

i) This mapping is a bijective function. The inverse function is
ϕ−1(x) = −

√
x with domain {x : x ≥ 0} and co-domain {x : x ≤

0}.

2. Put y = x2 − 3x+2. Then x2 − 3x+ (2− y) = 0 and using the quadratic
formula we get

x =
3±

√
9− 4(2− y)

2
=

3±
√
1 + 4y

2
.

From the domain of f we see that we must have x ≥ 3
2
, so we are obliged

to only accept the positive root, giving x = (3 +
√
1 + 4y)/2. This has a

solution for x in the domain of f provided that 1 + 4y ≥ 0, i.e. provided
y ≥ −1

4
. Hence f−1(y) = (3 +

√
1 + 4y)/2, with domain {y : y ≥

−1
4
} and co-domain (= the domain of f ) {x : x ≥ 3

2
}. [Of course y in

this expression is a dummy variable and we can replace it by the more
conventional x if we feel an urge to do so: f−1(x) = (3 +

√
1 + 4x)/2,

etc.]

3. We have (f ◦ g)(x) = 2(x+1) and (g ◦ f)(x) = 2x+1, both with domain
and co-domain R.

4. Suppose that for a given x ≥ 6 we have f(x, y) = f(x, z) = 0. Then
y3−y−x = z3−z−x, so y3−z3 = y−z. But y3−z3 = (y−z)(y2+yz+z2)
and we have (y− z)(y2 + yz+ z2) = y− z. It follows that either y = z or

y2 + yz + z2 = 1. In the latter case we have y =
−z ±

√
z2 − 4(z2 − 1)

2
,

and there is no solution to this if 4 − 3z2 < 0. Therefore to establish the
result, we must show that if x ≥ 6 and z3 − z − x = 0 then 4− 3z2 < 0.
So assume that x ≥ 6.
If z < −1 then z3 < z and so z3 − z < 0, giving z3 − z − x ̸= 0. If
−1 ≤ z ≤ 1 then |z3− z| ≤ |z3|+ |z| ≤ 2, again giving z3− z−x ̸= 0. If
1 < z < 2 then z3−z = z(z2−1) < 2×3 = 6, again giving z3−z−x ̸= 0.
It follows that if x ≥ 6 and if z3 − z − x = 0, we must have z ≥ 2, which
implies that 4− 3z2 ≤ −8 < 0.

Exercises 5.2

1.
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This is an odd function.

x| | | |
−2 −1 1 2

f(x)

−

−

−

−

−2

−1

1

2

a)

This is an even function.

x| | | |
−2 −1 1 2

f(x)

−

−

1

2

b)

This function is neither even nor odd.

x| | | |
−2 −1 1 2

f(x)
−1

c)

This is an odd function (the default domain omits the value x = 0).

x
| | | |
−2 −1 1 2

f(x)

−

−

−1

1

d)
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This is an even function.

x
| | | |
−2 −1 1 2

f(x)

−

−

−1

1

e)

This is an even function.

x
| | | | | | | |
−4 −3 −2 −1 1 2 3 4

f(x)
−
1

1

1/2

1/3
1/4
1/5

This diagram is potentially misleading. There are different scales
used on the horizontal and vertical axes. The red line along the hor-
izontal axis represents all the irrational points x, and it omits all the
rational points. The blue dots up above correspond to rational values
of x. There is a vertical scale at the right-hand side showing dots at
heights corresponding to rational numbers x = p/q (expressed in
lowest terms, with q > 0) for q = 1, 2, 3, 4, 5. There should be fur-
ther lower levels of blue dots corresponding to q = 6, 7, 8, . . . but
it isn’t feasible to show these without cluttering the diagram to the
extent it becomes unreadable.

f)

Exercises 5.3.2



242 CHAPTER 9. ANSWERS TO THE EXERCISES

1. Choose ϵ > 0. Put X =
√

1/ϵ. Take any x > X and consider

|f(x)− 0| = 1

1 + x2
<

1

X2
= ϵ.

2. Choose A. Put X =
√

|A| so that X ≥ 0. Take any x > X and consider

f(x) = x2 > X2 = |A| ≥ A.

3. We assume that | sin(x)| ≤ 1 for all x.
Method (a) First Principles. Choose ϵ > 0. Put δ = ϵ. Take any x
satisfying 0 < x < δ and consider∣∣∣x sin(1

x

)
− 0

∣∣∣ = ∣∣∣x sin(1
x

)∣∣∣ ≤ |x| = x < δ = ϵ.

Method (b) One-sided Sandwich Rule. We have −x ≤ x sin
(
1
x

)
≤ x for

x > 0. Both x and −x are (very simple) polynomials and so as x tends to
zero (from above) both tend to their value (namely 0) at x = 0. It follows
that x sin

(
1
x

)
→ 0 as x→ 0+.

4. We can use results about polynomials. For x ̸= a we have
f(x) = (x2 − a2)/(x − a) = x + a = g(x), say. But g(x) = x + a is a
(very simple) polynomial. So f(x) = g(x) → g(a) = 2a as x→ a.

5. (a) Suppose that f(x) → l1 as x → a and f(x) → l2 as x → a, where
l1 ̸= l2. Without loss of generality we can assume that l1 < l2.
Put ϵ = (l2 − l1)/2 then ∃δ1 > 0 s.t. ∀x satisfying 0 < |x − a| <
δ1, |f(x) − l1| < ϵ. Similarly ∃δ2 > 0 s.t. ∀x satisfying 0 < |x −
a| < δ2, |f(x) − l2| < ϵ. Choose x satisfying 0 < |x − a| <
min(δ1, δ2). Then we have

|l2 − l1| = |(l2 − x)− (l1 − x)| ≤ |l2 − x|+ |l1 − x| < 2ϵ = l2 − l1,

which is a contradiction. So we conclude that we must have l1 = l2.

(b) Choose ϵ > 0. Put δ = 1 (or any positive number you like). Then if
0 < |x− a| < δ, we have |f(x)− l| = |l − l| = 0 < ϵ. [A very rare
example where δ does not depend on ϵ.]

(c) Take ϵ = 1. Then ∃δ1 > 0 s.t. ∀x satisfying 0 < |x − a| <
δ1, |f(x)− l| < 1. But if |f(x)− l| < 1 then l−1 < f(x) < l+1, so
the set S = {y : y = f(x) for some x satisfying 0 < |x−a| < δ1}
is a bounded set of Real Numbers, bounded below by l−1 and above
by l + 1.
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(d) (i) If k = 0 then kf(x) is the constant function with value 0, which
converges to 0 = kl. So suppose that k ̸= 0. Choose ϵ > 0. Put
ϵ′ = ϵ/(|k|). Since f(x) → l as x → a, there exists δ > 0 such
that for all x satisfying 0 < |x−a| < δ, |f(x)− l| < ϵ′. In other
words, if x satisfies 0 < |x − a| < δ, then |f(x) − l| < ϵ/(|k|),
giving |kf(x)− kl| < ϵ. Hence kf(x) → kl as x→ a.

(ii) Choose ϵ > 0. Put ϵ′ = ϵ/2. Then ∃δ1, δ2 such that if 0 <
|x− a| < δ1 then |f(x)− l| < ϵ′, while if 0 < |x− a| < δ2 then
|g(x)−m| < ϵ′. Put δ = min(δ1, δ2). Then if 0 < |x− a| < δ,

|f(x) + g(x)− (l +m)| ≤ |f(x)− l|+ |g(x)−m|
≤ ϵ′ + ϵ′ = ϵ

Hence f(x) + g(x) → l +m as x→ a.
(iii) Since g(x) converges as x tends to a it is locally bounded, and

so ∃δ0 and a corresponding value A > 0 such that |g(x)| < A
for all x satisfying 0 < |x− a| < δ0.
Choose ϵ > 0. Put ϵ′ = ϵ/(A + |l|). Then ∃δ1, δ2 such that if
0 < |x− a| < δ1 then |f(x)− l| < ϵ′, while if 0 < |x− a| < δ2
then |g(x) − m| < ϵ′. Put δ = min(δ0, δ1, δ2). Then if 0 <
|x− a| < δ,

|f(x)g(x)− lm| = |f(x)g(x)− lg(x) + lg(x)− lm|
≤ |g(x)||f(x)− l|+ |l||g(x)−m|
< Aϵ′ + |l|ϵ′

= (A+ |l|)ϵ′ = ϵ.

Hence f(x)g(x) → lm as x→ a.
(iv) In view of part (iii) it is only necessary to show that if g(x) →

m as x → a and m ̸= 0, then 1/g(x) → 1/m as x → a. First
we obtain a positive lower bound for |g(x)| in the vicinity of
x = a. Taking ϵ = |m|/2 in the definition, we obtain:

∃δ1 s.t. ∀x satisfying 0 < |x− a| < δ1, |g(x)−m| < |m|/2.

By the triangle inequality |m| − |g(x)| ≤ |g(x) − m|, and so
for 0 < |x − a| < δ1, |m| − |g(x)| < |m|/2. Hence |g(x)| >
|m|/2 if 0 < |x− a| < δ1.
Next choose ϵ > 0. Put ϵ′ = m2ϵ/2. Then ∃δ2 such that if
0 < |x − a| < δ2 then |g(x) − m| < ϵ′. Put δ = min(δ1, δ2).
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Then if 0 < |x− a| < δ,∣∣∣ 1

g(x)
− 1

m

∣∣∣ = ∣∣∣g(x)−m

mg(x)

∣∣∣
=

|g(x)−m|
|m||g(x)|

<
2|g(x)−m|

|m|2

<
2ϵ′

m2
= ϵ.

Hence 1/g(x) → 1/m as x → a and part (iv), the quotient rule,
follows.

6. Choose A. Put δ = 1
|A|+1

. Take any x satisfying 2 − δ < x < 2 so that
−δ < x− 2 < 0. Then consider

1

x− 2
< −1

δ
= −(|A|+ 1) < A.

Hence f(x) = 1
x−2

→ −∞ as x→ 2−.
7. Choose ξ ∈ [a, b). Define the set S = {f(x) : x ∈ (ξ, b)}. Then S

is non-empty since ξ < b, and S is bounded below by f(ξ). Hence S
has a greatest lower bound (infimum), say l = inf S. Then if x ∈ (ξ, b)
we have f(x) ≥ l since l is a lower bound of S. Next choose ϵ > 0.
Since l is the greatest lower bound of S, there exists δ > 0 such that
ξ + δ < b and f(ξ + δ) < l + ϵ. But f(x) is monotonically increasing, so
if x ∈ (ξ, ξ + δ), then f(x) ≤ f(ξ + δ) < l + ϵ. So, for x ∈ (ξ, ξ + δ)
we have l ≤ f(x) < l + ϵ, and consequently |f(x) − l| < ϵ. Hence
f(x) → l as x→ ξ+.
The solution for limx→ξ− f(x) is similar with ξ ∈ (a, b], S = {f(x) : x ∈
(a, ξ)}, and inf replaced by sup.

Exercises 5.4

1. Choose ϵ > 0. Since f is continuous at a, there exists δ > 0 such that
for any x satisfying |x − a| < δ, we have |f(x) − f(a)| < ϵ. But if
xn → a as n → ∞, there exists N such that for all n > N , |xn − a| < δ.
Consequently if n > N , |f(xn)−f(a)| < ϵ. Hence f(xn) → f(a) as n→
∞.

