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1 Preamble

1.1 About this package

This package is for people who need to solve relatively easy types of second
order differential equations. It doesn’t contain a lot of theory. It isn’t really
designed for pure mathematicians who require a course discussing existence
and uniqueness of solutions.

You will find that you need a background knowledge of differentiation,
integration and first order differential equations in order to get the most out
of this package. In particular, you need to be able to differentiate using
the product, quotient and function-of-a-function rules. You also need to be
able to carry out integrations by simple substitutions, by parts, and using
partial fractions. You will need to be able to solve separable and linear first
order differential equations. If you are a bit rusty, don’t worry - but it would
be sensible to do some revision either at the start or as the need arises.
Reasonable revision texts are given in the bibliography (Section 11).

If you complete the whole package you should be able to

� recognise a second order linear constant-coefficient differential
equation,

� understand what is meant by a homogeneous equation,

� obtain the complementary function using the auxiliary equation,
in each of the three cases: (a) unequal real roots, (b) complex roots,
(c) equal real roots,

� obtain a particular integral by one of the two methods described
(trial functions or D-operators),

� obtain the general solution by adding the complementary function
and a particular integral,

� obtain solutions satisfying given boundary or initial conditions by
determining appropriate values for the constants in the general solution,

� understand the connection with mechanical and electrical vibrational
problems, the physical significance of the individual terms, damping
and resonance,

� solve simple simultaneous linear differential equations,

� understand how to reduce a second order equation to two simultaneous
first order equations.
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Depending on your own programme of study you may not need to cover
everything in this package. Your tutor will advise you what, if anything, can
be omitted. In particular, two methods are given for determining particular
integrals; it is unlikely that you would be required to know both methods.

1.2 How to use this package

YouMUST do examples! Doing lots of examples for yourself is gen-
erally the most effective way of learning the contents of this package and
covering the objectives listed above. We recommend that you

� first read the theory - make your own notes where appropriate,

� then work through the worked examples - compare your solutions with
the ones in the notes,

� finally do similar examples yourself in a workbook.

The original printing of these notes leaves every other page blank. Use the
spare space for your own comments, notes and solutions. You will see certain
symbols appearing in the right hand margin from time to time:

⃝ denotes the end of a worked example,

2 denotes the end of a proof,

V denotes a reference to videos (see below for details),

EX highlights a point in the notes where you should try examples.

By the time you have reached a package like this one you will probably
have realised that learning mathematics rarely goes smoothly! When you get
stuck, use your accumulated wisdom and cunning to get around the problem.
You might try:

� re-reading the theory/worked examples,

� putting it down and coming back to it later,

� reading ahead to see if subsequent material sheds any light,

� talking to a fellow student,

� looking in a textbook (see the bibliography),

� watching the appropriate video (see the video summaries),

� raising the problem at a tutorial.
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1.3 Videos, tutorials and self-help

The videos cover the main points in the notes. The areas covered are indi-
cated in the notes, usually at the ends of sections and subsections. To resolve
a particular difficulty you may not need to watch a whole video (they are
each about 40 minutes long). They are broken up into sections prefaced with
titles which can be read on fast scan. In addition, a summary of the videos
associated with this package appears as an appendix to these notes.

Your tutor will tell you about the arrangements for viewing the videos.
Try the worked examples before watching the solution unfold on the screen.
Make notes of any points you cannot follow so that you can explain the diffi-
culty in a subsequent tutorial session. If you are viewing a video individually,
remember the rewind button! Unlike a lecture you can get instant and 100
percent accurate replay of what was said.

Your tutor will tell you about tutorial arrangements. These may be re-
lated to assessment arrangements. If attendance at tutorials is compulsory
then make sure you know the details! The tutorials provide you with indi-
vidual contact with a tutor. Use this time wisely - staff time is the most
expensive of all our resources.

You should come to tutorials in a prepared state. This means
that you should have read the notes and the worked examples. You should
have tried appropriate examples for yourself. If you have had difficulty with
a particular section then you should watch the corresponding video. If your
tutor finds that you haven’t done these things then s/he may refuse to help
you. Your tutor will find it easier to assist you if you can make any queries
as specific as possible.

Your fellow students are an excellent form of self-help. Discuss problems
with one another and compare solutions. Just be careful that

1. any assessed coursework submitted by you is yours alone,

2. you yourself do really understand solutions worked out jointly with
colleagues.

Familiarize yourself with the layout and contents of these notes; scan
them before reading them more carefully. The contents page will help you
find your way about - use it. The bibliography will point you to textbooks
covering the same material as these notes.

When you graduate, your future employer will be just as interested in
your capacity for learning as in what you already know. If you can learn
mathematics from this package and from textbooks then you will not only
have learnt a particular mathematical topic. You will also (and more impor-
tantly) have learnt how to learn mathematics.
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2 Introduction

We shall be mainly concerned with a very restricted class of second order
differential equations, namely those which are linear and have constant coef-
ficients. In fact the solution methods described apply also to nth order linear
constant-coefficient differential equations; it is only for ease of calculations
that we shall concentrate on the second order variety. In practice it is second
order ones which occur most frequently.

The general nth order linear constant-coefficient differential equation has
the form

an
dny

dxn
+ an−1

dn−1y

dxn−1
+ · · ·+ a1

dy

dx
+ a0y = f(x) (1)

where n is a positive integer, the quantities an, an−1, · · · , a1, a0 are all con-
stants (the constant coefficients) and an ̸= 0 (so that the equation is genuinely
of nth order). The function f(x) is a function of x (alone) or is a constant.
An example of a second order one is

d2y

dx2
+ 3

dy

dx
+ 2y = sinx

Here a2 = 1, a1 = 3, a0 = 2 and f(x) = sin x.
The general form (1) is described as linear (in y) because it does not

contain terms like y2, sin y,
√

1 + ( dy
dx
)2; it only contains y as itself or in dy

dx
, d2y
dx2 ,

etc.
If f(x) is identically zero (f(x) ≡ 0) then equation (1) is said to be

homogeneous because all the non-zero terms then contain y (as itself or in
dy
dx
, d2y
dx2 , etc.). Unfortunately this is a different use of the word “homogeneous”

to that which is employed in connection with first order equations - so beware!
If f(x) is not identically zero, the equation is said to be inhomogeneous or
non-homogeneous.

A function y(x) which, when substituted into the differential equation
(1), makes it an identity is called a solution of the differential equation.
Example 2.1 Show that y = e−x is a solution of the differential equation

d2y

dx2
+ 3

dy

dx
+ 2y = 0
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Solution If y = e−x then dy
dx

= −e−x and d2y
dx2 = e−x. Hence

d2y

dx2
+ 3

dy

dx
+ 2y = e−x − 3e−x + 2e−x = 0

as required. ⃝
In rough and ready terms, for an nth order equation, we would expect to

have to perform n integrations to eliminate dny
dxn (i.e. to convert it to y). Each

such integration would introduce an integration constant. Consequently we
would expect the most general solution of an nth order differential equation
to contain n (independent) arbitrary constants. For equations of the form
(1) this is indeed the case. Furthermore any solution of (1) which contains
n independent arbitrary constants is a form of the general solution. We
shall not prove this last remark, but we shall find it extremely useful. We
summarize the position in the following theorem which we state without
proof.

Theorem 2.1. The general solution of an nth order linear constant - coeffi-
cient differential equation contains n independent arbitrary constants. Con-
versely, any solution of such an equation which does contain n independent
arbitrary constants is the general solution.

A solution of (1) which is not the general solution is called a particular
solution or a particular integral. In the previous example, e−x is a
particular integral of the equation

d2y

dx2
+ 3

dy

dx
+ 2y = 0

Any particular integral can be obtained from the general solution by assigning
appropriate values to the n independent arbitrary constants.

In an equation such as (1) we sometimes refer to the variable x as the
independent variable and the function y as the dependent variable.

(The video discusses the general form, notation and terminology.) V
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3 D-Operator Notation

In equations such as (1) we shall often use D for the differential operator
d
dx
. Thus D2 means d2y

dx2 , and so on. We can then, for example, write the
differential equation

5
d2y

dx2
+ 6

dy

dx
+ y = sinx

in the form
5D2y + 6Dy + y = sinx

or even as
(5D2 + 6D + 1)y = sinx

We can even factorise:

(5D + 1)(D + 1)y = sinx

the implication being that we first compute what (D+1) does to y [it produces
dy
dx

+ y] and then we compute what (5D + 1) does to this result [it produces

(5 d2y
dx2 +5 dy

dx
)+ ( dy

dx
+ y) which equals 5 d2y

dx2 +6 dy
dx

+ y, as expected]. Clearly the
order of the factors is unimportant.

The general form (1) can then be written as

(anD
n + an−1D

n−1 + · · ·+ a1D + a0)y = f(x) (2)

We can shorten this to P (D)y = f(x) where P (D) is understood to be the
differential operator anD

n + an−1D
n−1 + · · ·+ a1D + a0. Note that P (D) is

an nth order polynomial in D.
(The video describes the use of the D-operator notation.) V
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4 Method of Solution

We wish to solve the general form (2). The solution is formed from two com-
ponents. We shall look at methods for determining each of these components
in due course. In this section we shall simply describe the two components
and show how they are combined.
Definition 4.1 Given the equation

(anD
n + an−1D

n−1 + · · ·+ a1D + a0)y = f(x), (an ̸= 0)

the general solution of the corresponding homogeneous equation is called the
complementary function. We often denote this function by yc. By “the
corresponding homogeneous equation” we mean the equation obtained by
deleting f(x) and replacing it by 0. Thus yc satisfies the equation

(anD
n + an−1D

n−1 + · · ·+ a1D + a0)yc = 0 (3)

Moreover, since yc is the general solution of equation (3) it contains n inde-
pendent arbitrary constants.
Definition 4.2 (We’ve already met this.) Given the equation

(anD
n + an−1D

n−1 + · · ·+ a1D + a0)y = f(x), (an ̸= 0)

any solution which satisfies the equation and which is not the general solution
is called a particular integral. Should such a solution contain any arbitrary
constants we may set these to arbitrary values (for example we could set
them all to zero). We shall assume this has been done, so that a particular
integral contains no arbitrary constants. We often denote such a particular
integral by yp. We reiterate that yp contains no arbitrary constants and that
it satisfies the equation

(anD
n + an−1D

n−1 + · · ·+ a1D + a0)yp = f(x) (4)

The functions yc and yp are the two components needed to solve equation
(2).
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Theorem 4.1. The general solution of the equation

(anD
n + an−1D

n−1 + · · ·+ a1D + a0)y = f(x), (an ̸= 0)

is given by y = yc + yp.

