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1 Preamble

1.1 About this package

This package is for people who need to differentiate functions of more than
one variable and apply the results to a variety of problems. It doesn’t contain
a lot of theory. It isn’t really designed for pure mathematicians who require
a course discussing conditions for the existence of partial derivatives.

You will find that you need a background knowledge of differentiation of
a function of one variable in order to get the most out of this package. In
particular, you need to be able to differentiate using the product, quotient
and function-of-a-function rules. You will also find it helpful to be able
to analyse stationary points of a function of one variable and have some
familiarity with Taylor series for functions of one variable. If you are a bit
rusty, don’t worry - but it would be sensible to do some revision either at
the start or as the need arises. Reasonable revision texts are given in the
bibliography (Section 13).

If you complete the whole package you should be able to

� understand what is meant by the partial derivatives of a function of
several variables,

� obtain the first order partial derivatives of a function of several
variables,

� interpret geometrically the first order partial derivatives of a function
of two variables,

� obtain higher derivatives of a function of several variables,

� understand the small increments formula for functions of several
variables,

� apply the small increments formula to approximations and errors,

� use the chain rule for partial derivatives to relate the derivatives
of a function with respect to transformed variables to its partial deriva-
tives with respect to its original variables,

� carry out implicit differentiation by the methods of partial differen-
tiation,

� obtain the Taylor series for functions of two variables,
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� determine the stationary points of a function of two variables and
investigate their nature,

� apply the method of Lagrange multipliers to constrained maxima
and minima problems,

� determine the regression line for a set of data points,

� fit simple polynomial curves to a set of data points.

Depending on your own programme of study you may not need to cover
everything in this package. Your tutor will advise you what, if anything, can
be omitted.

1.2 How to use this package

YouMUST do examples! Doing lots of examples for yourself is gen-
erally the most effective way of learning the contents of this package and
covering the objectives listed above. We recommend that you

� first read the theory - make your own notes where appropriate,

� then work through the worked examples - compare your solutions with
the ones in the notes,

� finally do similar examples yourself in a workbook.

The original printing of these notes leaves every other page blank. Use the
spare space for your own comments, notes and solutions. You will see certain
symbols appearing in the right hand margin from time to time:

⃝ denotes the end of a worked example,

2 denotes the end of a proof,

V denotes a reference to videos (see below for details),

EX highlights a point in the notes where you should try examples.

By the time you have reached a package like this one you will probably
have realised that learning mathematics rarely goes smoothly! When you get
stuck, use your accumulated wisdom and cunning to get around the problem.
You might try:

� re-reading the theory/worked examples,
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� putting it down and coming back to it later,

� reading ahead to see if subsequent material sheds any light,

� talking to a fellow student,

� looking in a textbook (see the bibliography),

� watching the appropriate video (see the video summaries),

� raising the problem at a tutorial.

1.3 Videos, tutorials and self-help

The videos cover the main points in the notes. The areas covered are indi-
cated in the notes, usually at the ends of sections and subsections. To resolve
a particular difficulty you may not need to watch a whole video (they are
each about 40 minutes long). They are broken up into sections prefaced with
titles which can be read on fast scan. In addition, a summary of the videos
associated with this package appears as an appendix to these notes.

Your tutor will tell you about the arrangements for viewing the videos.
Try the worked examples before watching the solution unfold on the screen.
Make notes of any points you cannot follow so that you can explain the diffi-
culty in a subsequent tutorial session. If you are viewing a video individually,
remember the rewind button! Unlike a lecture you can get instant and 100
percent accurate replay of what was said.

Your tutor will tell you about tutorial arrangements. These may be re-
lated to assessment arrangements. If attendance at tutorials is compulsory
then make sure you know the details! The tutorials provide you with indi-
vidual contact with a tutor. Use this time wisely - staff time is the most
expensive of all our resources.

You should come to tutorials in a prepared state. This means
that you should have read the notes and the worked examples. You should
have tried appropriate examples for yourself. If you have had difficulty with
a particular section then you should watch the corresponding video. If your
tutor finds that you haven’t done these things then s/he may refuse to help
you. Your tutor will find it easier to assist you if you can make any queries
as specific as possible.

Your fellow students are an excellent form of self-help. Discuss problems
with one another and compare solutions. Just be careful that

1. any assessed coursework submitted by you is yours alone,
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2. you yourself do really understand solutions worked out jointly with
colleagues.

Familiarize yourself with the layout and contents of these notes; scan
them before reading them more carefully. The contents page will help you
find your way about - use it. The bibliography will point you to textbooks
covering the same material as these notes.

When you graduate, your future employer will be just as interested in
your capacity for learning as in what you already know. If you can learn
mathematics from this package and from textbooks then you will not only
have learnt a particular mathematical topic. You will also (and more impor-
tantly) have learnt how to learn mathematics.
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2 Introduction

Many of the most commonly occurring functions in practice, depend on more
than one independent variable. For example the volume of a cylinder of
radius r and height h is V = πr2h; the distance of a point, (x, y, z) from
the origin is d =

√
x2 + y2 + z2; the combined resistance of two resistors, R1

and R2, placed in parallel is R =
R1R2

R1 +R2

. The ideas of calculus, and in

particular differentiation and integration need to be extended to deal with
functions of several independent variables. In this chapter we concentrate on
the differentiation of functions of more than one variable.

We look first at the geometrical representation of a function of two inde-
pendent variables. Let u be a function of x and y, two independent variables.
This is written as

u = f(x, y)

The pairs, (x, y),will be members of a domain,D. They will be restricted to
be real numbers so that D is a subset of the Oxy plane. To each pair (x, y)
there corresponds a value of the function u.