2. The definition of continuity of f at a can be expressed as statement P :

P : ∀ϵ > 0,∃δ > 0 s.t. ∀x satisfying |x− a| < δ, |f(x)− f(a)| < ϵ.
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If f is not continuous at a it must satisfy the negation of this, namely

¬P : ∃ϵ > 0 s.t. ∀δ > 0,∃x satisfying |x− a| < δ s.t. |f(x)− f(a)| ≥ ϵ.

In this negation, ϵ is fixed, but we have free choice for δ. Now suppose
this negation ¬P is true. For each positive integer n take xn satisfying
|xn − a| < 1

n
such that |f(xn) − f(a)| ≥ ϵ. We have xn → a as n → ∞

(since |xn − a| → 0 as n → ∞), but f(xn) ̸→ f(a) as n → ∞ (since
|f(xn) − f(a)| ̸→ 0 as n → ∞). But this contradicts the property of f
given in the question, so ¬P is false and therefore P must be true, i.e f is
continuous at the point a.

3. The function f is a polynomial and therefore continuous on any interval.
We draw up a table of values and apply the Intermediate Value Theorem
to intervals where there is a change of sign of f(x).

x −2 −1 0 1 2 3 4
f(x) 23 −4 3 8 −1 −12 11

It follows that f(x) has zeros in (−2,−1), (−1, 0), (1, 2) and (3, 4). Exam-
ining the interval (−1, 0) we get (to 4 decimal places) f(−1

2
) = −1.9375,

f(−1
4
) = 0.4414, f(−3

8
) = −0.8005, f(− 5

16
) = −0.1887, f(− 9

32
) =

0.1245, f(−19
64
) = −0.0326. So there is a zero of f in the interval

(−19
64
,− 9

32
), which has length 1

64
.

4. For each of the following functions determine where it is continuous and
the image set. Justify your answers. [There is no shame in sketching the
graph to find the answer before proving it is the answer.]

2x2 + 5x− 3,a) x2+1
x2−1

,b)
√
x2 − 1,c) 1√

x2−1
.d)

a) The graph of f(x) = 2x2 + 5x− 3 is sketched below.

x| | | | | x

−3 −2 −1 1 2

f(x)

−

−
−
−
−
−

10

20
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This function is a polynomial and therefore continuous on R. Re-
arranging the formula gives 2x2 + 5x − 3 = 2

(
x2 + 5

2
x − 3

2

)
=

2
(
(x + 5

4
)2 − 49

16

)
. So f(x) has minimum value −49

8
(at x = −5

4
).

Moreover, f(x) → +∞ as x → +∞. So by the Intermediate Value
Theorem, f(x) has image set [−49

8
,∞).

b) The graph of f(x) = x2+1
x2−1

is sketched below.

x
| | | | | |
−3 −2 −1 1 2 3

f(x)

−

−

−

−

−10

−5

5

10

The function f(x) is a rational function and so continuous except at
points where the denominator vanishes, namely x = ±1 in this case.
To determine the image set, put y = x2+1

x2−1
. Then x2(y − 1) = y + 1,

so that x2 = y+1
y−1

= 1 + 2
y−1

. There will be a solution for x provided
that 1 + 2

y−1
≥ 0, i.e. 2

y−1
≥ −1. This last inequality clearly holds if

y > 1, and if y < 1 it is equivalent to 2 ≤ 1− y, i.e y ≤ −1. So the
image set is (−∞,−1] ∪ (1,∞).

c) The graph of f(x) =
√
x2 − 1 is sketched below.

x
| | | | | |
−3 −2 −1 1 2 3

f(x)

−

−

−

1

2

3

The polynomial x2 − 1 is continuous on R and non-negative for
|x| ≥ 1. The function

√
x = x

1
2 is continuous on [0,∞). So by
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the composition rule for continuous functions f(x) =
√
x2 − 1 is

continuous on (−∞,−1] ∪ [1,∞). Since f(1) = 0 is the minimum
value of f(x), and f(x) → +∞ as x → +∞. by the Intermediate
Value Theorem, the image set is [0,∞).

d) The graph of f(x) = 1√
x2−1

is sketched below.

x
| | | | | |
−3 −2 −1 1 2 3

f(x)

−

−

−

1

2

3

From part c), the function
√
x2 − 1 is continuous on (−∞,−1] ∪

[1,∞) and only takes the value 0 at x = ±1. So by the reciprocal
rule f(x) is continuous on (−∞,−1)∪(1,∞). Again by considering
the previous answer, we see that the image set is (0,∞).

5. Put M = max(|ai|, i = 0, 1, . . . , n− 1). Then if |x| ≥ 1,

|an−1x
n−1 + . . .+ a1x+ a0| ≤ nM |x|n−1.

So xn − nM |x|n−1 ≤ f(x) ≤ xn + nM |x|n−1.
Choose A and put X = 1 + |A|+ nM . Then if x > X we have

f(x) ≥ xn − nM |x|n−1

= xn − nMxn−1

= xn−1[x− nM ]

≥ x− nM (note x− nM > 0)

> X − nM = 1 + |A| ≥ A.

So f(x) → +∞ as x→ +∞.
But if x < −X we have

f(x) ≤ xn + nM |x|n−1

= xn + nMxn−1

= xn−1[x+ nM ]

≤ x+ nM (note x+ nM < 0)

< −X + nM = −1− |A| ≤ A.
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So f(x) → −∞ as x→ −∞.
It follows that there exist a and b, with a < b, such that f(a) < 0 and
f(b) > 0. But f is a polynomial and so continuous on [a, b]. Then the
Intermediate Value Theorem asserts that f has a zero in the interval [a, b].

6. Taking x1 = x2 = 1 gives f(1)+f(1) = f(1), so f(1) = 0. Of course this
gives f(20) = 0 and we are told that f(21) = 1. Now suppose that q > 1 is
a positive integer, and consider the sum of q terms: f(2

1
q )+ f(2

1
q )+ . . .+

f(2
1
q ) = f((2

1
q )q), using property (a) repeatedly. The left hand side of this

is qf(2
1
q ) and the right hand side is f(2) = 1. This gives f(2

1
q ) = 1

q
.

Now suppose that p is any positive integer and consider the sum of p terms:
f(2

1
q ) + f(2

1
q ) + . . . + f(2

1
q ) = f((2

1
q )p), again using property (a). The

left hand side is pf(2
1
q ) = p× 1

q
= p

q
and the right hand side is f(2

p
q ). This

gives f(2
p
q ) = p

q
, so we have f(2r) = r for any positive rational number

r.
To deal with negative rational numbers consider the identity f(2r)+f(2−r)
= f(1) = 0. For negative rational r this gives f(2r) = −f(2−r) = r.
To establish continuity at any point x ∈ (0,∞) we consider f(x + h) −
f(x) = f(x + h) + f( 1

x
) = f(1 + h

x
) Since f is continuous at 1, we have

f(1 + h
x
) → f(1) = 0 as h → 0. Hence f(x + h)− f(x) → 0 as h → 0,

and consequently f(x+ h) → f(x) as h→ 0, i.e. f is continuous at x.
[You might begin to suspect that f(x) is actually log2(x), logarithm to base
2.]

Exercises 6.1

1.
The values to 4dp for h = 0.1, 0.01, 0.001 are respectively
−0.2381,−0.2488,−0.2499. For h = −0.1,−0.01,−0.001 the val-
ues are −0.2632,−0.2513,−0.2501. It looks fairly obvious that as
h tends to zero, the limiting value is −1

4
.

a)

Again to 4dp for h = 0.1, 0.01, 0.001 the values are respectively
−0.4609,−0.4207. − 0.4166. For h = −0.1,−0.01,−0.001 the
values are −0.3700,−0.4116,−0.4157. It looks like there is a lim-
iting value around −0.416, which compares with cos(2) = −0.4161
(4dp).

b)
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2. For x ̸= 0, h ̸= 0 and x+ h ̸= 0 we have

f(x+ h)− f(x)

h
=

1

h

[ 1

x+ h
− 1

x

]
=
x− (x+ h)

hx(x+ h)

=
−1

x(x+ h)
→ − 1

x2
as h→ 0.

Hence if x ̸= 0, f is differentiable at x with derivative − 1

x2
. The function

is not differentiable at x = 0 since it is not defined at x = 0.
3. If h ∈ (−1, 0) then f(1 + h) = 1 + h − 0 = 1 + h. If h ∈ (0, 1) then

f(1 + h) = 1 + h− 1 = h, and f(1) = 0.
So for h ∈ (−1, 0) we have [f(1 + h) − f(1)]/h = (1 + h)/h →
−∞ as h → 0−. Consequently f has no left-derivative at x = 1. For
h ∈ (0, 1) we have [f(1 + h) − f(1)]/h = h/h = 1 → 1 as h → 0+.
Consequently f has a right-derivative at x = 1 with value 1.

Exercises 6.2

1. 2x+ 1,a)

4x/(x2 + 1)2,b)

[cos2(x)+ sin2(x)]/ cos2(x) = 1/ cos2(x), x ̸= ±π/2+2nπ, where
n is any integer,

c)

2x cos(x2),d)

− 1
2
√
x
sin(

√
x), x > 0,e)

−2x sin(x2) exp(cos(x2)),f)

− 2
x3 exp(1/x

2), x ̸= 0,g)

(2x2 + 1) exp(x2) cos(x exp(x2)),h)

−(exp(x) + 2x) sin(exp(x) + x2).i)

2. By Corollary 6.5.2, the function g(z) = −z 1
n is differentiable at z ∈

(0,∞) with derivative − 1
n
z

1
n
−1. The function z(x) = −x is differentiable

at each x with derivative −1 and maps the interval (−∞, 0) to (0,∞), so
the composite function g(z(x)) = f(x) is differentiable on (−∞, 0) with
derivative − 1

n
(−x) 1

n
−1 × (−1). We can write the derivative as

1

n
(−x)

1
n
−1 =

1

n
(−x)

1
n × (−x)−1 = − 1

n
(x

1
n )× (−1)(x−1) =

1

n
(x

1
n
−1).



250 CHAPTER 9. ANSWERS TO THE EXERCISES

3. By the product and composite rules, f is differentiable at every x ̸= 0 with
derivative f ′(x) = x2

(−1
x2

)
cos( 1

x
) + 2x sin( 1

x
) = 2x sin( 1

x
) − cos( 1

x
). To

determine differentiability at 0, consider for h ̸= 0

f(0 + h)− f(0)

h
=
h2 sin( 1

h
)

h
= h sin

(1
h

)
.

But | sin(x)| ≤ 1 for any x, so h sin( 1
h
) → 0 as h → 0. Hence f is

differentiable at 0 with derivative 0.

Exercises 6.3

1. The function f is differentiable on R and f ′(x) = 3x2 − 6x + 1, so f has

stationary points at x =
6±

√
36− 12

6
= 1 ± 2

√
6

6
= 1 ±

√
6

3
= α and

β, say, (α < β) and we have f ′(x) = 3(x − α)(x − β). These values
are approximately α ≈ 0.18 and β ≈ 1.82. If x < α then f ′(x) > 0, if
α < x < β then f ′(x) < 0, and if x > β then f ′(x) > 0. It follows
from the first derivative test that α is a local maximum of f and β is a local
minimum of f .
Alternatively, you can use the second derivative test since f ′′ exists and
is given by f ′′(x) = 6x − 6. This is negative in the interval (0, 1) and
positive in the interval (1, 2). It follows that f ′′(α) < 0 and f ′′(β) > 0 and
so confirms that α is a local maximum of f and β is a local minimum of
f .
By considering the sign of f ′(x) we see that f is strictly increasing on
(−∞, α], strictly decreasing on [α, β], and strictly increasing on [β,∞).
We have f(−1) = −4 and f(0) = 1, so by the Intermediate Value The-
orem, there is a zero of f in (−1, 0), and since f is strictly increasing on
(−∞, α], this is the only zero in that interval. Similarly f(0.5) = 0.875
and f(1.5) = −0.875, so there is precisely one zero of f in [α, β]. Finally
f(2) = −1 and f(3) = 19, so there is precisely one zero of f in [β,∞).