Proof Firstly we note that yc + yp will contain n independent arbitrary
constants because yc does and yp has none. Secondly we verify that yc + yp
is a solution:

(anD
n + an−1D

n−1 + · · ·+ a1D + a0)(yc + yp)

= (anD
n + an−1D

n−1 + · · ·+ a1D + a0)yc

+ (anD
n + an−1D

n−1 + · · ·+ a1D + a0)yp

= 0 + f(x) (using equations (3) and (4))

= f(x)

as required. This completes the proof because by theorem 2.1 any solution
with n arbitrary constants is the general solution. 2

It is, perhaps, worth remarking that a given differential equation can have
several different particular integrals. Any one of these can be employed in
the previous result. This sometimes confuses students who compare their
results with those of their colleagues; two different-looking answers may be
equivalent. To investigate this briefly, suppose that yp1 and yp2 are two
different particular integrals of (2). Then if y = yp1 − yp2 we have

(anD
n + an−1D

n−1 + · · ·+ a1D + a0)y

= (anD
n + an−1D

n−1 + · · ·+ a1D + a0)yp1
− (anD

n + an−1D
n−1 + · · ·+ a1D + a0)yp2

= f(x)− f(x)

= 0

Thus y is a solution of the corresponding homogeneous equation. It is there-
fore obtainable from the general solution of the homogeneous equation (i.e.
from yc) by assigning appropriate values to the constants. It follows that
the difference between two particular integrals must be contained within the
complementary function. If Fred obtains a general solution yc1 + yp1 and
Mary a general solution yc2 + yp2 then their different-looking answers can
both be correct provided that yc1 and yc2 can be obtained from one another
by renaming the arbitrary constants and provided that (yp1 −yp2) can be ob-
tained from these by giving the constants appropriate values. (An example
is given at the end of section 6.2.1.)
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We shall now consider each of our two ingredients yc and yp separately.
The simpler of the two turns out to be yc. We shall therefore start with this
by trying to obtain the general solution of the homogeneous equation

(anD
n + an−1D

n−1 + · · ·+ a1D + a0)y = 0

(The video deals with the form of the general solution and the definition
of complementary functions and particular integrals.) V
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5 Solution of Homogeneous Equations

(Complementary Functions)

Consider initially the first order equation

(D + a)y = 0

where a is a constant. This equation can be written as

dy

dx
= −ay

Hence ∫
dy

y
= −a

∫
1.dx+ c (where c is an arbitrary constant)

i.e.
logey = −ax+ c

therefore
y = e−ax+c = e−axec = Ae−ax

where A = ec is a constant. Thus any first order linear constant-coefficient
equation will have a solution which is an exponential function of x.

Accordingly, for the second order equation

(a2D
2 + a1D + a0)y = 0

we try y = emx to see if, for suitable values of m, this represents a solution.
This will be the case if, and only if

(a2D
2 + a1D + a0)e

mx = 0 (for all x)

i.e. a2D
2emx + a1Demx + a0e

mx = 0

i.e. a2m
2emx + a1memx + a0e

mx = 0

(since Demx = d
dx
(emx) = memx and likewise D2emx = m2emx). Hence

y = emx is a solution if, and only if

(a2m
2 + a1m+ a0)e

mx = 0

and since emx can never be zero we deduce

a2m
2 + a1m+ a0 = 0 (the auxiliary equation)
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Leaving aside the problems of equal and complex roots, suppose this auxiliary
equation has the roots m = m1 and m = m2. Then y1 = em1x and y2 = em2x

will both be solutions of the differential equation

(a2D
2 + a1D + a0)y = 0

i.e.

(a2D
2 + a1D + a0)e

m1x = 0 and (a2D
2 + a1D + a0)e

m2x = 0

It then follows that for any two arbitrary constants A and B that the function

y = Aem1x +Bem2x

represents a solution of the equation since

(a2D
2 + a1D + a0){Aem1x +Bem2x}

= A(a2D
2 + a1D + a0)e

m1x +B(a2D
2 + a1D + a0)e

m2x

= A.0 +B.0

= 0

But this function y is not only a solution of the differential equation, it
contains two arbitrary and independent constants. Hence, by theorem 2.1
this function y is the general solution of the equation.
Example 5.1 Find the general solution of

D2y − 5Dy + 6y = 0

Solution The auxiliary equation is m2 − 5m+ 6 = 0 which gives
(m − 3)(m − 2) = 0, and so m = 2 or 3. Hence the general solution is
y = Ae2x +Be3x. ⃝

The method described and illustrated above works fine provided that the
auxiliary equation has distinct real roots. For equations with real coefficients
(the only kind we shall consider) there are two other possibilities:

(i) a pair of complex conjugate roots α± iβ, and

(ii) equal real roots.

We examine each of these cases in turn.
(i) Suppose that the auxiliary equation has a pair of complex con-
jugate roots α± iβ. The above method gives the general solution as

y = Ae(α+iβ)x +Be(α−iβ)x
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Although this is correct, a little re-arrangement gives a form which is prefer-
able in that it contains no explicit reference to i =

√
−1 (one would hardly

expect the solution to a real equation to contain i). Remember that eiθ =
cos θ + i sin θ. We have

y = Ae(α+iβ)x +Be(α−iβ)x

= Aeαxeiβx +Beαxe−iβx

= eαx(Aeiβx +Be−iβx)

= eαx(A[cos βx+ i sin βx] +B[cos βx− i sin βx]

= eαx[(A+B) cos βx+ (Ai−Bi) sin βx]

= eαx[E cos βx+ F sin βx]

where E,F are arbitrary independant constants (in fact E = A + B,F =
Ai−Bi). As promised, this latter form contains no explicit reference to i . In
practice, we do NOT go through the above deduction on each occasion; we
simply move from the auxiliary equation solutions α±iβ to y = eαx[A cos βx+
B sin βx] (we can call the constants A,B anything we like).
Example 5.2 Find the general solution of

d2y

dx2
− 2

dy

dx
+ 5y = 0

Solution The auxiliary equation is m2 − 2m+ 5 = 0 which has solution

m =
2±

√
4− 20

2
= 1± 2i

Hence the general solution of the differential equation is

y = e1x(A cos 2x+B sin 2x)

(where the 1 in the e1x comes from the real part of 1 ± 2i and the 2 in the
cosine and sine terms comes from the imaginary part). Written slightly more
simply this gives

⃝y = ex(A cos 2x+B sin 2x)

We now turn to the other difficulty:
(ii) Suppose that the auxiliary equation has a pair of equal roots
i.e. m = λ (twice). The auxiliary equation is equivalent to (m − λ)2 = 0
and so the differential equation is equivalent to (D − λ)2y = 0 (i.e. to
(D2 − 2λD + λ2)y = 0).
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To solve (D − λ)2y = 0 we write it as (D − λ)(D − λ)y = 0 and make
the substitution z = (D − λ)y (i.e. z = dy

dx
− λy) so that the equation gives

(D − λ)z = 0, i.e.
dz

dx
− λz = 0

This is first order linear (in fact it is also separable). We can solve it by
calculating the integrating factor:

R(x) = e
∫
−λdx = e−λx

and re-writing the equation as:

d

dx
(R(x).z) = R(x).0 = 0

Hence
d

dx
(e−λx.z) = 0

and so:
e−λxz = A (where A is a constant)

Therefore, multiplying by eλx, we get

z = Aeλx

But, remember, z = dy
dx

− λy. Hence

dy

dx
− λy = Aeλx

This is again a first order linear equation and again we can solve by using
the (same) integrating factor

R(x) = e
∫
−λdx = e−λx

We re-write the equation as:

d

dx
(R(x).y) = R(x).Aeλx

Hence
d

dx
(e−λx.y) = e−λx.Aeλx = A

and so:

e−λxy =

∫
Adx+B (where B is a constant)
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Integrating and once again multiplying by eλx gives

y = (Ax+B)eλx

To summarise: the solution of (D−λ)2y = 0 is y = (Ax+B)eλx. Naturally,
we do not need to wade through all this theory every time.
Example 5.3 Find the general solution of

(D2 + 4D + 4)y = 0

Solution The auxiliary equation is m2 + 4m + 4 = 0, i.e. (m + 2)2 = 0.
Hence m = −2 (twice). The solution of the differential equation is therefore

⃝
y = (Ax+B)e−2x

Higher order equations may be dealt with in a similar fashion. Thus an
equation such as

(D − 3)(2D + 1)2(5D − 7)3y = 0

will have solution

y = Ae3x + (Bx+ C)e−
1
2
x + (Ex2 + Fx+G)e

7
5
x

where the (5D− 7)3 gives rise to a triplicated root of the auxiliary equation

and hence to a quadratic expression times e
7
5
x.

We conclude this section by reminding ourselves that what we have been
doing in finding the general solution of homogeneous equations is one of
the two ingredients in determining the general solution of non-homogeneous
equations. Using the examples we have covered:
a) The complementary function for the equation

(D2 − 5D + 6)y = f(x)

is given by
yc = Ae2x +Be3x

b) The complementary function for the equation

(D2 − 2D + 5)y = f(x)

is given by
yc = ex(A cos 2x+B sin 2x)
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c) The complementary function for the equation

(D2 + 4D + 4)y = f(x)

is given by
yc = (Ax+B)e−2x

In each case yc is independent of f(x); i.e. changing f(x) has no effect on
the complementary function.

We shall now look at the other ingredient in solving non-homogeneous
equations; namely particular integrals.

(The video covers the use of the auxiliary equation and the three cases:
a) unequal real roots, b) a pair of complex conjugate roots, and c) equal real
roots. V

At this point you should try examples involving the general solution of
homogeneous equations and obtaining the complementary function for non-
homogeneous equations.) EX
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6 Particular Integrals

There are several groups of methods for determining particular integrals.
These notes cover two of these groups. You do not need to know both. Your
lecturer will indicate which s/he is following. The former group is sometimes
called the method of undetermined coefficients or the method of trial func-
tions. Essentially it consists of guesswork, albeit intelligent guesswork! The
latter group is sometimes called the D-operator method.