2. By the composite rule, d
dx

(
exp(x2)

)
= 2x exp(x2). Hence by the product

rule,

d

dx

(
y exp(x2)

)
=
dy

dx
exp(x2) + 2xy exp(x2) = exp(x2)

(dy
dx

+ 2xy
)
.

But from the original equation

exp(x2)
(dy
dx

+ 2xy
)
= x exp(x2) =

d

dx

(1
2
exp(x2)

)
.



251

So the original equation gives d
dx

(
y exp(x2)

)
= d

dx

(
1
2
exp(x2)

)
. The argu-

ment is reversible since exp(x2) ̸= 0 for any value of x. Hence the new
form of the equation is equivalent to the original form.
We now have two expressions with equal derivatives. By Corollary 6.8.2 it
follows that they differ by some constant A, i.e. y exp(x2) = 1

2
exp(x2) +

A. Multiplying both sides by exp(−x2) gives y = 1
2
+ A exp(−x2). If

y = 1 when x = 0 then 1 = 1
2
+ A, so A = 1

2
.

3. By the combination rules and composite rule, f is differentiable on R with
the possible exception of zero. To deal with differentiability at zero, take
h ̸= 0 and consider

f(0 + h)− f(0)

h
= h

(
2− sin

(1
h

))
→ 0 as h→ 0,

since 1 ≤ 2− sin( 1
h
) ≤ 3. So f is differentiable at 0 and f ′(0) = 0.

For x ̸= 0,

f ′(x) = x2
1

x2
cos

(1
x

)
+2x

(
2− sin

(1
x

))
= cos

(1
x

)
+2x

(
2− sin

(1
x

))
.

If |x| < 1
6

then
∣∣∣2x(2− sin

(
1
x

))∣∣∣ < 1. Now take any positive or negative
integer n (n ̸= 0). Then cos(2nπ) = 1 and cos((2n + 1)π) = −1, so
for x = 1

2nπ
we have f ′(x) > 1 − 1 = 0, while for x = 1

(2n+1)π
(except

possibly for n = −1) we have f ′(x) < −1+1 = 0. But there are infinitely
many numbers of the form x = 1

2nπ
and of the form x = 1

(2n+1)π
in any

intervals immediately to the left of 0 and immediately to the right of 0.
It follows that the first derivative test cannot be applied to determine the
nature of the stationary point at zero.
Examining the definition of f(x) we see that f(x) > 0 if x ̸= 0, while
f(0) = 0. Hence the function has a local minimum at 0.

4. All the functions forming the numerators and denominators in this ques-
tion have derivatives of all orders on R We consider each case in turn.

a) With f(x) = x3 − 3x2 + x + 1 and g(x) = sin(πx), we have
f(1) = g(1) = 0, f ′(x) = 3x2 − 6x + 1 and g′(x) = π cos(πx).
By L’Hôpital’s Rule

lim
x→1

x3 − 3x2 + x+ 1

sin(πx)
= lim

x→1

3x2 − 6x+ 1

π cos(πx)
,

provided that the latter limit exists. This latter limit does exist be-
cause the numerator and denominator are continuous and the denomi-
nator is non-zero at x = 1. The value of the limit is
f ′(1)/g′(1) = (−2)/(−π) = 2/π.



252 CHAPTER 9. ANSWERS TO THE EXERCISES

b) With f(x) = exp(x) − 1 and g(x) = exp(2x) − 1, we have f(0) =
g(0) = 0, f ′(x) = exp(x) and g′(x) = 2 exp(2x). By L’Hôpital’s
Rule

lim
x→0

exp(x)− 1

exp(2x)− 1
= lim

x→0

exp(x)

2 exp(2x)
,

provided that the latter limit exists. This latter limit does exist be-
cause the numerator and denominator are continuous and the denomi-
nator is non-zero at x = 0. The value of the limit is
f ′(0)/g′(0) = 1/2.

c) With f(x) = (exp(x)− 1)3 and g(x) = sin(x)− x, we have f(0) =
g(0) = 0, f ′(x) = 3 exp(x)(exp(x) − 1)2 and g′(x) = cos(x) − 1.
By L’Hôpital’s Rule

lim
x→0

(exp(x)− 1)3

sin(x)− x
= lim

x→0

3 exp(x)(exp(x)− 1)2

cos(x)− 1
,

provided that the latter limit exists. Unfortunately the numerator
and denominator are both zero at x = 0, so we apply L’Hôpital’s
Rule again. But we can simplify the reapplication by noting that
3 exp(x) → 3 as x→ 0, so it suffices to consider

lim
x→0

(exp(x)− 1)2

cos(x)− 1
.

In a similar manner to the first step we get

lim
x→0

(exp(x)− 1)2

cos(x)− 1
= lim

x→0

2 exp(x)(exp(x)− 1)

− sin(x)
,

provided that the latter limit exists. Unfortunately the numerator and
denominator are again both zero at x = 0, so we apply L’Hôpital’s
Rule a third time. Again we can remove the factor 2 exp(x) and
consider

lim
x→0

exp(x)− 1

− sin(x)
= lim

x→0

exp(x)

− cos(x)
,

provided this limit exists, which it does and has the value 1/(−1) =
−1. Putting back the discarded factors 3 and 2, we find that

lim
x→0

(exp(x)− 1)3

sin(x)− x
= −6.

d) Here there is no need to apply L’Hôpital’s Rule; in fact you must not
apply it since g(x) = sin(x) + 1 is non-zero at x = 0. Instead just
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use the fact that both f(x) = x+cos(x)− 1 and g(x) are continuous
at x = 0 to get

lim
x→0

x+ cos(x)− 1

sin(x) + 1
=
f(0)

g(0)
=

0

1
= 0.

If you do use L’Hôpital’s Rule you will get the incorrect answer 1.

5. We use Leibniz’ Theorem with f(x) = exp(x) and g(x) = sin(x). Bear-
ing in mind that f ′(x) = exp(x) = f(x), while g′(x) = cos(x) and
g′′(x) = − sin(x) = −g(x), this gives

D10
(
exp(x) sin(x)

)
= A exp(x) sin(x) +B exp(x) cos(x),

where

A =
(
1−

(
10

2

)
+

(
10

4

)
−
(
10

6

)
+

(
10

8

)
− 1

)
= 0, and

B =
((10

1

)
−

(
10

3

)
+

(
10

5

)
−
(
10

7

)
+

(
10

9

))
= 10− 120 + 252− 120 + 10 = 32.

Hence the tenth derivative of exp(x) sin(x) is 32 exp(x) cos(x).

Exercises 6.4

1. The Taylor polynomials are

T4(x) = x− x3

3!
, T6(x) = x− x3

3!
+
x5

5!
, T8(x) = x− x3

3!
+
x5

5!
− x7

7!
.

The graphs are sketched below.

x

y

−1

| | | |
−2π 0 2π

sin(x)

T4(x) T6(x)
T8(x)

Taylor series approximations to sin(x).

2. Evaluating, T8(0.1) = 0.099 833 416 646 825 4 to 16 decimal places. Then
R8(0.1) = (0.1)8

8!
sin(ξ), where 0 < ξ < 0.1. Use the fact that sin(ξ)

lies between 0 and 1 to show that R8(0.1) lies between between 0 and
−2.481×10−13. Hence T8(0.1) should give sin(0.1) correct to 12 decimal
places as 0.099 833 416 647 (and it does).
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3. First note that sin(45 o) = cos(45 o) = 1√
2
. Expanding about π/4 gives

sin
(π
4
+ h

)
= sin

(π
4

)
+ h cos

(π
4

)
− h2

2!
sin

(π
4

)
− h3

3!
cos

(π
4

)
+
h4

4!
sin

(π
4

)
+R5(h),

where R5(h) = −h5

5!
cos(ξ) and ξ lies between π

4
and π

4
+ h. We are

interested in 50 o = 45 o + 5 o, and 5 o = 5π/180 = 0.087 266 463 (to 9
decimal places), so we take h = 0.087 266 463. For our approximation we
get

sin(50 o) ≈ 1√
2

[
1 + h− h2

2
− h3

6
+
h4

24

]
= 0.766 044 413 to 9 d.p.,

with an error between −h5

5!
and 0. This error is between −4.22 × 10−8

and 0. So we can confidently say that sin(50 o) = 0.766 044, correct to 6
decimal places.

4. Observe that (1 + x)α = xα
(
1 + 1

x

)α

. If |x| > 1 then | 1
x
| < 1 and so we

may expand
(
1 + 1

x

)α

by the binomial theorem to give

(1 + x)α = xα
∞∑
r=0

(
α

r

)(1
x

)r

.

If we put x = 4 and α = 1
2
, then we obtain an expression for

√
5, and

taking the first 5 terms (i.e. up to the term with ( 1
x
)4) we get

√
5 ≈ 2

(
1 +

1

8
− 1

128
+

1

210
− 5

215

)
≈ 2.236 023.

This compares with the “correct” value (to 6 decimal places) 2.236 068.
5. (a) For x > 0 we have g0(x) = exp(x) − 1 > 0. Assume that for

k ≥ 0 we have gk(x) > 0 and consider gk+1(x) = exp(x) − xk+1

(k+1)!
.

Differentiating gives g′k+1(x) = gk(x) > 0. Hence gk+1 is strictly
increasing on [0,∞). But gk+1(0) = exp(0) = 1, so gk+1(x) > 0
for x > 0. It follows, by induction, that if x > 0 and if n is a non-
negative integer then gn(x) = exp(x)− xn

n!
is strictly positive.

(b) We have g2n(u) is strictly positive, so exp(u)
un > un

(2n)!
. For n > 0,

un

(2n)!
→ ∞ as u → ∞ and so exp(u)

un → ∞ as u → ∞. Since we may

write exp(u) = u · exp(u)
u

, it also follows that exp(u)
un → ∞ as u→ ∞

in the case n = 0.



255

(c) Write u = 1/x2 so that u → ∞ as x → 0. Then part (b) gives
exp(1/x2)

x−2n → ∞ as x → 0. Taking the reciprocal gives exp(−1/x2)
x2n →

0 as x→ 0.

(d) Part (c) gives the result for even values of r. To obtain the result for
odd values, write exp(−1/x2)

x2n−1 = x · exp(−1/x2)
x2n (n ≥ 1).