Both approaches have advantages and disadvantages. The undetermined
coefficient method requires some background knowledge of the likely form
of the particular integral and there are tricky cases which are not easy to
explain. However, the algebraic manipulation required is relatively simple.
The D-operator method breaks into three procedures or algorithms which
will deliver a particular integral without any prior knowledge of the form of
the solution. However, these procedures are difficult to justify rigorously. We
shall not attempt such justification here (although it can be done). Generally
speaking, the D-operator method also requires more algebraic manipulation.

Whichever method is used for determining a particular integral and how-
ever dissatisfied you may be with that method, it is usually easy to check
that the particular integral is correct : all you have to do is to verify that it
satisfies the equation. We will use this to justify any “strange” procedures we
adopt although we shall point out the difficulties when we encounter them.

(The videos do not cover the trial function (undetermined coefficient)
method, they only cover the D-operator method.)

6.1 The method of undetermined coefficients
(or trial functions).

The method applies to nth order linear constant coefficient equations. For
convenience we will restrict ourselves to the second order equation

(a2D
2 + a1D + a0)y = f(x) (5)

We consider a number of cases each involving a different form of f(x).

18



6.1.1 When f(x) is a polynomial

In this case we can read (5) as saying that if we apply the differential operator

a2D
2 + a1D + a0

to y(x), we should produce a polynomial f(x). The obvious conclusion is
that y(x) is itself a polynomial because experience tells us that the only
function we can differentiate to produce a polynomial is another polynomial.
Normally we can take y to have the same polynomial degree as f . (e.g. if f
is quadratic then, normally, y is quadratic.) There is actually an important
exception to this equality of degrees which is covered in sub-section 6.1.5; we
shall ignore this problem for the moment.

The method is best illustrated by an example
Example 6.1 Find a particular integral for the equation

y′′ + y = x2

Solution Here f(x) = x2, a quadratic. We try for a particular integral of
the form

yp = ax2 + bx+ c (i.e. another quadratic)

Here a, b, c are the undetermined coefficients and ax2+bx+c the trial function.
We have

y′p = 2ax+ b

and y′′p = 2a

therefore y′′p + yp = 2a+ ax2 + bx+ c

= ax2 + bx+ (c+ 2a)

For this latter expression to reduce to x2 we require a = 1, b = 0 and c =
−2a = −2. Thus yp = x2 − 2 is a particular integral of the given equation. ⃝

Note that we obtained three equations for the three unknowns a, b, c.
Normally, for a polynomial of degree d we will get (d+1) equations in (d+1)
unknowns. The exceptional case referred to above is related to the problem
of consistency of these equations.

(Now try some examples for yourself involving polynomial functions f(x).
If you meet the problem of inconsistent equations then leave that example until
you’ve covered the material in section 6.1.5) EX
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6.1.2 When f(x) is an exponential function

Equation (5) then says that the differential operator

a2D
2 + a1D + a0

applied to y(x) produces something involving an exponential eαx. The obvi-
ous conclusion now is that y(x) also involves eαx. If f(x) = Aeαx for some
constant A we might reasonably expect y(x) = aeαx to be a particular inte-
gral for some appropriate value of a. Again there is an important exception
covered in section 6.1.5 which we ignore for the moment.

We illustrate the method by means of an example.
Example 6.2 Find a particular integral for the equation

y′′ + 3y′ + 2y = 3e2x

Solution Here f(x) = 3e2x. We try for a particular integral of the form
yp = ae2x. Here a is the undetermined coefficient and ae2x the trial function.
We have

y′p = 2ae2x, y′′p = 4ae2x

Therefore

y′′p + 3y′p + 2yp = 4ae2x + 6ae2x + 2ae2x = 12ae2x

For this latter expression to reduce to 3e2x we require 12a = 3, i.e. a = 1
4
.

Thus yp = e2x/4 is a particular integral of the given differential equation. ⃝
Note that we obtained one equation for the one unknown a. Sometimes

this equation is inconsistent and it takes the form 0.a = A where A ̸= 0. The
exceptional case referred to above is related to this problem.

(Now try some examples for yourself involving exponential functions f(x).
If you meet the problem of an inconsistent equation then leave that example
until you’ve covered the material in section 6.1.5) EX

6.1.3 When f(x) is a sine or cosine function

Suppose f(x) = A sinαx where A,α are constants. Then equation (5) says
that the differential operator

a2D
2 + a1D + a0

applied to y(x) produces a multiple of sinαx. We would anticipate that y(x)
might contain terms such as a sinαx and b cosαx, i.e.

y = a sinαx+ b cosαx
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This will be the form of our trial function with a, b as the undetermined
coefficients. Exactly the same form applies when f(x) is a multiple of cosαx,
or a combination of both sine and cosine terms (with the same argument
αx). Again there is an important exception covered in section 6.1.5 which
we ignore for the moment.

We illustrate the method by means of an example.
Example 6.3 Find a particular integral for the equation

y′′ − 2y′ + 2y = sin 2x

Solution Here f(x) = sin 2x. We try for a particular integral of the form

yp = a sin 2x+ b cos 2x

We then have

y′p = 2a cos 2x− 2b sin 2x

and y′′p = −4a sin 2x− 4b cos 2x

Hence y′′p − 2y′p + 2yp = −4a sin 2x− 4b cos 2x

− 4a cos 2x+ 4b sin 2x

+ 2a sin 2x+ 2b cos 2x

= (−4a+ 4b+ 2a) sin 2x

+ (−4b− 4a+ 2b) cos 2x

= (4b− 2a) sin 2x+ (−2b− 4a) cos 2x

For this latter expression to reduce to sin 2x we require

4b− 2a = 1 and − 2b− 4a = 0

These give a = − 1
10
, b = 2

10
. Hence

yp =
− sin 2x+ 2 cos 2x

10

is a particular integral of the given differential equation. ⃝
In general, this method gives two equations for two unknowns. Problems

arise if the equations are inconsistent and the exceptional case mentioned
above is related to this difficulty.

(Now try some examples for yourself in which f(x) is either a sine or a
cosine function. If you meet the problem of inconsistent equations then leave
that example until you’ve covered the material in section 6.1.5) EX
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6.1.4 Combinations of polynomials, exponentials and
sine/cosine functions

If f(x) is a product of an exponential with a sine or a cosine then we look for a
particular integral which also combines these terms, i.e. if f(x) = Aeαx sin βx
or if f(x) = Aeαx cos βx (where A,α, β are constants) we try

yp = eαx(a sin βx+ b cos βx)

where a, b are constants.
If f(x) is a product of a polynomial with an exponential or a sine or

a cosine then we look for a particular integral containing similar combina-
tions. For example, if f(x) = P (x)eαx, where P (x) is a quadratic and α is a
constant, we try

yp = (ax2 + bx+ c)eαx

where a, b, c are constants.
If f(x) = P (x) sinαx or P (x) cosαx where P (x) is a quadratic and α is

a constant, we try

yp = (ax2 + bx+ c) sinαx+ (gx2 + hx+ i) cosαx

where a, b, c, g, h, i are constants.
Finally we deal with the case when f(x) is a product of a polynomial, an

exponential and a sine (or cosine). Suppose, for example

f(x) = P (x)eαx sin βx

where P (x) is a quadratic and α, β are constants. We try

yp = (ax2 + bx+ c)eαx sin βx+ (gx2 + hx+ i)eαx cos βx

where a, b, c, g, h, i are constants.
If in any of the above cases P (x) is not a quadratic we make appropriate

adjustments - for example if P (x) is a cubic we replace all the quadratic
expressions such as (gx2 + hx + i) by cubics. As in the previous sections
inconsistent equations can arise in all the above cases. We shall look at this
in section 6.1.5.
Example 6.4 Find a particular integral for the equation

y′′ − 3y′ + 2y = x sinx

Solution We try for a particular integral of the form

yp = (ax+ b) sinx+ (gx+ h) cosx
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We then have

y′p = (ax+ b) cosx+ a sinx− (gx+ h) sinx+ g cosx and

y′′p = −(ax+ b) sinx+ a cosx+ a cosx− (gx+ h) cosx− g sinx− g sinx

Hence

y′′p − 3y′p + 2yp = −(ax+ b) sinx+ 2a cosx− (gx+ h) cosx− 2g sinx

− 3(ax+ b) cosx− 3a sinx+ 3(gx+ h) sinx− 3g cosx

+ 2(ax+ b) sinx+ 2(gx+ h) cosx

Grouping together the sine terms and the cosine terms on the right-hand side
gives

y′′p − 3y′p + 2yp = [ax+ b− 3a− 2g + 3gx+ 3h] sinx

+ [gx+ h+ 2a− 3ax− 3b− 3g] cosx

= [(a+ 3g)x+ (b− 3a− 2g + 3h)] sinx

+ [(g − 3a)x+ (h+ 2a− 3b− 3g)] cosx

For this to equal x sinx we require

a+ 3g = 1

b− 3a− 2g + 3h = 0

g − 3a = 0

h+ 2a− 3b− 3g = 0

The first and third of these give a = 1
10
, g = 3

10
. The second and fourth then

become

b+ 3h =
9

10

h− 3b =
7

10

Hence b+ 3(
7

10
+ 3b) =

9

10

i.e. 10b =
9

10
− 21

10
= −12

10

so b = − 12

100

But then h = 3b+
7

10

= − 36

100
+

70

100
=

34

100
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Altogether these give

yp = (
x

10
− 12

100
) sinx+ (

3x

10
+

34

100
) cosx

as a particular integral for the differential equation. ⃝
If f(x) is a sum (or difference) of functions of the preceding types then the

particular integral can be found as the sum (or difference) of the appropriate
components. For example if f(x) = 3x2+2 cosx we would try for a particular
integral:

yp = (ax2 + bx+ c) + (g cosx+ h sinx)

where a, b, c, g, h are all constants. The first bracketed term deals with 3x2

and the second deals with 2 cosx. This technique enables us to deal with
the cases when f(x) is one or other of the hyperbolic functions A sinhαx or
A coshαx - we simply expand

sinhαx =
eαx − e−αx

2
=

1

2
eαx − 1

2
e−αx

coshαx =
eαx + e−αx

2
=

1

2
eαx +

1

2
e−αx

[In fact we could go back to basics with these functions and treat them like
we did sine and cosine in the previous section. This would result in trying

yp = a sinhαx+ b coshαx ]

(Now try some examples for yourself involving functions f(x) which are
combinations of polynomials, exponentials and sine/cosine functions. If you
meet the problem of inconsistent equations then leave that example until
you’ve covered the material in section 6.1.5) EX

6.1.5 Failing Cases

As we remarked in 6.1.1 - 6.1.4, the methods given sometimes fail. We shall
see that it is possible to predict such failures in advance and adjust the form
of the trial function in order to obtain a particular integral. We shall start
by considering an example, then we shall give the general rule which we shall
summarize in a table. The rule and the table are difficult to follow
unless you understand the example.
Example 6.5 Find a particular integral for the differential equation

y′′ − 3y′ + 2y = e2x
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Solution Following section 6.1.2 we might try yp = ae2x. This gives

y′′p − 3y′p + 2yp = 4ae2x − 6ae2x + 2ae2x = 0

Arrgh! There is no choice for a which will make the right-hand side equal
e2x. To see why this was predictable consider the complementary function;
firstly the auxiliary equation is m2 − 3m+ 2 = 0, giving (m− 1)(m− 2) = 0
and so m = 1 or 2. Hence the complementary function is

yc = Aex +Be2x

This contains an e2x term. Our initial choice of yp is therefore doomed
to failure because substituting an e2x term into the differential equation is
bound to produce zero.

We must therefore revise our “guess” for yp. The question we need to
address is what function can be differentiated to produce e2x other than e2x

itself. A possible candidate is xe2x, so we try

yp = axe2x

This gives

y′p = 2axe2x + ae2x

and y′′p = 4axe2x + 4ae2x

Hence y′′p − 3y′p + 2yp = 4axe2x + 4ae2x

− 6axe2x − 3ae2x + 2axe2x

= ae2x

Notice how the xe2x terms cancel out - with a lot of insight you might have
been able to predict this given that e2x forms part of the complementary
function. Whether or not you think it was predictable, we are now left with
just ae2x and this reduces to e2x if we take a = 1. Hence

yp = xe2x

is a particular integral for the differential equation. Notice how our second
choice for yp (namely axe2x) was simply x times our original choice. ⃝

The general rule is as follows.
Firstly we compute the complementary function yc = Ay1+By2, say,
where A,B are constants and y1, y2 are particular solutions of the
corresponding homogeneous equation. We then try to apply one
of the rules given in 6.1.1 - 6.1.4 to determine a particular integral.
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If any part of the trial function consists of y1 or y2 then these rules
will fail. [By “part” of the trial function we mean one of the terms forming
the sum e.g. x sinx is “part” of (ax+b) sinx+(gx+h) cosx whilst sinx is not
“part” of ex(a sinx+ b cosx).] We remedy the situation by multiplying
the trial function by an appropriate power of x (i.e. by xr) The
value of r is chosen to be the lowest positive integer value which
will ensure that the revised trial function does not contain y1 or y2.

For example we might find that

yc = ex(A sin 2x+B cos 2x)

so that y1 = ex sin 2x and y2 = ex cos 2x. If section 6.1.4 suggests a test
function of the form

yp = ex(a sin 2x+ b cos 2x)

then, clearly, this will fail.. We replace it by

yp = xex(a sin 2x+ b cos 2x)

which does not contain y1 or y2.
Example 6.6 Find a particular integral for the differential equation

y′′ − 2y′ + y = 2ex

Solution Here the auxiliary equation is m2 − 2m + 1 = 0 giving m = 1
(twice). Therefore the complementary function is

yc = (Ax+B)ex

The form of particular integral normally employed for an equation of the
given type would be (see section 6.1.2)

yp = aex

Plainly this will fail here because yc contains e
x. If we multiply by x and try

yp = axex

this will also fail because yc contains xe
x. We therefore multiply by a further

factor x and try
yp = ax2ex
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This gives

y′p = ax2ex + 2axex

and y′′p = ax2ex + 4axex + 2aex

Therefore y′′p − 2y′p + yp = ax2ex + 4axex + 2aex

− 2ax2ex − 4axex + ax2ex

= 2aex

and this gives 2ex if a = 1. Hence a (correct) particular integral is

yp = x2ex

Notice how in the working above on the right hand side the x2ex and xex

terms cancelled out. With the complementary function to hand you might
just be able to see why this was bound to happen here - but if you can’t,
don’t worry, such insight isn’t essential. Look back now to the general rule.
It should be clear why in this case we multiplied the original test function
by x2 (and not x or, for that matter x3 which would have been “overkill”). ⃝
Example 6.7 Find a particular integral for the differential equation

y′′ − 2y′ = x

Solution Here the auxiliary equation is m2 − 2m = 0 which gives m = 0 or
2 and so the complementary function is

yc = Ae0x +Be2x = A+Be2x

The usual form of particular integral for the given equation (see section 6.1.1)
is

yp = ax+ b

However, both this and yc contain constant terms (A and b). We therefore
multiply by x to obtain

yp = ax2 + bx

which now has no terms in common with yc. It gives

y′p = 2ax+ b

y′′p = 2a

Hence y′′p − 2y′p = 2a− 4ax− 2b
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This yields x provided a = −1
4
and b = −1

4
. Hence

yp = −x2

4
− x

4

is a (correct) particular integral. ⃝

In order to determine whether or not we are in one of the failing cases
of sections 6.1.1 - 6.1.4, it is necessary to look at the complementary func-
tion. For this reason, when solving a differential equation by the method of
complementary functions and particular integrals, it is best to compute the
complementary function first.

(Now try some examples for yourself involving functions f(x) for which
the methods of sections 6.1.1 - 6.1.4 fail to work.) EX

We conclude this section by giving a tabulation of forms for the particular
integral.
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Particular Integrals Summary
For a linear constant - coefficient differential equation, the solution has

the form y = yc + yp (complementary function + particular integral). yp can
often be determined by use of a “trial” function. This technique is sometimes
called the method of undetermined coefficients.

f(x) For yp try g(x). (SEE FOOTNOTE)
xk g(x) = a0 + a1x+ a2x

2 + · · ·+ akx
k

e.g. x2 g(x) = a0 + a1x+ a2x
2

eαx g(x) = aeαx

e.g. e3x g(x) = ae3x

xkeαx g(x) = (a0 + a1x+ a2x
2 + · · ·+ akx

k)eαx

e.g. xe3x g(x) = (a0 + a1x)e
3x

A sin βx g(x) = a sin βx+ b cos βx
or A cos βx
e.g. 5 sin 2x g(x) = a sin 2x+ b cos 2x
Axk sin βx g(x) = (a0 + a1x+ a2x

2 + · · ·+ akx
k) sin βx

or Axk cos βx + (b0 + b1x+ b2x
2 + · · ·+ bkx

k) cos βx
e.g. 5x sin 2x g(x) = (a0 + a1x) sin 2x+ (b0 + b1x) cos 2x
Aeαx sin βx g(x) = eαx(a sin βx+ b cos βx)

or Aeαx cos βx
e.g. 5e3x cos 2x g(x) = e3x(a sin 2x+ b cos 2x)
Axkeαx sin βx g(x) = eαx([a0 + a1x+ a2x

2 + · · ·+ akx
k] sin βx

or Axkeαx cos βx + [b0 + b1x+ b2x
2 + · · ·+ bkx

k] cos βx)
e.g. 5xe3x cos 2x g(x) = e3x([a0 + a1x] sin 2x+ [b0 + b1x] cos 2x)

Footnote. In all cases if yc already contains the suggested g(x) or even
one of the terms forming g(x), then multiply g(x) by the lowest power of
x, xr say, such that yc does not contain xrg(x) or any term forming it. For
example, if f(x) = x3e2x and yc contains xe

2x then we multiply the suggested
g(x) in the table by x2 in order to avoid an xe2x in yp; thus our trial function
for yp would be

yp = x2(a0 + a1x+ a2x
2 + a3x

3)e2x
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6.2 The D-Operator Method

The method applies to nth order linear constant-coefficient equations. We
shall find it convenient to write the equation

(anD
n + an−1D

n−1 + · · ·+ a1D + a0)y = f(x)

in the form
P (D)y = f(x) (6)

Here P (D) is the differential operator

anD
n + an−1D

n−1 + · · ·+ a1D + a0

which is a polynomial in D.
Equation (6) can be read as saying that a certain operator ( P (D) )

applied to y produces f(x). It is plausible that some other (inverse?) operator
applied to f(x) will produce y (i.e. a solution of the differential equation). We
shall write this other operator as [P (D)]−1 or as 1

P (D)
, although the process

involved is not simply dividing 1 by P (D), because P (D) is not a number.
If we denote the solution produced as yp, we have

yp =
1

P (D)
{f(x)} (7)

We shall normally use { } to enclose the object which an operator acts upon.
If the object is a single letter we may omit the brackets as in D2y rather
than D2{y}.

It remains to determine how to interpret 1
P (D)

in equation (7) in vari-
ous particular circumstances. There are three techniques for handling this
problem, each appropriate to a different type of function f(x).

(The video recaps the D-operator notation and discusses the inverse op-
erator.) V
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6.2.1 Use of the Binomial Expansion

This is appropriate whenever f(x) is a polynomial in x.

Reminder: (1 + u)α = 1 + αu+
α(α− 1)

2!
u2 + · · ·

-in particular:
1

1 + u
= 1− u+ u2 − u3 + · · ·

Both the above formulas are valid when the number u
satisfies |u| < 1.

The central idea is to expand 1
P (D)

= [P (D)]−1 by the binomial the-
orem even though D is not a number.
Example 6.8 Find a particular integral for the differential equation

(D2 +D + 1)y = x2

Solution

yp =
1

D2 +D + 1
{x2}

=
1

1 + [D +D2]
{x2} (now think of [D +D2] as u)

= (1− [D +D2] + [D +D2]2 − [D +D2]3 + · · · ){x2}
= x2 − [D +D2]{x2}+ [D +D2]2{x2} − [D +D2]3{x2}+ · · ·
= x2 − [2x+ 2] + [D2 + 2D3 +D4]{x2} − · · ·
= x2 − 2x− 2 + [2 + 0 + 0]− · · ·
= x2 − 2x

Note how we can ignore - in this problem - powers of D higher than D2 since
D3{x2} = 0, D4{x2} = 0, etc., etc. In general, if f(x) is a polynomial of
degree n we can ignore powers of D greater than the nth power.