(e) First note that for x ̸= 0, exp(−1/x2) is differentiable with derivative
2x−3 exp(−1/x2) (by the composite rule). To determine differentia-
bility at 0, take h ̸= 0 and consider

f(0 + h)− f(0)

h
=

exp(−1/h2)

h
→ 0 as h→ 0,

by part (d). So f is differentiable at 0 with derivative f ′(0) = 0. Then
again for x ̸= 0, using the product rule, we obtain

f ′′(x) = 2x−3 · 2x−3 exp(−1/x2)− 6x−4 exp(−1/x2)

= ϕ2(x) exp(−1/x2),

where ϕ2(x) = 4x−6−6x−4. To determine differentiability at 0, take
h ̸= 0 and consider

f ′(0 + h)− f ′(0)

h
=

2

h3
exp(−1/h2) → 0 as h→ 0,

again by part (d). So f is twice differentiable at 0 and f ′′(0) =
0. If, for x ̸= 0, f (k)(x) = ϕk(x) exp(−1/x2) then f (k+1)(x) =
[2x−3ϕk(x) + ϕ′

k(x)] exp(−1/x2)] = ϕk+1(x) exp(−1/x2), where
ϕk+1(x) = 2x−3ϕk(x) + ϕ′

k(x). If ϕk(x) is a finite sum of multiples
of negative powers of x, then ϕk+1(x) will be likewise. It follows
by induction that for x ̸= 0, f is n times differentiable on R with a
derivative of the form

f (n)(x) = ϕn(x) exp(−1/x2).

To determine differentiability at 0, take h ̸= 0, assume that
f (k−1)(0) = 0, and consider

f (k−1)(0 + h)− f (k−1)(0)

h
=
ϕn−1(x)

h
exp(−1/h2) → 0 as h→ 0,

again by part (d). Since f ′(0) = 0, it follows by induction that
f (n)(0) = 0 for every positive integer n.
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(f) The Maclaurin series of f is
∑∞

n=0
xn

n!
f (n)(0) = 0, since f (n)(0) = 0

for n = 0, 1, 2, . . .. But f(x) is non-zero unless x = 0. So (with
the exception of this single value) the Maclaurin series of f(x) con-
verges, but not to f(x). [Incidentally, this also shows that the re-
mainder term Rn(x) must equal f(x) for every positive integer n and
every x ∈ R.]

(g)

x

y

1

| | | | | | | | | |
−5 −4 −3 −2 −1 0 1 2 3 4 5

f(x)

The graph of f(x) is very “flat” around x = 0.

6. The Maclaurin series of s(x) is
∑∞

r=0
xr

r!
s(r)(0). Note that

s′(x) = c(x), s′′(x) = c′(x) = −s(x), s(3)(x) = −c(x), s(4)(x) = s(x),

etc. Hence

s(0) = 0, s′(0)) = 1, s′′(0) = 0, s(3)(0) = −1, s(4)(0) = 0, etc.

The Lagrange form of the remainder term is Rn(x) = xn

n!
s(n)(ξ), where

ξ lies between 0 and x. But s(n) is one of c, s,−c,−s, all of which are
differentiable and therefore continuous and bounded on the finite closed
interval I with end points 0 and x. If M is a bound for all four then
|s(n)(z)| < M for z ∈ I . Consequently

|Rn(x)| ≤
|x|n

n!
M → 0 as n→ ∞.

Hence for every x ∈ R,

s(x) =
∞∑
r=0

xr

r!
s(r)(0) = x− x3

3!
+
x5

5!
+ . . . .

This can be expressed as

s(x) =
∞∑
r=0

(−1)r
x2r+1

(2r + 1)!
.

An almost identical argument gives

c(x) =
∞∑
r=0

(−1)r
x2r

(2r)!
.
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Exercises 6.5

1. For x ̸= 0, put an = xn/n!. Then |an+1/an| = |x|/(n+1) → 0 as n→ ∞.
So, by D’Alembert’s ratio test, the series converges for all x. Applying
term-by-term differentiation gives

f ′(x) =
∞∑
n=1

nxn−1

n!
=

∞∑
n=1

xn−1

(n− 1)!
=

∞∑
n=0

xn

n!
= f(x).

2. As in the previous question, both series converge for all x. Applying term-
by-term differentiation gives

s′(x) =
∞∑
n=0

(−1)n
(2n+ 1)x2n

(2n+ 1)!
=

∞∑
n=0

(−1)n
x2n

(2n)!
= c(x), and

c′(x) =
∞∑
n=1

(−1)n
(2n)x2n−1

(2n)!
=

∞∑
n=0

(−1)n+1 x2n+1

(2n+ 1)!
= −s(x).

3. For x ̸= 0, put an = (−1)n−1 xn

n
. Then |an+1/an| = n

n+1
|x| → |x| as n →

∞. So, by D’Alembert’s ratio test, the series converges for |x| < 1 and
diverges for |x| > 1, hence the radius of convergence is R = 1. Applying
term-by-term differentiation for |x| < 1 gives

l′(x) =
∞∑
n=1

(−1)n−1nx
n−1

n
=

∞∑
n=0

(−1)nxn.

This latter series is the binomial series for (1+x)−1, alternatively it can be
recognised as a geometric series with common ratio −x, which converges
for |x| < 1 to 1

1−(−x)
= 1

1+x
.

Exercises 7.1

1. If we go up to the term 1
7!

we should be OK, because the remaining terms
are positive, and

1

8!
+

1

9!
+

1

10!
+

1

11!
+ . . . <

1

8!

(
1 +

1

9
+
(1
9

)2
+
(1
9

)3
+ . . .

)
=

1

8!

1

1− 1
9

=
9

8(8!)

< 2.8× 10−5.

So the error in omitting terms after 1
7!

lies between 0 and 2.8 × 10−5. We
have 1+1+ 1

2!
+ . . .+ 1

7!
= 2.718 254 to 6 decimal places, and we conclude

that e = 2.7183 to 4 decimal places.
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Exercises 7.2

1. Put x = loga(b), so that b = ax =
(
blogb(a)

)x
= bx logb(a). Hence

x logb(a) = 1, so that x = 1
logb(a)

, i.e. loga(b) =
1

logb(a)
.

2. For |x| < 1 we have

loge

(1 + x

1− x

)
= loge(1 + x)− loge(1− x)

= (x− x2

2
+
x3

3
− x4

4
+ . . .)

− (−x− x2

2
− x3

3
− x4

4
− . . .)

= 2
(
x+

x3

3
+
x5

5
+ . . .

)
= 2

∞∑
n=0

x2n+1

2n+ 1
.

For y > 0 define x = (y−1)/(y+1) = 1−2/(y+1), so that |x| < 1. Also
x(y+1) = y−1 so that y(1−x) = 1+x, which gives y = (1+x)/(1−x).
It follows that

loge(y) = 2
∞∑
n=0

1

2n+ 1
·
(y − 1

y + 1

)2n+1

.

With the same notation, if y = 2 then x = y−1
y+1

= 1
3
, giving

loge(2) = 2
∞∑
n=0

1

(2n+ 1)32n+1
.

If we truncate this series at n = k then the remaining terms are all positive
and their sum is

Rk = 2
∞∑

n=k+1

1

(2n+ 1)32n+1

<
2

(2k + 3)32k+3

(
1 +

1

32
+

1

34
+

1

36
+ . . .

)
=

2

(2k + 3)32k+3
· 9
8

=
1

4(2k + 3)32k+1
.



259

Taking k = 4 gives Rk < 1.2 × 10−6 < 10−5, so we have the value of
loge(2) correct to within 10−5 given by

2
(1
3
+

1

3 · 33
+

1

5 · 35
+

1

7 · 37
+

1

9 · 39
)
= 0.69315

If we used the alternating harmonic series we might need to take terms
as far as 1

k
where k is chosen so that 1

k
< 10−5, i.e. k = 105 + 1. It is

possible that we could do better than this, but that would depend on getting
an estimate for the tail of the series, i.e for

∑∞
n=k+1(−1)n−1 1

n
, not a trivial

task.
3. If we look at the partial sum of the first 3n terms (say, S3n) and bracket

each positive term with the succeeding negative term we get

S3n =
(
1− 1

2

)
− 1

4
+
(1
3
− 1

6

)
− 1

8
+
(1
5
− 1

10

)
− 1

12
+ . . .

+
( 1

2n− 1
− 1

4n− 2

)
− 1

4n

=
1

2
− 1

4
+

1

6
− 1

8
+

1

10
− 1

12
+ . . .+

1

4n− 2
− 1

4n

=
1

2

(
1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ . . .+

1

2n− 1
− 1

2n

)
.

This last expression is a half of a partial sum of the alternating harmonic
series, and it follows that S3n → 1

2
loge(2) as n → ∞. Since the terms

of the series tend to zero as n → ∞, it follows that S3n+1 and S3n+2 also
converge to 1

2
loge(2) as n → ∞. Hence the rearranged series converges

with sum 1
2
loge(2).

Exercises 7.3

1. Parts (a) and (b) are easily proven by replacing y in the addition formu-
lae of Theorem 7.9 by −y. Note that cos(−y) = cos(y) and sin(−y) =
− sin(y).
For part (c) we have

tan(x+ y) =
sin(x+ y)

cos(x+ y)

=
sin(x) cos(y) + cos(x) sin(y)

cos(x) cos(y)− sin(x) sin(y)

=
tan(x) + tan(y)

1− tan(x) tan(y)
,
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where the last step comes from dividing numerator and denominator by
cos(x) cos(y).
For part (d) we use part (c), replacing y by−y and noting that tan(−y) =
− tan(y).

2. From Theorem 7.13 we have sin(x+ π/2) = cos(x). Replace x by −x to
get sin(π/2−x) = cos(−x) = cos(x). Similarly cos(x+π/2) = − sin(x)
gives cos(π/2− x) = − sin(−x) = sin(x).

3. We have a = (a+ b)/2 + (a− b)/2, so

sin(a) = sin((a+ b)/2) cos((a− b)/2) + cos((a+ b)/2) sin((a− b)/2).

Similarly b = (a+ b)/2− (a− b)/2, so

sin(b) = sin((a+ b)/2) cos((a− b)/2)− cos((a+ b)/2) sin((a− b)/2).

Now subtract these expressions to get

sin(a)− sin(b) = 2 cos((a+ b)/2) sin((a− b)/2).

In the same way we get

cos(a) = cos((a+b)/2) cos((a−b)/2)−sin((a+b)/2) sin((a−b)/2), and

cos(b) = cos((a+ b)/2) cos((a− b)/2) + sin((a+ b)/2) sin((a− b)/2).

Subtraction gives

cos(a)− cos(b) = −2 sin((a+ b)/2) sin((a− b)/2).

4. Since tan′(x) = sec2(x) > 0 we see that tan(x) is strictly increasing
on (−π/2, π/2). From Theorem 7.13 we have sin(π/4) = cos(π/4), so
tan(π/4) = 1. From the same Theorem, sin(x + π/2) = cos(x) and
cos(x + π/2) = − sin(x), and dividing these gives tan(x + π/2) =
− cos(x)/ sin(x) = − cot(x). Likewise from sin(x + π) = − sin(x) and
cos(x+ π) = − cos(x) we obtain tan(x+ π) = tan(x).
If 0 < a < π then 0 < a/2 < π/2, so tan(a/2) is well-defined and strictly
positive (since tan(0) = 0 and tan is strictly increasing). Hence

tan(a) =
2 tan(a/2)

1− tan2(a/2)
̸= 0.

So tan(0 + a) ̸= tan(0) and consequently a cannot be a period of tan(x).
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Exercises 7.4

1. We take the same approach as we did for arctan(x). Using the binomial
theorem, for |x| < 1 we have

arcsin′(x) =
1√

1− x2
= (1− x2)−

1
2

=
∞∑
n=0

(
−1

2

n

)
(−x2)n.