As a check we can compute

(D2 +D + 1){x2 − 2x} = 2 + (2x− 2) + (x2 − 2x) = x2

as required (such checks are useful but not essential). ⃝
Example 6.9 Find a particular integral for the differential equation

(D2 + 5D + 6)y = x+ 1
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Solution

yp =
1

D2 + 5D + 6
{x+ 1}

=
1

6
.

1

1 +
[
5D+D2

6

]{x+ 1}

=
1

6

(
1−

[
5D +D2

6

]
+

[
5D +D2

6

]2
+ · · ·

)
{x+ 1}

=
1

6

(
1− 5

6
D + · · ·

)
{x+ 1} ignoring D2, D3, . . .

=
1

6

(
[x+ 1]− 5

6
.1

)
and this gives

⃝yp =
x

6
+

1

36

As an alternative, we could factorise (D2 + 5D + 6) as (D + 3)(D + 2).
Then

yp =
1

(D + 3)(D + 2)
{x+ 1}

=
1

6
.

1

(1 + D
3
)(1 + D

2
)
{x+ 1}

=
1

6
(1− D

3
+

D2

9
+ · · · )(1− D

2
+

D2

4
+ · · · ){x+ 1}

=
1

6
(1− D

3
+

D2

9
+ · · · ){(x+ 1)− 1

2
.1}

=
1

6
(1− D

3
+

D2

9
+ · · · ){x+

1

2
}

=
1

6
(x+

1

2
− 1

3
.1)

and this gives, as before

⃝yp =
x

6
+

1

36
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A further alternative is provided by the partial fractions

1

(D + 3)(D + 2)
=

1

D + 2
− 1

D + 3
, so

yp =

(
1

2
.

1

1 + D
2

− 1

3
.

1

1 + D
3

)
{x+ 1}

=
1

2
(1− D

2
+

D2

4
+ · · · ){x+ 1}

− 1

3
(1− D

3
+

D2

9
+ · · · ){x+ 1}

=
1

2
(x+ 1− 1

2
.1)− 1

3
(x+ 1− 1

3
.1)

and once again this gives

⃝yp =
x

6
+

1

36

Rather than looking for factors and partial fractions, it is generally best
to stick to the original method of solution.

Occasionally a “ 1
D
” appears naturally in the solution. Since “D” means

“differentiate” and “ 1
D
” represents the inverse operator, we interpret “ 1

D
” as

meaning “integrate”. The following example provides an illustration.

Example 6.10 Find a particular integral for the differential equation

(D2 +D)y = x2 + x+ 1

Solution We write

yp =
1

D2 +D
{x2 + x+ 1}

but we cannot expand 1
D2+D

directly by the binomial theorem because there
is no constant term in the denominator; instead we firstly extract the factor
D and then expand 1

1+D
:
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yp =
1

D(D + 1)
{x2 + x+ 1}

=
1

D
.

1

1 +D
{x2 + x+ 1}

=
1

D
.(1−D +D2 + · · · ){x2 + x+ 1}

=
1

D
{(x2 + x+ 1)− (2x+ 1) + 2}

=
1

D
{x2 − x+ 2}

=

∫
{x2 − x+ 2}dx

This gives

⃝yp =
x3

3
− x2

2
+ 2x

It is true that we could have added an arbitrary constant of integration
to the above expression. We have chosen to add zero. Remember we are
only asked for a particular integral and so our answer is just as good as
x3

3
− x2

2
+ 2x+ 3, say. How can two particular integrals differ like this? The

answer lies in the complementary function. Here the auxiliary equation is
m2 +m = 0, so m = 0 or −1 and hence

yc = Ae0x +Be−x = A+Be−x

The general solution to the differential equation is y = yc + yp, i.e.

y = A+Be−x +
x3

3
− x2

2
+ 2x

Since any particular solution to the differential equation is necessarily of
this form, it follows that by choosing A = 3 and B = 0 we should have a
particular integral x3

3
− x2

2
+ 2x + 3. In general, the difference between any

two particular integrals may be obtained from the complementary function
by suitable choice of the constants contained within it. It is important to
note that two different particular integrals may both be correct!

(The video covers the general principles and all the examples in the above
section, including a discussion of the constant in the last example. V

Now try some examples for yourself involving polynomial functions f(x).)
EX
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6.2.2 The “Exponential Theorem”

This is appropriate (apart from one particular circumstance) for f(x) = eαx,
sin βx, cos βx, eαx sin βx, eαx cos βx, sinh βx, cosh βx, eαx sinh βx,
eαx cosh βx, and one or two similar forms.

The “theorem” arises from the following observations:

D{eαx} = αeαx, D2{eαx} = α2eαx, D3{eαx} = α3eαx, . . .

In general Dn{eαx} = αneαx. This suggests that to evaluate 1
P (D)

{eαx} we
might simply change all the D’s to α’s. Thus

1

P (D)
{eαx} =

1

P (α)
eαx

Clearly the method require P (α) ̸= 0. (The “one particular circumstance”
referred to above is the case P (α) = 0.) The method is easy to apply.
Example 6.11 Find a particular integral for the differential equation

(D2 +D + 1)y = e2x

Solution

yp =
1

D2 +D + 1
{e2x} =

1

22 + 2 + 1
.e2x =

e2x

7

As a check we can compute

(D2 +D + 1){e
2x

7
} =

1

7
(D2 +D + 1){e2x} =

1

7
(22 + 2 + 1)e2x = e2x

as required. Note how one can “see” the method working: the “7” itself arose
as 22 + 2 + 1. ⃝

For dealing with sin and cos we use the formulae:

eiθ = cos θ + i sin θ

cos θ = Reiθ

sin θ = Ieiθ

where R, I denote real and imaginary parts. For dealing with sinh and cosh
we reduce to exponential form by using:

sinh θ =
eθ − e−θ

2

cosh θ =
eθ + e−θ

2

35



Example 6.12 Find a particular integral for the differential equation

(D2 +D + 1)y = sin 2x

Solution

yp =
1

D2 +D + 1
{sin 2x}

=
1

D2 +D + 1
{Ie2ix}

= I 1

D2 +D + 1
{e2ix}

= I 1

(2i)2 + 2i+ 1
e2ix

= I 1

−3 + 2i
e2ix

= I −3− 2i

(−3)2 + 22
e2ix

= I (−3− 2i)(cos 2x+ i sin 2x)

9 + 4

=
(−3 sin 2x− 2 cos 2x)

13

[A particular integral for (D2+D+1)y = cos 2x would be obtained by taking
the real part at the final stage.] ⃝
Example 6.13 Find a particular integral for the differential equation

(D2 +D + 1)y = sinh 3x

Solution

yp =
1

D2 +D + 1
{sinh 3x}

=
1

D2 +D + 1
{e

3x − e−3x

2
}

=
1

D2 +D + 1
{e

3x

2
} − 1

D2 +D + 1
{e

−3x

2
}

=
1

2
.

1

D2 +D + 1
{e3x} − 1

2
.

1

D2 +D + 1
{e−3x}

=
1

2
.

1

9 + 3 + 1
.e3x − 1

2
.

1

9− 3 + 1
.e−3x

Thus we obtain

yp =
e3x

26
− e−3x

14

⃝
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Example 6.14 Find a particular integral for the differential equation

(D2 +D + 1)y = e−2x sin 3x

Solution

yp =
1

D2 +D + 1
{e−2x sin 3x}

= I 1

D2 +D + 1
{e−2xe3ix}

= I 1

D2 +D + 1
{e(−2+3i)x}

= I 1

(−2 + 3i)2 + (−2 + 3i) + 1
.e(−2+3i)x

= I 1

−6− 9i
e−2xe3ix

= I−6 + 9i

36 + 81
e−2xe3ix

=
e−2x

117
I(−6 + 9i)(cos 3x+ i sin 3x)

=
e−2x

117
(−6 sin 3x+ 9 cos 3x)

=
e−2x(−2 sin 3x+ 3 cos 3x)
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[A particular integral for (D2 +D + 1)y = e−2x cos 3x would be obtained by
taking the real part at the final stage]. ⃝

The method described above and applied to

P (D)y = eαx

will fail if P (α) = 0. This can indeed happen as is shown by (D − 1)y = ex,
which might suggest

yp =
1

D − 1
{ex} =

1

1− 1
.ex whoops!

The following method is applicable in such failing cases and it can also deal
with various other functions f(x).

(The video covers the general principles and all the examples in the above
section, including the failing case immediately above. V

Now try some examples for yourself involving functions f(x) which are
exponentials, sines, cosines, or combinations of these functions. If you en-
counter an example where P (α) = 0 then leave it until after you’ve covered
the next section.) EX
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6.2.3 The “Shift Theorem”

This is appropriate for dealing with the failing case of the exponential theo-
rem and for f(x) = g(x)eαx, g(x) sin βx, g(x) cos βx, g(x) sinh βx,
g(x) cosh βx, (and similar forms), where g(x) is a polynomial in x.

The “theorem” arises from the following observations:

D{g(x)eαx} = g(x)αeαx + g′(x)eαx

= eαx(αg(x) +D{g(x)})
= eαx(D + α){g(x)}

Taking the first line above and differentiating again gives

D2{g(x)eαx} = (g(x)α2eαx + g′(x)αeαx) + (g′(x)αeαx + g′′(x)eαx)

= eαx(α2 + 2αD +D2){g(x)}
= eαx(D + α)2{g(x)}

Similarly,
D3{g(x)eαx} = eαx(D + α)3{g(x)}

In general:
Dn{g(x)eαx} = eαx(D + α)n{g(x)}

This suggests that to evaluate 1
P (D)

{g(x)eαx} we might bring eαx to the front

(outside the scope of the operator), change all the D’s to (D + α)’s and
operate on what is left (namely g(x)). Thus

1

P (D)
{g(x)eαx} = eαx

1

P (D + α)
{g(x)}

Note that the right hand side has still to be evaluated by one of the earlier
methods (usually the binomial method).
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Example 6.15 Find a particular integral for the differential equation

(D2 +D + 1)y = xe2x

Solution

yp =
1

D2 +D + 1
{xe2x}

= e2x
1

(D + 2)2 + (D + 2) + 1
{x} (shift theorem)

= e2x
1

D2 + 5D + 7
{x}

= e2x.
1

7
.

1

1 + [5D+D2

7
]
{x}

=
e2x

7

(
1−

[
5D +D2

7

]
· · ·
)
{x} (binomial expansion)

This gives

⃝yp =
e2x

7
(x− 5

7
)

Example 6.16 (When the exponential theorem fails) Find a particular in-
tegral for the differential equation

(D2 − 3D + 2)y = e2x

Solution (Note: 22 − 3 × 2 + 2 = 0 so the exponential theorem fails.) We
introduce a “1” in order to use the shift theorem: we write e2x as 1.e2x. Thus

yp =
1

D2 − 3D + 2
{e2x}

=
1

D2 − 3D + 2
{1.e2x}

= e2x
1

(D + 2)2 − 3(D + 2) + 2
{1}

= e2x
1

D2 +D
{1}

(The absence of a constant in the denominator above is typical of the ap-
plication of the shift theorem to the failing case of the exponential theorem.
Can you see why?)
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So we may write

yp = e2x
1

D
.

1

1 +D
{1}

= e2x
1

D
(1−D + · · · ){1}

= e2x
1

D
{1} = e2x.x

Hence yp = xe2x. Note that by introducing a constant of integration at
the last stage, we can obtain different valid particular integrals of the form
yp = (x+ c)e2x for any constant c. ⃝

Example 6.17 Find a particular integral for the differential equation

d2y

dx2
+

dy

dx
+ y = (x+ 1) sin 2x

Solution

yp =
1

D2 +D + 1
{(x+ 1) sin 2x}

=
1

D2 +D + 1
{I(x+ 1)e2ix}

= I 1

D2 +D + 1
{(x+ 1)e2ix}

= Ie2ix 1

(D + 2i)2 + (D + 2i) + 1
{x+ 1}

= Ie2ix 1

D2 + (4i+ 1)D + (2i− 3)
{x+ 1}

= I e2ix

2i− 3
.

1

1 + [D
2+(4i+1)D
(2i−3)

]
{x+ 1}

= I e2ix

2i− 3

(
1−

[
D2 + (4i+ 1)D

(2i− 3)

]
+ · · ·

)
{x+ 1}

= I e2ix

2i− 3

(
1−

[
4i+ 1

2i− 3

]
D + · · ·

)
{x+ 1}

(ignoring D2, D3, etc.)
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This gives

yp = I e2ix

2i− 3

(
x+ 1− 4i+ 1

2i− 3

)
= I (cos 2x+ i sin 2x)(−2i− 3)

4 + 9

(
x+ 1− (4i+ 1)(−2i− 3)

4 + 9

)
= I ([−3 cos 2x+ 2 sin 2x] + i[−3 sin 2x− 2 cos 2x])

13
.

(
x+ 1− (5− 14i)

13

)
= I ([−3 cos 2x+ 2 sin 2x] + i[−3 sin 2x− 2 cos 2x])([13x+ 8] + 14i)

132

=
([−3 cos 2x+ 2 sin 2x].14 + [−3 sin 2x− 2 cos 2x][13x+ 8])

169

Finally this gives

⃝
yp =

([−58− 26x] cos 2x+ [4− 39x] sin 2x)

169

(The video covers the general principles and the first two examples in the
above section, including a discussion of the failing case of the exponential
theorem. V

Now try some examples for yourself involving functions f(x) which are
products of polynomials with exponential or sine/cosine functions. Try also
some examples where the exponential theorem fails.) EX
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7 The general solution, boundary and initial

conditions

In this section we try to draw together some loose ends. In section 5 we
saw how to determine complementary functions. Section 6 gave two distinct
approaches to finding particular integrals (you only need to know one of
these: either the method of trial functions or the D-operator method).

For any particular problem we determine the complementary function yc
and a particular integral yp. The general solution is then given by

y = yc + yp

This solution will contain arbitrary constants. If additional information is
provided then it may be possible to determine some or all of these constants.
For a second order equation with two constants in the general solution, two
independent pieces of information (of a suitable form) will suffice to determine
the constants. The two most common cases are

� We require the solution y(x) to satisfy conditions of the form

y = y1 at x = x1 and y = y2 at x = x2

where x1, x2, y1, y2 are all known numerical values. Conditions like
these are called boundary conditions (x1 and x2 are regarded as the
boundaries).

� We require the solution y(x) to satisfy conditions of the form

y = y0 and
dy

dx
= y′0 at x = x0

where x0, y0, y
′
0 are all known numerical values. Conditions like these

are called initial conditions (x0 is regarded as the initial value of x).

The examples below illustrate obtaining the general solution and deter-
mining the solution which satisfies given boundary or initial conditions. In
each case we give two methods for determining a particular integral but you
only need to follow one of these.
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Example 7.1 Find the general solution of the differential equation

(D2 − 4D + 3)y = x2 + 2x− 3

Hence find the solution which satisfies the boundary conditions

y(0) =
23

27
y(1) = 0

Solution The auxiliary equation is m2−4m+3 = 0, i.e. (m−3)(m−1) = 0.
Therefore m = 1 or 3. Hence the complementary function yc is

yc = Aex +Be3x

For a particular integral use a) or b) below:

a) Try yp = ax2 + bx+ c as a trial solution. Then

(D2 − 4D + 3)yp = 2a− 4(2ax+ b) + 3(ax2 + bx+ c)

= 3ax2 + (3b− 8a)x+ (2a− 4b+ 3c)

This gives x2 + 2x− 3 provided

3a = 1, 3b− 8a = 2, 2a− 4b+ 3c = −3

These give

a =
1

3
b =

14

9
c =

23

27

Hence

yp =
x2

3
+

14x

9
+

23

27
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b) A particular integral yp is given by

yp =
1

D2 − 4D + 3
{x2 + 2x− 3}

=
1

3
.

1

1 + [D
2−4D
3

]
{x2 + 2x− 3}

=
1

3

(
1−

[
D2 − 4D

3

]
+

[
D2 − 4D

3

]2
+ · · ·

)
{x2 + 2x− 3}

=
1

3

(
1− D2

3
+

4D

3
+

16D2

9
+ · · ·

)
{x2 + 2x− 3}

(ignoring D3, D4, etc.)

=
1

3

(
1 +

4D

3
+

13D2

9
+ · · ·

)
{x2 + 2x− 3}

=
1

3

(
[x2 + 2x− 3] +

4

3
[2x+ 2] +

13

9
.2

)
=

x2

3
+

14x

9
+

23

27

Whichever method is used for yp we obtain the general solution

y = yc + yp

i.e. y = Aex +Be3x +
x2

3
+

14x

9
+

23

27

We are told y(0) = 23
27
, i.e. when x = 0 the value of y is 23

27
. Putting these

values into the general solution we get

23

27
= A+B +

23

27

and so A+B = 0, or B = −A.
We are also told y(1) = 0 so putting x = 1, y = 0 into the general solution
we get

0 = Ae+Be3 +
1

3
+

14

9
+

23

27

i.e. 0 = Ae+Be3 +
74

27

Since B = −A we obtain

A(e3 − e) =
74

27
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giving

A =
74

27(e3 − e)
B =

−74

27(e3 − e)

Returning these values to the general solution we find

⃝
y =

74

27(e3 − e)
[ex − e3x] +

x2

3
+

14x

9
+

23

27

Example 7.2 Find the general solution of the differential equation

(D2 − 4D + 4)y = e2x cosx

Hence find the solution which satisfies the initial conditions y(0) = 1,
y′(0) = 0.
Solution The auxiliary equation is m2 − 4m + 4 = 0, i.e. (m − 2)2 = 0.
Therefore m = 2 (twice). Hence the complementary function yc is

yc = (Ax+B)e2x

For a particular integral use a) or b) below:

a) Try yp = e2x(a cosx+ b sinx) as a trial solution. Then

y′p = e2x(−a sinx+ b cosx) + 2e2x(a cosx+ b sinx)

= e2x([b+ 2a] cosx+ [2b− a] sinx)

and y′′p = e2x([(2b− a) + 2(b+ 2a)] cosx

+ [2(2b− a)− (b+ 2a)] sinx)

= e2x([4b+ 3a] cosx+ [3b− 4a] sinx)

Hence

(D2 − 4D + 4)yp = e2x([4b+ 3a− 4(b+ 2a) + 4a] cosx

+ [3b− 4a− 4(2b− a) + 4b] sinx)

= e2x(−a cosx− b sinx)

This gives e2x cosx provided a = −1, b = 0. Hence yp = −e2x cosx.
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b) A particular integral yp is given by

yp =
1

D2 − 4D + 4
{e2x cosx}

= R 1

D2 − 4D + 4
{e2xeix}

= R 1

D2 − 4D + 4
{e(2+i)x}

= R 1

(2 + i)2 − 4(2 + i) + 4
.e(2+i)x

= R 1

−1 + 0i
.e2xeix

= −e2xR{eix}
= −e2x cosx

Whichever method is used for yp we obtain the general solution

y = yc + yp

= (Ax+B)e2x − e2x cosx

We are told y(0) = 1, i.e. when x = 0 the value of y is 1. Putting these
values into the general solution we get

1 = B − 1

Therefore B = 2.
We are also told y′(0) = 0. To use this fact we have to obtain an expression
for y′(x), which we do by differentiating the general solution. Here this gives

dy

dx
= 2(Ax+B)e2x + Ae2x + e2x sinx− 2e2x cosx

Substituting y′(0) = 0 gives

0 = 2B + A− 2
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Replacing B by 2 gives A = −2. Returning the values of A and B to the
general solution gives

⃝
y = (2− 2x)e2x − e2x cosx = e2x(2− 2x− cosx)

(The video covers the example (D2 + D + 1)y = ex, given the initial
conditions y(0) = 3, y′(0) = 0. V

You should now try some examples involving initial conditions and bound-
ary conditions.) EX
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8 Applications

(This section is not covered in the videos.)