So we put F (x) =
∑∞

n=0

(− 1
2

n

)
(−1)n x2n+1

2n+1
. The series defining F (x) has

radius of convergence R = 1 and so we may differentiate term-by-term
to obtain F ′(x) = arcsin′(x) for every x ∈ (−1, 1). Thus both F (x) and
arcsin(x) are primitives for arcsin′(x) on the interval (−1, 1). They must
therefore differ by a constant on this interval. But F (0) = arcsin(0) = 0,
so the value of this constant is zero. Hence for |x| < 1,

arcsin(x) =
∞∑
n=0

(
−1

2

n

)
(−1)n

x2n+1

2n+ 1
.

2. Looking back to the proof that tan(π/6) = 1√
3
, in the penultimate step it

was shown that 3 sin2(π/6) = cos2(π/6). But cos2(π/6) = 1− sin2(π/6),
so we get 4 sin2(π/6) = 1. Noting that sin(x) > 0 for x ∈ [0, 2], we take
the positive square root and get sin(π/6) = 1

2
.

3. From the previous questions

π

6
=

∞∑
n=0

(
−1

2

n

)
(−1)n

(1
2
)2n+1

2n+ 1
.

Hence

π = 3
∞∑
n=0

(
−1

2

n

)
(−1)n

(2n+ 1) · 22n
.

But (
−1

2

n

)
=

(−1
2
)(−3

2
)(−5

2
) . . . (−2n−1

2
)

n!

= (−1)n
1 · 3 · 5 · . . . · (2n− 1)

n!2n

= (−1)n
(2n)!

n!2n(2 · 4 · 6 · . . . · 2n)

= (−1)n
(2n)!

(n!)222n
.
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It follows that

π = 3
∞∑
n=0

(2n)!

(n!)2(2n+ 1)24n
.

The first six terms of this series sum to 3.141577 (to 6 decimal places). To
estimate the error, note first that all the terms are positive, so this will be
an underestimate. We have

(2n!)

(n!)222n
=

(2n!)

(2nn!) · (2nn!)
=

1 · 2 · 3 · 4 · 5 · 6 · . . . · (2n− 1) · (2n)
2 · 2 · 4 · 4 · 6 · 6 · . . . · (2n) · (2n)

< 1

If we denote the (n+1)th term by an, then 0 < an <
1

(2n+1)·22n . Hence the
error in the estimate is less than

3
∞∑
n=6

1

(2n+ 1) · 22n
= 3

[ 1

13 · 212
+

1

15 · 214
+

1

17 · 216
. . .

]
<

3

13 · 212
[
1 +

1

22
+

1

24
+ . . .

]
=

3

13 · 212
[ 1

1− 1
4

]
=

4

13 · 212
< 0.000076.

4. We have

tan(2θ) =
2 tan(θ)

1− tan2(θ)
=

2/5

1− (1/25)
= 5/12.

Then

tan(4θ) =
2 tan(2θ)

1− tan2(2θ)
=

10/12

1− (25/144)
= 120/119.

Hence

tan(4θ − ϕ) =
tan(4θ)− tan(ϕ)

1 + tan(4θ) tan(ϕ)
=

120/119− 1/239

1 + (120)/(119× 239)
= 1.

From this it is a short step to argue that 4θ − ϕ = arctan(1) = π/4.
The only slight difficulty is that we must check that 4θ − ϕ lies in the
interval (−π/2, π/2). A crude argument will do this job. Note firstly that
tan(θ) = 1

5
< 1√

3
and so 0 < θ < π/6, hence 0 < 2θ < π/3. But

it is also true that tan(2θ) = 5
12
< 1√

3
, so by the same argument again

0 < 2θ < π/6, which gives 0 < 4θ < π/3. Finally ϕ also lies between 0
and π/6, so 4θ − ϕ lies between −π/6 and π/3.
It follows that π/4 = 4θ − ϕ = 4arctan(1/5)− arctan(1/239).
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5. We have

π = 16 arctan
(1
5

)
− 4 arctan

( 1

239

)
.

But

arctan
(1
5

)
=

1

5
− 1

3 · 53
+

1

5 · 55
− 1

7 · 57
+ . . . =

∞∑
n=0

(−1)n

(2n+ 1) · 52n+1

A bit of experimenting suggests taking the partial sum up to and including
1/(17 · 517) should be enough to get accuracy within 10−10. For the other
term

arctan
( 1

239

)
=

1

239
− 1

3 · 2393
+

1

5 · 2395
− . . . =

∞∑
n=0

(−1)n

(2n+ 1) · 2392n+1

Here, taking terms up to up to and including 1/(5 · 2395) looks sufficient.
We obtain the approximate value (to 12 decimal places)

16
8∑

n=0

(−1)n

(2n+ 1) · 52n+1
− 4

2∑
n=0

(−1)n

(2n+ 1) · 2392n+1
= 3.141 592 653 590.

To check this is correct within 10−10 you need to estimate the error term.
The terms of both series alternate in sign and their absolute values are
strictly decreasing. So the error cannot exceed the weighted sum of the
next two terms, i.e 16

(
1/(19 · 519)

)
+ 4

(
1/(7 · 2397)

)
< 5× 10−14.

Exercises 7.5

1.

cosh2(x)− sinh2(x) =
e2x + e−2x + 2

4
− e2x + e−2x − 2

4

=
4

4
= 1

a)
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sinh(a) cosh(b) + cosh(a) sinh(b)

=
ea − e−a

2
· e

b + e−b

2
+
ea + e−a

2
· e

b − e−b

2

=
ea+b + ea−b − eb−a − e−(a+b) + ea+b − ea−b + eb−a − e−(a+b)

4

=
2ea+b − 2e−(a+b)

4
=
ea+b − e−(a+b)

2
= sinh(a+ b).

b)

cosh(a) cosh(b) + sinh(a) sinh(b)

=
ea + e−a

2
· e

b + e−b

2
+
ea − e−a

2
· e

b − e−b

2

=
ea+b + ea−b + eb−a + e−(a+b) + ea+b − ea−b − eb−a + e−(a+b)

4

=
2ea+b + 2e−(a+b)

4
=
ea+b + e−(a+b)

2
= cosh(a+ b).

c)

2. If x > 1 then −1 > −2x+1, so x2− 1 > x2− 2x+1 = (x− 1)2. Taking
positive square roots gives

√
x2 − 1 > x−1. Hence x−

√
x2 − 1 < 1. An

alternative approach is to observe that for x > 1, x +
√
x2 − 1 ≥ x > 1,

while (x +
√
x2 − 1)(x −

√
x2 − 1) = 1, and so x −

√
x2 − 1 < 1.[This

result was used to justify rejecting exp(y) = x−
√
x2 − 1 in the derivation

of the logarithmic formula for argcosh(x).]

3. (a) For argsinh(x) we have argsinh′(x) =
1√

1 + x2
. So argsinh(x) is a

primitive for
1√

1 + x2
. The binomial expansion gives

1√
1 + x2

= (1 + x2)−
1
2 =

∞∑
n=0

(
−1

2

n

)
x2n for |x| < 1.

By Chapter 6, Corollary 6.14.2, the series

f(x) =
∞∑
n=0

(
−1

2

n

)
x2n+1

2n+ 1
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also converges for |x| < 1. This series is differentiable with derivative∑∞
n=0

(− 1
2

n

)
x2n =

1√
1 + x2

. Hence f(x) is also a primitive for
1√

1 + x2

on the interval (−1, 1). It follows from Chapter 6, Corollary 6.8.2 that
argsinh(x)−f(x) takes a constant value on the interval (−1, 1). However,
argsinh(0) = f(0) = 0. so argsinh(x) = f(x) for |x| < 1. In other words

argsinh(x) =
∞∑
n=0

(
−1

2

n

)
x2n+1

2n+ 1
∀x ∈ (−1, 1).

(b) For argtanh(x) we can use the same approach as for argsinh(x). How-
ever, it is probably easier to use the logarithmic expression for argtanh(x)
as follows.

argtanh(x) =
1

2
loge

(1 + x

1− x

)
=

1

2

[
loge(1 + x)− loge(1− x)

]
=

1

2

[
x− x2

2
+
x3

3
− x4

4
+ . . .−

(
− x− x2

2
− x3

3
− x4

4
− . . .

)]
= x+

x3

3
+
x5

5
+ . . . =

∞∑
n=0

x2n+1

2n+ 1
.

As regards getting a similar series for argcosh(x), this is clearly impossible
because the function is only defined for x > 1 and so we cannot get a
power series in x valid in any open interval containing 0.
However, the situation is not entirely hopeless. We have

argcosh′(x) =
1√

x2 − 1
=

1

x
· 1√

1− ( 1
x
)2

= y
1√

1− y2
= y(1− y2)−

1
2 ,

where y = 1
x
. The binomial theorem can be used to expand this latter

expression as a power series in y. Without giving all the details this even-
tually gives a series for argcosh(x) for x > 1 that involves ascending
powers of 1

x
, a loge(x) term, and a non-zero constant (not nice).
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Appendix A

Construction of the Real Numbers

The construction is in stages, starting from the set of Natural Numbers N. We
give an outline of the process. There isn’t room here to give all the proofs. A few
sample proofs are given to indicate what is involved.

A.1 The Natural Numbers, N
The Natural Numbers can be envisaged marked out along a straight line:

1 2 3 4 5 6 7 8 9 10 11

From the picture, you can see that each Natural Number n has an immediate
successor that can be denoted as S(n). For example, the successor of 3 is 4,
i.e. S(3) = 4. And every Natural Number except 1 is the successor of some
other Natural Number. We can define 2 as the successor of 1: 2 = S(1), and
likewise define 3 as the successor of 2: 3 = S(2), and this could be written
as 3 = S(S(1)), read as “the successor of the successor of 1”. We can go on
like this defining 4, 5, 6, etc. We might describe the whole collection 2, 3, 4, . . .
as the repeated successors of 1, reserving the term “the successor” to mean the
immediate successor, namely the number 2.

Formally, all the properties of the Natural Numbers can be deduced using the
idea of successors. All that is required to do this is the following five properties,
collectively known as the Peano Postulates.

1. 1 is a Natural Number.

2. Each Natural Number n has a successor S(n) which is also a Natural Num-
ber.

3. 1 is not the successor of any Natural Number.

267
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4. If m and n are Natural Numbers and S(m) = S(n), then m = n.

5. If we have a collection C of Natural Numbers that contains the Natural
Number 1 and also contains the successor of every Natural Number in the
collection, then the collection C contains all the Natural Numbers.

The construction of R assumes the existence of a set of Natural
Numbers N that satisfies the Peano Postulates.

The Peano Postulates may look a bit abstract, but they closely follow the earli-
est known form of recorded counting - the use of tally marks. So in terms of tally
marks these properties might be expressed roughly as follows.

1. Here is the first tally mark representing “one”: /

2. If //. . . / is a tally mark representing a number, then we get the next number
(the successor) by adding another tally mark: //. . . //

3. There is no tally mark for nothing.

4. If two people each have the same number of tally marks and they each rub
out one tally mark, then they will still each have the same number of tally
marks.

5. The only numbers we recognize are those given by the tally mark for “‘one”
and the tally marks for its repeated successors.

The last Postulate deserves some extra explanation. If it wasn’t there we might
have additional objects in our collection, such as an additional “starting point”,
call it 1′. So the last property ensures that the Natural Numbers comprise just the
number 1 along with its repeated successors, S(1), S(S(1)), S(S(S(1))), . . ..
This last postulate also provides the basis for the method of induction. We will
have some more to say about induction after we have shown how to identify the
Natural Numbers within the axiomatic description of the Real Numbers in Ap-
pendix B.

Addition of Natural Numbers is defined using the notion of successors, in
effect by repeatedly adding 1. If m and n are any Natural Numbers, we can define
m + 1 = S(m) and m + S(n) = S(m + n). For example, once you know the
value of 5 + 3 (which we call 8), then the value of 5 + S(3) (that is to say the
value of 5 + 4) must be S(5 + 3), which is the successor of 8, S(8), known more
commonly by us as 9.

A consequence of this definition is that addition has all the properties you
would expect. We won’t prove all the properties but, by way of example, we will
prove the commutative law of addition.
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Theorem A.1. ∀m,n ∈ N,m+ n = n+m.

Proof. First, we prove that ∀m ∈ N,m + 1 = 1 +m. We do this by induction.
It is obviously true for m = 1 since it reduces to 1 + 1 = 1 + 1. So suppose that
for some k ∈ N, k + 1 = 1 + k. Then (k + 1) + 1 = S(k + 1) = S(1 + k) =
1 + S(k) = 1 + (k + 1). So, by induction, m+ 1 = 1 +m for every m ∈ N.

Second, with m ∈ N fixed, we prove that m + S(n) = S(m) + n for every
n ∈ N. Again we use induction. For n = 1,

m+ S(n) = m+ S(1) = S(m+ 1) = S(S(m)) = S(m) + 1 = S(m) + n.

Next suppose that for some k ∈ N,m+ S(k) = S(m) + k. Then

m+ S(k + 1) = m+ S(S(k)) = S(m+ S(k)) = S(S(m) + k) = S(m) + S(k)

= S(m) + (k + 1).

By induction it follows that ∀m,n ∈ N,m+ S(n) = S(m) + n.
Using the previous two parts of the proof, we can prove that ∀m,n ∈ N,m+

n = n+m. Again we use induction. The result is certainly true for n = 1, by the
first part. Now suppose that for some k ∈ N,m+ k = k +m. Then

m+ (k + 1) = m+ S(k) = S(m+ k) = S(k +m) = k + S(m) = S(k) +m

= (k + 1) +m.

Consequently m+ n = n+m for every pair m,n ∈ N.

A further consequence of the definition of addition is the associative law: (m+
n) + p = m+ (n+ p), which can be proved in a similar way to the commutative
law.

Multiplication of Natural Numbers can be defined as repeated addition. For
example, 3×4 means “ 3 lots of 4”, in symbols 4+4+4 = 12. Formally, 1×n = n,
and S(m) × n = (m × n) + n. It turns out that multiplication is commutative:
m×n = n×m. And the associative law also holds: (m×n)×p = m×(n×p). A
useful fact connecting × and + is the distributive law: m×(n+p) = m×n+m×p.

The idea of successors also allows us to define what we mean by saying that
one number is less than (i.e. lies to the left of) another. So we write m < n
(and n > m) if and only if there exists p ∈ N such that m + p = n. This
definition enables us to see that the Natural Numbers come in a definite order:
1 < 2 < 3 < . . ..

In summary, assuming the Peano Postulates, we have a set of Natural Numbers
N such that if m,n, p are any members of N then
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1. m+ n and m× n both lie in N (N is closed under addition and multiplica-
tion),

2. m+ n = n+m and m× n = n×m (commutative laws),

3. (m+ n) + p = m+ (n+ p) and (m× n)× p = m× (n× p) (associative
laws),

4. m× (n+ p) = m×n+m× p (multiplication is distributive over addition),

5. 1×m = m (the number 1 is a multiplicative identity),

6. if m ̸= n then either m > n or n > m (we say that N is ordered by >).

Before moving on to look at Integers and Rational Numbers we remark that it
is possible to define limited forms of subtraction (−) and division (÷) in N. The
equation 3 + x = 5 has solution x = 2 because 5 − 3 = 2. In general we can
define m−n for Natural Numbers m and n to be the Natural Number x for which
n + x = m when such a Natural Number x exists. When there is no Natural
Number x for which n + x = m we leave the subtraction of n from m undefined
until we have defined the Integers. Similarly, the equation 3× x = 6 has solution
x = 2 because 6 ÷ 3 = 2. In general we can define m ÷ n for Natural Numbers
m and n to be the Natural Number x for which n× x = m when such a Natural
Number x exists. When there is no Natural Number x for which n× x = m we
leave division of m by n undefined until we have defined the Rational Numbers.

A.2 The Integers, Z
The set of Integers Z is constructed from the set of Natural Numbers N by identi-
fying an Integer such as −2 with all pairs of Natural Numbers of the form (a, a+2)
[think of this as aminus (a+2)]. Because I want you to think of the ordered pair
(a, a+2) as a minus (a+2), I will write this pair as (a⊖ (a+2)), so the symbol
⊖ just replaces the comma. (I won’t use the minus sign itself because it carries
too much baggage.) For a while I will use red ink to distinguish the new Integers
from the old Natural Numbers. If you want a word for the invented symbol ⊖ you
could call it “oh-minus”.

For example, we can represent −2 as (1 ⊖ 3) or (2 ⊖ 4) or (3 ⊖ 5) or even
(just to be obscure) as (165⊖ 167). Similarly 0 is identified with all pairs (a⊖ a),
the simplest of which is probably (1 ⊖ 1), but we could equally well represent it
(for example) as (5⊖ 5). Rather awkwardly we then have to identify (e.g.) 2 ∈ Z
with all pairs ((a+ 2)⊖ a) (where a ∈ N). Thus the Integer 2 is represented by a
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pair of Natural Numbers, and so it is something ever so slightly different from the
Natural Number 2.

This way of presenting Integers may well be unfamiliar to you but it is similar
to what we do with fractions where (e.g.) a half can be written as 1

2
or 2

4
or 3

6
or,

more generally as a
2a
(a ∈ N). Here too there is an awkwardness about identifying

2 ∈ N with all “pairs” 2a
a

, where a ∈ N, and the fraction 2
1

is something ever so
slightly different from the Natural Number 2. We’ll look at fractions in the next
section.

In general, the pair of Natural Numbers (m ⊖ n) represents an Integer. If
m > n, we write it as m−n, if n > m we write it as −(n−m), and if m = n we
write it as 0. For example, (7⊖ 4) = 3, (4⊖ 7) = −3 and (6⊖ 6) = 0. Note that
the subtraction involved in (4⊖ 7) is actually the subtraction 7− 4 of the Natural
Number 4 from the Natural Number 7, and we then put a minus sign in front of
the resulting Natural Number 3 to give the Integer −3.

An important question is how to identify if two apparently different looking
Integers are in fact equal. Is the Integer (36 ⊖ 921) the same as (245 ⊖ 1130)?
There is an easy solution once we realize that we are really asking if 36− 921 =
245 − 1130, and we can answer this question without using subtraction or minus
signs by adding 921 + 1130 to both sides to give the equivalent question: does
36+1130 equal 245+921? The general question whether (m⊖n) represents the
same Integer as (p ⊖ q) really asks if m − n = p − q, or equivalently (by adding
n + q to both sides) if m + q = p + n. Consequently we define equality between
these ordered pairs of Natural Numbers by saying

(m⊖ n) = (p⊖ q) if and only if m+ q = p+ n.

The important thing to note here is that the right-hand side only contains Natural
Numbers (m + q and p + n), so this definition of equality between Integers only
involves Natural Numbers. Thus equality of Integers is defined in terms of some-
thing we already understand: equality of Natural Numbers. So for our example,
we compare 36+1130 with 245+921, and since both come to 1166, they are equal
and consequently both (36⊖ 921) and (245⊖ 1130) represent the same Integer.

In general if n is a Natural Number, the pair (1 ⊖ (n + 1)) represents the
negative Integer −n, and the pair ((n + 1)⊖ 1) represents the positive Integer n.
The Integer 0 has the simplest form (1⊖ 1).

Once we’ve got hold of Z we can define the operations + and ×. Addition is
very easy:

(m⊖ n) + (p⊖ q) = ((m+ p)⊖ (n+ q)).

For example, (−3) + 2 = (1 ⊖ 4) + (3 ⊖ 1) = (4 ⊖ 5) = −1. You might like
to think what happens if you add (m ⊖ n) and (n ⊖m). It is also fairly obvious



272 APPENDIX A. CONSTRUCTION OF THE REAL NUMBERS

from this definition of + that addition of Integers is commutative and associative
because addition of Natural Numbers has these properties.

Multiplication is just a shade more complicated and it helps to remember that
we think of (m⊖n) asm−n, so we would expect (m⊖n)×(p⊖q) to come out as
a representative of (m− n) × (p− q) = mp−mq − np+ nq. So our definition
is

(m⊖ n)× (p⊖ q) = ((mp+ nq)⊖ (mq + np)).

As an example, let’s try (−2)× 3. First write −2 as the pair (1⊖ 3) and 3 as the
pair (4⊖ 1). Then we get

(−2)× 3 = (1⊖ 3)× (4⊖ 1) = ((4 + 3)⊖ (1 + 12)) = (7⊖ 13) = −6.

So we get (−2)× 3 = −6. Now you try (−2)× (−3). You should get 6.
Again commutativity and associativity of multiplication in Z follow immedi-

ately from the corresponding properties of N. Likewise, multiplication is distribu-
tive over addition and the Integer 1 is a multiplicative identity.

We should check that these definitions of + and × do not depend on the par-
ticular representations of the Integers involved, i.e. if we have (m⊖ n) = (r⊖ s)
and (p ⊖ q) = (t ⊖ u) then we find that (m ⊖ n) + (p ⊖ q) = (r ⊖ s) + (t ⊖ u)
and (m ⊖ n) × (p ⊖ q) = (r ⊖ s) × (t ⊖ u). I will check the first of these (the
addition) and I invite you to check the second (the multiplication).

Let us give names X and Y to the two Integers produced by the addition, i.e.
X = (m⊖ n) + (p⊖ q) and Y = (r ⊖ s) + (t⊖ u). According to the definition
of addition, X = ((m+ p)⊖ (n+ q)) and Y = ((r+ t)⊖ (s+ u)). So according
to the definition of equality of Integers, X = Y if and only if

(m+ p) + (s+ u) = (r + t) + (n+ q),

i.e (by rearranging slightly) if and only if

(m+ s) + (p+ u) = (r + n) + (t+ q).

But (m ⊖ n) = (r ⊖ s) gives m + s = r + n, and (p ⊖ q) = (t ⊖ u) gives
p+ u = t+ q. Consequently (m+ s) + (p+ u) does equal (r+ n) + (t+ q), and
so X = Y .

The Integers have some interesting additional properties compared to the Nat-
ural Numbers (and now I will drop the red ink).

(a) For each a ∈ Z, 0+a = a . We say that the number 0 is an additive identity.

(b) For each a ∈ Z there is a number (−a) ∈ Z such that a + (−a) = 0. The
number (−a) is called the additive inverse or negative of a.
If a is represented by the pair of Natural Numbers (m ⊖ n), then (−a) is
given by (n⊖m) because (m⊖n)+ (n⊖m) = ((m+n)⊖ (n+m)) = 0.
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Subtraction can now be defined by putting

a− b = a+ (−b) for a, b ∈ Z.

As an example, consider the equation 5 + x = 3. If we subtract 5 from both sides
then on the left-hand side we get 5 + x − 5 = 5 + (−5) + x = 0 + x = x by
properties (a) and (b) above. On the right-hand side we get 3 − 5 = 3 + (−5) =
(4⊖ 1) + (1⊖ 6) = (5⊖ 7) = −2. So we conclude that x = −2.