In this section we shall look in some detail at the application of the fore-
going theory to mechanical vibrations. In particular we consider the mathe-
matical modelling of a mass moving on the end of a spring. The equations
and their solutions are also relevant to analogous mechanical systems both
small and large (such as clock pendulums and bridges). We shall mention
these briefly at appropriate points. We conclude the section by considering
an electrical circuit also subject to the same type of equation; such circuits
have an important role in radio transmission and reception.

Figure 1: Mass on a spring.

Consider a mass m attached to the end of a spring as shown in the
diagram. (Figure 1.) The origin O corresponds to the position of the centre
of the mass when the spring is in its unstretched position. When the spring
is stretched (or compressed) we let x denote the displacement of the centre
of mass. The quantity x will vary with the time t, i.e. x = x(t).

The mass m may be subject to the action of the following forces:

1. A restoring force: −kx
Here k is a positive constant related to the stiffness of the spring; the
force is proportional to the extension but in the opposite direction to
it (hence the minus sign),

2. A resistance: −cdx
dt

Here c is a positive constant related to the viscosity of the medium
through which the mass travels; the force is proportional to the velocity
of the mass but in the opposite direction,

3. An external applied force: F (t)
This force may vary with time.
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The equation of motion of the mass is obtained from Newton’s Law:

mass × acceleration = force

This gives

m
d2x

dt2
= −kx− c

dx

dt
+ F (t)

The term on the right-hand side is simply the sum of all the forces acting on
the mass. The equation can be written as

m
d2x

dt2
+ c

dx

dt
+ kx = F (t)

This equation is called the oscillator equation. If c = 0, the oscillator is
said to be undamped; in physical terms this means that energy will not be
dissipated by resistance.

The homogeneous oscillator equation is

m
d2x

dt2
+ c

dx

dt
+ kx = 0

8.1 The homogeneous oscillator equation

We shall start our analysis by solving the homogeneous equation, i.e. we
shall find the complementary function. The auxiliary equation is

mλ2 + cλ+ k = 0

The solutions of this are

λ =
−c±

√
c2 − 4km

2m

The nature of the complementary function therefore depends on whether
c2 < 4km, c2 > 4km, or c2 = 4km. We examine each of these three cases.
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a) c2 < 4km (Weak damping)
We can write

λ =
−c± i

√
4km− c2

2m

= − c

2m
± i

√
4km− c2

2m

Hence

x(t) = e−
ct
2m

[
A cos

(√
4km− c2

2m
t

)
+B sin

(√
4km− c2

2m
t

)]
It is worth remarking here that an expression such as

A cos θ +B sin θ

can always be re-written as

R sin(θ + α)

for suitable R and α; R is called the amplitude and α the phase angle. In
fact if we expand

R sin(θ + α) = R sin θ cosα +R cos θ sinα

we see that this yields A cos θ +B sin θ provided R, α are chosen to satisfy

R sinα = A, R cosα = B

Squaring and adding (noting sin2 α+ cos2 α = 1) gives R2 = A2 +B2, so we
can take R =

√
A2 +B2. The value of α can then be selected as necessary

to satisfy

sinα =
A√

A2 +B2
, cosα =

B√
A2 +B2

(It is tempting to divide these two equations and take

α = arctan(
A

B
)

but α might have to differ from this angle by π radians.)
Bearing the above in mind we can write x as

x(t) = e−
ct
2mR sin(pt+ α)

where R, α are constants and p = (
√
4km− c2)/2m. If c ̸= 0 this repre-

sents a damped sinusoidal wave as shown below (figure 2); the factor e−
ct
2m

superimposes an exponential decay on top of a sine wave of amplitude R.
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Figure 2: Damped sinusoidal wave.

If c = 0 the exponential decay factor is absent and the graph of the solution
is simply a sinusoidal wave x(t) = R sin(pt+ α) as shown below (figure 3).

Figure 3: Sinusoidal wave.
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b) c2 > 4km (Strong damping)
Here we write

λ =
−c±

√
c2 − 4km

2m
= λ1, λ2, say (both real).

If λ1 = −c−
√
c2−4km
2m

then, clearly, λ1 < 0. But λ2 = −c+
√
c2−4km
2m

is also
negative because c2 > c2 − 4km. We then have

x(t) = Aeλ1t +Beλ2t

with both λ1, λ2 < 0. This represents exponential decay (figure 4).

Figure 4: Exponential decay.

This is the sort of result one would expect in a very viscous medium - imagine
pulling the end of the spring in treacle!

c) c2 = 4km (Critical damping)
In this case

λ =
−c±

√
c2 − 4km

2m
= − c

2m
(twice).

Then we have
x(t) = e−

ct
2m (At+B)

We have the possibility of initial growth (due to the At term) overlaid with
exponential decay (figure 5).
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Figure 5: Critical damping.

Note that in all of the three cases above, provided c > 0, the solution
x(t) tends to zero as t tends to infinity. For this reason the complementary
function is often called the transient term. It is only when c = 0 (the un-
damped case) that the solution persists with time. This latter case is known
as simple harmonic motion (SHM). Simple harmonic motion provides a
good approximation for the motion of a clock pendulum with x(t) represent-
ing the angular displacement at time t. Sometimes the case when c > 0 is
called damped harmonic motion.

8.2 The inhomogeneous equation

The inhomogeneous term F (t) is often called the forcing term. We shall
only consider the case when the forcing term is periodic and has the form

F (t) = a sinωt

where a, ω are constants. This is a sine wave of amplitude a and period 2π
ω
.

We start by obtaining a particular integral for our equation

m
d2x

dt2
+ c

dx

dt
+ kx = a sinωt

Using either the method of trial functions (try xp = α sinωt + β cosωt) or
the D-operator method, we obtain

xp =
a(k −mω2)

(k −mω2)2 + c2ω2
sinωt− acω

(k −mω2)2 + c2ω2
cosωt

(You might try this as an exercise!)
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We can combine the sine and cosine terms (as we did earlier in the weak
damping case of the complementary function) to convert this to the form

xp =
a√

(k −mω2)2 + c2ω2
sin(ωt+ ϕ)

where ϕ is the phase angle. Note that if c = 0 (undamped case) and k =
mω2 then there is something awfully wrong with this expression because the
denominator vanishes- we’ll look at this case later. Apart from this problem
case, we have

xp = A(ω) sin(ωt+ ϕ)

where
A(ω) =

a√
(k −mω2)2 + c2ω2

Thus the particular integral does not tend to zero as t tends to infinity.
This part of the solution is called the steady state term. It is a sinusoidal
wave with amplitude A(ω); we have written A as A(ω) to emphasise that the
amplitude depends on ω. Differentiation of this expression with respect to ω
will show that when c2 < 2km, then A(ω) has a (local) maximum at

ω = ωr =

√
k

m
− c2

2m2

This value of ω is called the resonant frequency. [If you want to check the
maximum, it is easier to minimise (k − mω2)2 + c2ω2.] The corresponding
maximum amplitude is

Amax =
a

c
√

k
m
− c2

4m2

We show below (figure 6) the graph of A(ω) against ω for various values of
c. These graphs have a (local) maximum at ωr when c2 < 2km.
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Figure 6: Amplitude against frequency.

(The case of c = 0 is covered below).
Selecting the resonant frequency for the forcing term results in the largest

possible amplitude in the steady state solution. Physically this is seen in a
variety of situations. A good example is a swing: moving your body in time
with the natural movement of the swing results in a large amplitude swinging
session - it is unproductive to move your body out of time with the natural
movement of the swing.

Resonance is a physical phenomenon whose importance is difficult to un-
derestimate. It lies at the root of many engineering disasters. Troops march-
ing over bridges have been known to make them collapse as a result of reso-
nance, wind gusts have had the same effect on suspension bridges. Aircraft
engines have fallen off and in some cases the wings as well as a consequence
of resonant vibrations. On the lighter side, opera singers have been able to
break wine glasses as a party trick simply by emitting a resonant note at
high volume close to a glass. To see why the problem can sometimes be of
an extreme nature we shall conclude this subsection by briefly examining the
case c = 0 (undamped systems).

We remarked above that our formula for xp was clearly erroneous when

c = 0 and ω =
√

k
m
. The difficulty arises because when c = 0 the comple-

mentary function has the form

xc = R sin(pt+ α)

where

p =

√
4km− c2

2m
=

√
k

m
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Thus, when c = 0, the complementary function is not transient, and expand-
ing sin(pt+ α) we can write it in the form

xc = A cos(

√
k

m
t) +B sin(

√
k

m
t)

If the forcing term F (t) = a sinωt is now chosen with ω =
√

k
m

then

the particular integral takes a different form from the one quoted earlier.
Using either the trial function method (try xp = t(α sinωt+β cosωt)) or the
D-operator method we obtain

xp = − at

2ω
cosωt = − at

2
√

k
m

cos(

√
k

m
t)

(Again, you might check this as an exercise).
Putting together the complementary function and particular integral we

obtain the general solution

x = A cos(

√
k

m
t) +B sin(

√
k

m
t)− at

2
√

k
m

cos(

√
k

m
t)

The factor t in the final term means that the amplitude of the oscillations will
increase linearly with time. Of course, some limit is normally reached as a
result of physical constraints (i.e. something breaks!). If you apply a force to
an undamped oscillating system exactly in time with the natural oscillations
(the frequency of the complementary function) then the resulting oscillations
will grow larger and larger - you are set for a disaster! In practice c is never
zero but it can sometimes be small enough for the amplitude of the forced
oscillations to build up to that critical point where the structure gives way.
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8.3 Electrical analogy

We examine briefly the so-called LRC circuit containing a power source, an
inductance (L), resistance (R) and capacitance (C).

Figure 7: LRC circuit.

Here L,R,C are positive constants and E(t) is the applied electromotive
force (voltage).