As with the Natural Numbers, order among the Integers can be pictured using
a number line. We can define order more precisely by looking at what is meant by
saying that (m⊖ n) is greater than zero (positive) or less than zero (negative). As
already mentioned, an Integer (m ⊖ n) is called positive if the Natural Numbers
m and n have m > n and it is called negative if m < n. So if x and y are Integers,
we will say that x is less than y (x < y) if and only if x − y is negative. If x is
represented by (m⊖ n) and y is represented by (p⊖ q) then x− y = x+ (−y) is
represented by (m⊖ n) + (q ⊖ p) = ((m + q)⊖ (p + n)), and this is negative if
and only if m+ q < p+ n. So

(m⊖ n) < (p⊖ q) if and only if m+ q < p+ n.

The important thing to note here is that the right-hand side only contains Natural
Numbers (m + q and p + n), so our definition of order between Integers only
involves Natural Numbers.

There are three alternatives when comparing the Integers x and y: (i) x > y,
(ii) x = y, (iii) y > x. Of course we may write x > y as y < x, etc.

Here is a summary of the properties we have discussed. If a, b, c are any
members of Z then

1. a+ b and ab both lie in Z (Z is closed under addition and multiplication),

2. a+ b = b+ a and ab = ba ( the commutative laws),

3. (a+ b) + c = a+ (b+ c) and (ab)c = a(bc) (the associative laws),

4. a(b+ c) = ab+ ac (multiplication is distributive over addition),

5. 0 + a = a (0 is an additive identity),

6. 1a = a (1 is a multiplicative identity),

7. for each a ∈ Z there is an additive inverse (−a) ∈ Z such that
a+ (−a) = 0,
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8. for each a ∈ Z precisely one of the following three alternatives holds
i) a > 0, ii) a = 0, iii) 0 > a,
and in case i) we say a is positive, in case iii) we say a is negative.

9. If a, b ∈ Z and a > 0, b > 0 (i.e. a and b are positive), then a + b > 0 and
ab > 0.

We can then define a > b to mean a− b > 0, define b < a to mean a > b, define
a ≥ b to mean that either a > b or a = b, and define b ≤ a to mean a ≥ b.

A.3 The Rational Numbers, Q

You are probably familiar with fractions such as 1
2
, −1

3
, 2
3
, 3
−4

, etc. It is clear just
by looking at these fractions that each is formed from two Integers, one on the
top of the fraction (the numerator) and one on the bottom (the denominator). A
fraction is occasionally called a quotient, so we might call 3

4
the quotient of 3 and

4. This explains the use of the symbol Q to denote the set of fractions. The only
denominator that is prohibited is the integer zero.

Formally, each Rational Number is constructed from (you might say repre-
sented by) an ordered pair of Integers (m,n), where n ̸= 0, that we choose to
write as m

n
. In other words we just replace the comma in (m,n) by the fraction

bar and drop the brackets ( ). Each fraction has many alternative representa-
tions, for example, 1

2
= 2

4
. In general, two Rational Numbers m

n
and p

q
are said

to be equal if and only if m × q = p × n. The important thing to note is that
this definition of equality between fractions only involves Integers. Thus equality
of fractions is defined in terms of something we already understand: equality of
Integers.

Addition of Rational Numbers f = m
n

and g = r
s

is defined as follows:

f + g =
m

n
+
r

s
=
m× s

n× s
+
r × n

s× n
=
m× s+ r × n

n× s
.

It is necessary to check that we get the same answer for f + g irrespective of the
representation of f and g, so if we have f = m

n
= p

q
and g = r

s
= t

u
, we get the

same answer whether we use f = m
n

or f = p
q
, and whether we use g = r

s
or

g = t
u

. This is indeed the case, so this is a good definition!

Multiplication of f = m
n

and g = r
s

is defined as follows:

f × g =
m× r

n× s
.
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Again this turns out to be a good definition, meaning that it does not depend on
how the fractions f and g are represented.

Each Integerm can be identified with the Rational Number m
1

so we may write
m = m

1
. In particular, 0 = 0

1
and 1 = 1

1
.

The properties already mentioned for the Integers Z are inherited by the Ra-
tional Numbers Q. We can add and multiply Rational Numbers and the result is
always a Rational Number. The commutative and associative laws for addition
and multiplication hold, and multiplication is distributive over addition. There is
an additive identity (0) and a multiplicative identity (1), and every Rational Num-
ber f has an additive inverse −f .

But now there is a further interesting property. For each Rational Number
f (except for f = 0) there is another Rational Number f−1, the multiplicative
inverse or reciprocal of f with the property that f × f−1 = 1. If f = m

n
then

f−1 = n
m

because m
n
× n

m
= m×n

n×m
= 1

1
= 1. For example, the multiplicative

inverse (the reciprocal) of 5
7

is 7
5
.

By using multiplicative inverses (reciprocals) we can define division as fol-
lows. If f and g are Rational Numbers, then f ÷ g is defined as f × g−1, and we
can write this in alternative forms as f × 1

g
or more briefly as f/g. For example,

if we want 6 ÷ 3 we take f = 6 = 6
1

and g = 3 = 3
1
, so that g−1 = 1

3
. Then

6 ÷ 3 = 6
1
× 1

3
= 6×1

3×1
= 6

3
= 2

1
= 2. I’m not suggesting you should actually

do divisions like this in practice, but just illustrating how division is really just
multiplication in disguise.

We can extend the picture of a number line mentioned in the case of Z to
represent Rational Numbers Q. As examples, 3

2
lies halfway between 0 and 3

while 2
3

lies one third of the way between 0 and 2. This picture enables us to put
Rational Numbers into order. We write a > b if a is to the right of b and we write
a < b if a is to the left of b. The only other alternative is that a = b. The formal
definition of this ordering is that for Rational Numbers m

n
and p

q
with n and q both

positive, we say m
n
< p

q
if and only if m× q < p× n.

Of course Rational Numbers never have 0 as a denominator. This is not be-
cause mathematicians have an unreasonable hatred of dividing by zero (our hatred
of this is perfectly reasonable) and are spitefully stopping people from doing this,
but because it just doesn’t make sense. You can cut an object into, say, 10 parts
each of which is a tenth of the whole, or 3 parts each of which is a third of the
whole, or even (stretching English usage a bit) into 1 part comprising the whole
of the whole, but you simply can’t cut an object into 0 parts.

Here is a list summarising the properties of Q. If f, g, h are any members of
Q then

1. f + g and fg both lie in Q (Q is closed under addition and multiplication),
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2. f + g = g + f and fg = gf (the commutative laws),

3. (f + g) + h = f + (g + h) and (fg)h = f(gh) (the associative laws),

4. f(g + h) = fg + fh (multiplication is distributive over addition),

5. 0 + f = f (0 is an additive identity),

6. 1f = f (1 is a multiplicative identity),

7. for each f ∈ Q there is an additive inverse (−f) ∈ Q such that
f + (−f) = 0,

8. for each f ∈ Q, except for f = 0, there is a multiplicative inverse (recipro-
cal) f−1 ∈ Q such that f(f−1) = 1.

9. for each f ∈ Q precisely one of the following three alternatives holds
i) f > 0, ii) f = 0, iii) 0 > f ,
and in case i) we say f is positive, in case iii) we say f is negative.

10. If f, g ∈ Q and f > 0, g > 0 (i.e. f and g are positive), then f + g > 0 and
fg > 0.

We can then define f > g to mean f − g > 0, define g < f to mean f > g, define
f ≥ g to mean that either f > g or f = g, and define g ≤ f to mean f ≥ g.

A.4 The Real Numbers, R
We have seen how to construct Z from N, and how to construct Q from Z. In each
case the extended system was formed from its precursor as a collection of ordered
pairs with a rule for determining when two of the pairs represent the same number
(as in 1

2
= 2

4
). There is such a method for constructing R, but rather than pairs

of Rational Numbers, it uses pairs of sets of Rational Numbers. This method is
due to Richard Dedekind c.1858, and the pairs of sets are called Dedekind cuts.
Using pairs of sets looks like a big complication, but it does have the merit that
every Real Number has one and only one representation, unlike in Q where each
number has infinitely many representations such as 1

2
= 2

4
= 3

6
= . . ..

The idea is to represent each x ∈ R by the two “sections” of Q which it
produces. For example,

√
2 produces the collection of all Rationals below

√
2

(L, say) and the collection of all Rationals above
√
2 (R, say). In the ordered

pair (L,R), L is called the left section and R is called the right section. The two
sections L and R determine the position of

√
2 on the number line, so knowing L

and R is as good as knowing the value of
√
2. So we define

√
2 = (L,R). There
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is no circularity in this definition because we can test elements of Q to see if they
lie in L or R simply by squaring them. So if x ∈ Q is negative (or zero), we place
it in L. If x ∈ Q is positive and x2 < 2, we also place it in L, but if x ∈ Q is
positive and x2 > 2, we place it in R.

In general we can envisage the Rational Numbers Q distributed along the num-
ber line. We “cut” the number line by forming two sets L and R of Rational
Numbers such that

1. every Rational Number lies in either L or R,

2. every Rational Number in L is less than every Rational Number in R,

3. neither L nor R is empty.

4. there is no least element in R

The pair (L,R) may then be used to define a Real Number x corresponding to the
point where the cut is made. Figure A.1 illustrates the line of Rational Numbers
partitioned into two sections defining a Real Number x. The left section is denoted
by L and shown in green, the right section is denoted by R and shown in red.

. . . L . . .Rx

Figure A.1: Dedekind cut at x = (L,R).

Requirement 4 above deserves some explanation. If we decide to cut the Ra-
tionals at 1

2
, then L contains all the Rationals less than 1

2
and R contains all the

Rationals greater than 1
2
, but where to put 1

2
itself? Requirement 4 tells us not to

put it into R because it would then be the least element in R, so we must put it
into L. This leaves R containing every Rational greater than 1

2
, and L containing

all the remaining Rationals, namely those less than 1
2
, together with 1

2
itself. So

requirement 4 is really just there to tell us which set to use if we decide to cut
the Rationals at a Rational Number. If we cut the Rationals at

√
2, there isn’t a

problem since
√
2 isn’t a candidate for either L or R because it isn’t a Rational

Number (
√
2 ̸∈ Q).

For any Real Number x defined by a cut (L,R), if we are told whatR contains,
then we can deduce what L contains since L contains all the Rationals that are not
in R. So x is actually defined once we know the right section R. (Of course
it is also defined once we know L.) Consequently we may identify each Real
Number x with just its right section R and omit mention of its left section L. For
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example, the right section for
√
2 consists of all the positive Rational Numbers

whose squares exceed 2. So we get
√
2 = {f ∈ Q : f > 0 and f 2 > 2}.

And here I am using red ink to distinguish the new numbers (R) from the old
numbers (Q).

When we constructed the Rational Numbers from the Integers, there was the
issue that the Rational Number 2

1
is identified with the Integer 2. This didn’t cause

a problem but, logically speaking, they are slightly different since one lies in Q
while the other lies in N. We encountered the same sort of issue when discussing
the formation of the set of Integers Z from the Natural Numbers N. In constructing
the Real Numbers we again have this slightly irritating logical difference between
0.5 ∈ R and 1

2
∈ Q. Although we choose to identify them as the same number,

strictly speaking in terms of a right section

0.5 = {f ∈ Q : f > 1
2
}.