We let i denote the current flowing through the circuit at time t after
the switch is closed. The potential (voltage) drop across an inductance L is
Ldi

dt
. That across the resistance R is Ri. That across the capacitance C is

Q
C

where Q is the charge on the capacitance. The total applied potential is
E(t) and so

L
di

dt
+Ri+

Q

C
= E(t)

However, the current i is, by definition, the rate of change of charge. That
is,

i =
dQ

dt

It follows that
di

dt
=

d2Q

dt2

Thus the above equation can be written as

L
d2Q

dt2
+R

dQ

dt
+

1

C
Q = E(t)

Note that this has the same form as the equation governing our earlier
example of the spring. Here L replaces the mass m, R replaces the damp-
ing constant c and 1

C
replaces the spring constant k. The solutions to this

equation therefore exhibit all the features that we have seen previously. In
particular LRC circuits exhibit resonance. The amplitude of the charge Q
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can be made large by “tuning” the values of L, R and C to the frequency ω
of an applied voltage E(t) = a sinωt. In radio circuits this phenomenon is
employed for tuning purposes.
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9 Miscellaneous

9.1 Simultaneous equations

(This section is not covered in the videos.)

The techniques developed may be applied to solve certain simultaneous
differential equations. In particular, we can solve a pair of first order linear
equations of the form

dx

dt
= Ax+By + C(t)

dy

dt
= Ex+ Fy +G(t)

where A, B, E, F are constants and C(t), G(t) are (simple) functions of t.
We use the first of the equations to obtain an expression for y in terms of x
and t; this is then substituted into the second and a second order differential
equation results.
Example 9.1 Solve the differential equations

dx

dt
= x+ y + t

dy

dt
= 3x− y

Solution From the first equation

y =
dx

dt
− x− t

and so
dy

dt
=

d2x

dt2
− dx

dt
− 1

Putting these two expression into the second equation gives

d2x

dt2
− dx

dt
− 1 = 3x− (

dx

dt
− x− t)

i.e.
d2x

dt2
− 4x = 1 + t

The complementary function is

xc = Ae−2t +Be2t
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A particular integral is

xp = −1

4
(1 + t)

Hence x = Ae−2t+Be2t− 1
4
(1+ t) is the general solution for x. Having found

x we can now find y from our first step

y =
dx

dt
− x− t

= −2Ae−2t + 2Be2t − 1

4
− [Ae−2t +Be2t − 1

4
(1 + t)]− t

and this gives

⃝y = −3Ae−2t +Be2t − 3t

4

Sometimes more complicated equations can also be solved by similar tech-
niques involving higher order equations. For example, the equations

d2x

dt2
+ 4

dy

dt
− 2 = 0

d2y

dt2
+ 4

dx

dt
− 8 = 0

can be solved by obtaining dy
dt

from the first equation in terms of d2x
dt2

, differ-
entiating it and inserting the result into the second equation. This gives a
third order equation for x. Once this has been solved we can substitute it
into the first equation in order to get an expression for dy

dt
. Then y can be

found by integration. The resulting solutions will contain a total of four in-
dependent arbitrary constants. A set of initial conditions such as the values
of x, y, dx

dt
, and dy

dt
at some particular value t = t0 will enable the constants

to be evaluated.
(Now try solving some simultaneous differential equations.) EX
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9.2 Reduction to first order equations

A second order linear constant - coefficient differential equation can always
be written in the form

(D − α)(D − β)y = f(x)

for suitable constants α and β. [In fact α, β are the roots of the auxiliary
equation and may be equal or complex]. If we substitute

v = (D − β)y (8)

we can write the equation as

(D − α)v = f(x) (9)

But this is a first order linear equation for v which can be solved by the
integrating factor method. Having obtained v we can then solve the equation
(8) for y by recognising that it too is a first order linear equation.

Carrying out this process we see that the integrating factor for equation
(9) is e−αx and equation (9) can be expressed as

d

dx
(e−αxv) = e−αxf(x)

giving

e−αxv =

∫
e−αxf(x)dx+ A

where A is a constant. Therefore

v = eαx
(∫

e−αxf(x)dx+ A

)
Equation (8) can then be written as

(D − β)y = eαx
(∫

e−αxf(x)dx+ A

)
This has integrating factor e−βx and can therefore be expressed as

d

dx
(e−βxy) = e(α−β)x

(∫
e−αxf(x)dx+ A

)
giving

e−βxy =

∫
e(α−β)x

(∫
e−αxf(x)dx+ A

)
dx+B
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where B is a constant. Therefore

y = eβx
[∫

e(α−β)x

(∫
e−αxf(x)dx+ A

)
dx+B

]
To use this method in practice requires skills of integration. It does

show that the second order linear constant coefficient equation will have a
general solution for any reasonable function f(x). The same techniques will
reduce a general nth order linear constant coefficient differential equation to
n simultaneous first order linear equations.

(Now try solving some second order equations by reduction to simultane-
ous first order ones; stick to ones with “easy” functions f(x)!) EX
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10 Summary

When you have completed this package you should be able to do the things
listed below.

1. recognise a second order linear constant-coefficient differential
equation,

2. understand what is meant by a homogeneous equation,

3. obtain the complementary function using the auxiliary equation,
in each of the three cases: (a) unequal real roots, (b) complex roots,
(c) equal real roots,

4. obtain a particular integral by one of the two methods described
(trial functions or D-operators),

5. obtain the general solution by adding the complementary function
and a particular integral,

6. obtain solutions satisfying given boundary or initial conditions by
determining appropriate values for the constants in the general solution,

7. understand the connection with mechanical and electrical vibrational
problems, the physical significance of the individual terms, damping
and resonance,

8. solve simple simultaneous linear differential equations,

9. understand how to reduce a second order equation to two simultaneous
first order equations.

11 Bibliography

For textbooks covering the basic prerequisites for this package (differentia-
tion, integration and first order differential equations) see, for example, one
of the following (although there are dozens of other suitable textbooks many
of which are in the University library).
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There are many textbooks which cover second order differential equations.
All of the books listed above give an elementary treatment. The books by
Stroud and by Jeffrey discuss the D-operator method for particular integrals.
Jeffrey also covers the method of undetermined coefficients (trial functions)
and the remaining books listed above also adopt this approach. Those listed
below are devoted exclusively to the subject of differential equations and they
give a great deal more detail. However, as is common with U. S. texts, none
of them deal with the D-operator method.

Sanchez, D. A., Allen, R. C. and Kyner, W. T. Differential
Equations (second edition), Addison-Wesley, 1988.

Zill, D. G. A first course in Differential Equations with Applications
(fourth edition), Prindle, Weber, Schmidt - Kent Publishing Company,
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Boyce, W. E. and DiPrima, R. C. Elementary Differential Equations
and Boundary Value Problems (fifth edition), Wiley, 1992.

Of the three books listed, you would probably find the volume by Boyce
et al. to be too advanced for general use. All three volumes cover a much
wider range of topics than this package - for example first order differential
equations, Laplace Transforms, partial differential equations and Fourier se-
ries. In addition to these three books there are very many other textbooks
covering second order equations and, again, many of these are in the Uni-
versity library. Your tutor should be able to advise you which textbooks are
suitable for your own needs, but you need never be short of an alternative
approach or more questions to try!
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12 Appendix - Video Summaries

There are three videos associated with the topic of second order differential
equations. The presenter is Mike Grannell from the Department of Math-
ematics at the University of Central Lancashire. We recommend that you
read the preamble to these notes which makes some suggestions about how
you should approach viewing the videos.

Video title: Second Order Linear Constant-Coefficient Differential
Equations (part 1). (45 minutes)

Prerequisite: you will need to know how to solve easy first order linear
differential equations by the use of appropriate integrating factors.

Summary

1. General form, notation and terminology: “linear”, “constant - coeffi-
cient”, “homogeneous”, “D-operator”. The form of the general solution
(containing two independent arbitrary constants).

2. Obtaining the general solution. Definitions of the complementary func-
tion and a particular integral (yc and yp).

3. The complementary function and the auxiliary equation. Obtaining
the auxiliary equation and verifying that the roots give exponential
solutions of the homogeneous differential equation.

4. Unequal real roots of the auxiliary equation. The example
(D2 − 5D + 6)y = 0.

5. Complex roots of the auxiliary equation (for equations with real coef-
ficients); general theory. The example (D2 − 2D + 5)y = 0.

6. Equal real roots of the auxiliary equation. What goes wrong: the
example (D2 + 4D + 4)y = 0. General theory for (D − λ)2y = 0.
Completion of the example (D2 + 4D + 4)y = 0.
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Video title: Second Order Linear Constant-Coefficient Differential
Equations (part 2). (45 minutes)

Summary

1. Recap general form, introduce notation P (D)y = f(x)

2. A particular integral and the inverse operator:

yp =
1

P (D)
{f(x)}

3. Dependency on the nature of f(x):
a) Binomial expansion,
b) Exponential theorem,
c) Shift theorem.

4. Binomial expansion: Reminder of the binomial expansion of 1
1+u

.
Appropriateness of the binomial expansion method when f(x) is a poly-
nomial in x. The examples:

(D2 +D + 1)y = x2

(D2 + 5D + 6)y = x+ 1

(D2 +D)y = x2 + x+ 1

Discussion of the constant in the latter case.

5. Exponential theorem: Appropriateness when f(x) is an exponential,
a sine, a cosine or a combination of these forms. Plausibility argument
for

1

P (D)
{eαx} =

1

P (α)
{eαx}

except when P (α) = 0. The examples:

(D2 +D + 1)y = e2x

(D2 +D + 1)y = sin 2x

(D2 +D + 1)y = sinh 3x

(D2 +D + 1)y = e−2x sin 3x

(The latter example is not completed.) An example when the method
fails because P (α) = 0:

(D2 − 3D + 2)y = e2x
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Video title: Second Order Linear Constant-Coefficient Differential
Equations (part 3). (35 minutes)

Summary

1. Recap the form of the general solution and obtaining particular inte-
grals by the binomial and the exponential methods.

2. Shift theorem: Appropriateness when f(x) is a product, particularly
a product of a polynomial with an exponential. Plausibility argument
for

1

P (D)
{g(x)eαx} = eαx

1

P (D + α)
{g(x)}

The examples:

(D2 +D + 1)y = xe2x

(D2 − 3D + 2)y = e2x

the latter example being a failing case of the exponential theorem.

3. Summary of the methods for obtaining the general solution which have
been dealt with above in these videos. Mention of alternative methods.

4. Obtaining a solution satisfying given initial conditions. The example

(D2 +D + 1)y = ex, given y(0) = 3 and y′(0) = 0.
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