If this looks a bit bizarre, remember that the number on the left is regarded as a
Real Number, while the f and 1

2
inside the curly brackets are Rational Numbers.

I wrote 0.5 rather than 1
2

just to emphasize this distinction. But having made the
point, I’ll now drop using the red ink.

Of course we have to explain how to add and multiply cuts (i.e. right sections),
how to define the order relation (<), and then show that our new numbers have all
the required properties. All this can be done. We will just indicate how to begin.
Suppose that Rx and Ry are the two right sections defining Real Numbers x and
y respectively.

First we deal with the order relation by defining x < y to mean that Ry is a
(proper) subset of Rx. [“proper” means that we exclude the case Ry = Rx, which
corresponds to x = y.] Figure A.2 illustrates this definition with Rx shown in
red and Ry shown in blue. We can then define “positive” and “negative” for Real
Numbers.

. . . . . .
x y . . .Rx

. . .
Ry

Figure A.2: x < y means that Ry is a proper subset of Rx.

Next we deal with addition by defining x + y as the (new) right section that
contains the sums of all the pairs (s, t) of Rationals for s ∈ Rx and t ∈ Ry:

x+ y = {r : r = s+ t for some s ∈ Rx and t ∈ Ry}.
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For example, if the Real Numbers 1 and 2 are to be added then 1 + 2 has the right
section R containing the sum of each Rational Number greater than 1 and each
Rational Number greater than 2. So R certainly contains 1.001 + 2.001 = 3.002,
and it is then easy to see that R contains every Rational Number greater than 3,
and no Rational Numbers less than 3. Consequently for Real Numbers, 1+ 2 = 3
(reassuring).

Multiplication is defined in a similar way although there is a complication
caused by the fact that the product of two negative Rationals is positive. Using the
same terminology as for addition, we would really like to define

x× y = {r : r = s× t for some s ∈ Rx and t ∈ Ry}.

Although this works fine when x and y are both positive (or zero), it is not good
enough when negative numbers are involved. For example, if x = (−2) and
y = (−3) then we’d like the right section corresponding to the product to be
R = {f ∈ Q : f > 6}. However we have (−1) ∈ Rx and (−2) ∈ Ry, but
(−1) × (−2) = 2, which does not lie in R. So some technical adjustments are
needed to deal with this problem. We won’t do that here. It is actually easier to
stick with the definition above for x × y when x ≥ 0 and y ≥ 0, and then define
(−x)× y and x× (−y) as −(x× y), and define (−x)× (−y) as x× y.

It is now relatively easy, if somewhat tedious, to check that the Real Numbers
R, as defined by Dedekind cuts, satisfy the properties listed for Q in the previ-
ous subsection. We will omit these checks. But we will prove that R has the
completeness property.

Suppose that S is a (non-empty) set of Real Numbers that is bounded above.
Then each x ∈ S is defined by a cut of Q that we will denote as (Lx, Rx). Define

R̄ =
⋂
x∈S

Rx = {f : f ∈ Rx for every x ∈ S}.

Then R̄ is a subset of Q and we define L̄ = Q \ R̄, so that L̄ contains all the
remaining elements of Q.

We check that neither R̄, nor L̄ is empty. Let M ∈ R denote an upper bound
of S and suppose that M = (LM , RM). Then RM ⊆ R̄, so R̄ is non-empty. If
x is any element of S and f is any Rational Number in Lx, then f ∈ L̄, so L̄ is
non-empty.

We also check that every f ∈ L̄ is less than every g ∈ R̄. If f ∈ L̄ then there
exists y ∈ S such that f ̸∈ Ry, so f ∈ Ly. If g ∈ R̄ then g ∈ Rx for every x ∈ S
and, in particular, g ∈ Ry. Since (Ly, Ry) is a cut of Q it follows that f < g.

Thus (L̄, R̄) satisfies three of the four properties required for a Dedekind cut
of Q. Let us assume initially that R̄ has no least element so that (L̄, R̄) defines a
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cut, and put b = (L̄, R̄) ∈ R. For each x ∈ S, R̄ ⊆ Rx, so x ≤ b. Hence b is
an upper bound of S. Next suppose that a = (La, Ra) is any upper bound of S.
Then for each x ∈ S, Ra ⊆ Rx, and consequently Ra ⊆ R̄. Hence b ≤ a, and this
proves that b is the least upper bound of S.

The same argument, with minor modifications, deals with the case when R̄
has a least element b. In such a case, remove b from R̄ to form R∗ and add it to L̄
to form L∗. Then (L∗, R∗) forms a cut of Q and L∗ has maximum element b ∈ Q.
The cut defines the equivalent Real Number b = (L∗, R∗) (To avoid confusion, I
am using red ink to distinguish b ∈ Q and b ∈ R.) For each x ∈ S, R∗ ⊆ R̄ ⊆ Rx,
so x ≤ b. Hence b is an upper bound of S. Next suppose that a = (La, Ra) is any
upper bound of S. Then for each x ∈ S, Ra ⊆ Rx, and consequently Ra ⊆ R̄. If
we had b ∈ Ra then Ra would have b as a least element, but this is not possible
since Ra is a right section. Hence Ra ⊆ R∗, giving b ≤ a, and this proves that b
is the least upper bound of S.



Appendix B

Identifying N in R

In Appendix A we showed how the set of Real Numbers R may be constructed
from the set of Natural Numbers N, whose properties we assume to be correct as
set out in the Peano Postulates. But that is not how we defined R originally in this
book. We assumed that there is a set of numbers called R that obeys the Axioms
A, B and C as described in Section 2.3 of Chapter 2. These axioms make no
specific mention of Natural Numbers, Integers or Rational Numbers. Our purpose
here is to show how these may be identified as subsets of R as specified by the
axioms. The only tricky identification is that of N (not that tricky). Once we have
N it is easy to get Z (Integers) and Q (Rational Numbers). We will also give a
fuller explanation of proof by induction.

First define an inductive set to be any subset S of R with the properties that
(a) 1 ∈ S and (b) for each x ∈ S, x + 1 ∈ S. There are many inductive sets.
For examples, R is itself an inductive set, the set of positive Real Numbers is an
inductive set, and {x ∈ R : x > 1

2
} is an inductive set. Of course some subsets

of R are not inductive sets, examples are the set of negative Real Numbers, the
set {1, 2, 3}, and {x ∈ R : x > 1}. Now ask yourself the question: “what is the
smallest inductive set?” and you will probably understand what we are trying to
do (of course, “smallest” is rather imprecise).

By the very definition of an inductive set, 1 is an element of every inductive
set, as is 1+1 = 2, 2+1 = 3, and so on. We therefore identify N as the set of Real
Numbers that lie in every inductive set. It follows that N is itself an inductive set
and it is contained in every inductive set. It is unique because if there was another
inductive set N′ contained in every inductive set, then we would have N ⊆ N′ and
N′ ⊆ N, and so N′ = N.

It should also be reasonably clear that this set N satisfies the Peano Postulates
with the successor of n defined as n + 1 using the addition operation on R guar-
anteed by the axioms. In particular, if C ⊆ N is an inductive set, then N ⊆ C and
so C = N, and this deals with the fifth postulate.
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Having identified N as a subset of R we define the set of Integers

Z = {x : x ∈ N or − x ∈ N or x = 0}.

Then we define the set of Rational Numbers

Q = {x : x = pq−1 for some p, q ∈ Z (with q ̸= 0)}.

The inductive nature of N puts the method of proof by induction onto a firm
footing. Suppose that for each Natural Number n, P (n) is a statement about n.
Let C be the set of Natural Numbers n for which P (n) is true. Then C ⊆ N.
Suppose that we can show (a) 1 ∈ C and (b) for each k ∈ C, k + 1 ∈ C. Then C
is inductive and so N ⊆ C. It follows that C = N, in other words P (n) is true for
every Natural Number n.

To be absolutely precise we should specify what constitutes a statement about
n and whether this leads to a set of numbers for which the statement is true. We are
not going to do that as it would takes us into a long discussion of Mathematical
Logic and Set Theory. The sort of statements that we will use are eminently
respectable, as are the resulting sets.



Appendix C

Integer roots in R

Here we show that the completeness axiom ensures that every positive Real Num-
ber has a positive nth root for each positive integer n. This proof is from first
principles. A better (shorter) method of proof is to use the intermediate value the-
orem applied to the continuous function f(x) = xn, which is strictly increasing
on [0,∞) and satisfies f(0) = 0, f(x) → ∞ as x→ ∞, and therefore takes every
value a > 0. However, we introduced nth roots before discussing continuity, so a
longer proof from first principles is given here.

Theorem C.1. If n is a positive integer and a > 0 then there exists a number
b > 0 such that bn = a. In other words a has a nth root b = a

1
n .

Proof. Put S = {x ∈ R : x ≥ 0 and xn ≤ a}. Then S is non-empty since 0 ∈ S.
Actually S contains some strictly positive numbers because if a ≤ 1 then a ∈ S,
while if a > 1 then 1 ∈ S. The set S is also bounded above because if a ≤ 1 then
1 is an upper bound, while if a > 1 then a is an upper bound. Hence S has a least
upper bound b > 0. We will prove that bn = a.

Suppose that bn < a and consider (b+ ϵ)n where 1 > ϵ > 0. By the binomial
theorem

(b+ ϵ)n = bn + ϵnbn−1 + ϵ2
n(n− 1)

2!
bn−2 + . . .+ ϵn

= bn + ϵ
[
nbn−1 + ϵ

n(n− 1)

2!
bn−2 + . . .+ ϵn−1

]
< bn + ϵ

[
nbn−1 +

n(n− 1)

2!
bn−2 + . . .+ 1

]
( since ϵ < 1)

= bn + ϵ
[
(b+ 1)n − bn

]
.

So if we now fix ϵ = min
(1
2
,

a− bn

(b+ 1)n − bn

)
then 1 > ϵ > 0 and (b + ϵ)n < a.
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Thus b+ ϵ ∈ S, contradicting the fact that b is an upper bound of S. We conclude
that bn ≥ a.

Now suppose that bn > a and consider (b− ϵ)n where now min(1, b) > ϵ > 0.
Arguing as before,

(b− ϵ)n = bn − ϵ
[
nbn−1 − ϵ

n(n− 1)

2!
bn−2 + . . .+ (−1)n−1ϵn−1

]
> bn − ϵ

[
nbn−1 +

n(n− 1)

2!
bn−2 + . . .+ 1

]
(by the triangle inequality)

= bn − ϵ
[
(b+ 1)n − bn

]
.

So if we now fix ϵ = min
(1
2
,
b

2
,

bn − a

(b+ 1)n − bn

)
then min(1, b) > ϵ > 0 and

(b − ϵ)n > a. Thus b − ϵ is an upper bound of S, contradicting the fact that b is
the least upper bound of S. We conclude that bn ≤ a.

So we now have a ≤ bn ≤ a, and so we must have bn = a.

It is easy to see that the positive nth root b of the positive number a is unique.
If 0 < c < b then cn < bn = a, so c is not an nth root of a, and if c > b then
cn > bn = a, so again c is not an nth root of a.
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subtraction

Natural Numbers, 270
successor, 267
supremum, 16, 25
surjective, 95

Taylor series, 164
Taylor’s Theorem, 161
triangle inequality, 22, 25
trigonometric functions

see circular functions, 190

upper bound, 16, 25
upper limit of a sequence, 53