To represent the function geometrically, three mutually perpendicular
coordinate axes are needed, Ox,Oy and Ou. For each pair (x0, y0) in the
domain D we calculate u0 = f(x0, y0) and plot the point (x0, y0, u0). The
result is shown in Figure 1.

The function defines a surface in a 3-dimensional space.The projection
of the surface in the Oxy plane is the domain D. Note that the axes we
have drawn in the diagram form a right-handed set. A left-handed set is the
mirror-image of a right-handed set (see Figure 2).

To check whether a set is right-handed, imagine a corkscrew with its axis
along the u-axis. Rotating the corkscrew from the x-axis to the y-axis moves
the corkscrew in the positive u direction (see Figure 3). If your axes are left-
handed then the corkscrew will move in the negative u direction. Of course,
all of this depends on all corkscrews being right-handed, which they are to
the best of our knowledge!

It is a well-established mathematical convention that we always
use a right-handed set of axes.
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Figure 1: Representation of u = f(x, y).

Figure 2: x, y, u axes (a) right-handed, (b) left-handed.

7



Figure 3: The corkscrew rule.

As an example of a surface consider the function

u = 100− x2 − y2

with domain
{(x, y), x2 + y2 ≤ 100}.

This surface, a paraboloid, is plotted in Figure 4.

Figure 4: The paraboloid u = 100− x2 − y2.

Another way of representing the function is to sketch the curves f(x, y) =
C in the Oxy plane for various values of the constant C. These curves are
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called level curves and along any one of them the value of the function is
constant (equal to C).In the example above the level curves are defined by

100− x2 − y2 = C

and putting C = 0, 51, 75 generates the circles x2 + y2 = 100, x2 + y2 = 49
and x2 + y2 = 25. The level curves are shown in Figure 5.

Figure 5: The level curves of u = 100− x2 − y2.

The process of sketching level curves is the same as using contours on a
map to represent height above sea level. The contours join points of equal
height. The height here is the dependent variable u and the coordinates
(x, y) are the independent variables.

For functions of more than three variables geometrical intuition usually
fails, though the concept of level surfaces can be used to represent a func-
tion of three variables.

(The video gives examples of functions of several variables and shows how
to represent functions of two variables geometrically) V

9



3 First Order Partial Derivatives

The first order partial derivative of a function of several variables is the
derivative obtained when all except one of the independent variables are
held constant, and the function is differentiated (once) with respect to that
one variable. Thus, u = f(x, y) has two first order partial derivatives denoted

by
∂u

∂x
and

∂u

∂y
. The partial derivative of u with respect to x is defined as

∂u

∂x
= lim

δx→0

f(x+ δx, y)− f(x, y)

δx

where the limit exists. Here f(x+δx, y)−f(x, y) is the change in u produced
by changing x to x+δx without changing y. This partial derivative may also

be written as
∂f

∂x
,fx or ux.

Example 3.1 If u = x2 + y3 obtain
∂u

∂x
.

Solution We hold y constant and differentiate with respect to x. So y3 is
also a constant and

⃝
∂u

∂x
= 2x.

Similarly the partial derivative of u with respect to y is defined as

∂u

∂y
= lim

δy→0

f(x, y + δy)− f(x, y)

δy

when the limit exists. Here f(x, y+ δy)−f(x, y) is the change in u produced
by changing y to y+ δy without changing x. This partial derivative may also

be written as
∂f

∂y
,fy or uy.

Example 3.2 If u = x2 + y3 obtain
∂u

∂y
.

Solution We hold x constant and differentiate with respect to y. So x2 is
also a constant and

⃝
∂u

∂y
= 3y2.

All the rules for ordinary differentiation e.g. sum, product,
quotient, function of a function apply equally well to partial differ-
entiation.
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Figure 6: Intersection of u = f(x, y) with x = x0.

For a function of 2 variables, the partial derivatives may be interpreted
geometrically. Consider the intersection of the surface u = f(x, y) with the
plane x = x0. This is shown in Figure 6.

If we examine the intersection curve in the region of (x0, y0, u0), where
u0 = f(x0, y0), it looks like Figure 7.

Figure 7: The intersection curve near (x0, y0, u0).

We have drawn not only the point (x0, y0, u0) but also a neighbouring
point (x0, y0+δy, u0+δu). Note that x does not change along the intersection
curve because it is fixed at the value x0. It is y that has altered. The change
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in y is δy and this change has resulted in a change δu in the value of u. In
fact δu is the change in height of the surface above the Oxy plane as we
moved from the point vertically above (x0, y0) to the point vertically above
(x0, y0 + δy) i.e.

δu = f(x0, y0 + δy)− f(x0, y0).

Hence
δu

δy
=

f(x0, y0 + δy)− f(x0, y0)

δy
.

We now let δy tend to zero. From the previous diagram you will see that

the ratio
δu

δy
will approach the gradient of the intersection curve at the point

(x0, y0, u0). However, the expression

f(x0, y0 + δy)− f(x0, y0)

δy

is that used to define the partial derivative, and so the limiting value of it as

δy tends to zero will be
∂u

∂y
(evaluated at x = x0, y = y0).

Thus
∂u

∂y
gives the gradient of the intersection curve. But the intersection

curve lies in the y-direction on the surface. Hence

∂u

∂y
represents the gradient of the surface in the y- direction.

Similarly

∂u

∂x
represents the gradient of the surface in the x- direction.

In two dimensions we have the concept of a tangent line to a curve. The
counterpart in three dimensions is the concept of a tangent plane. A function
u = f(x, y) is said to be differentiable at (x0, y0) if it has a tangent plane at
(x0, y0, u0) where u0 = f(x0, y0). If the tangent plane to u = f(x, y) actually
exists at (x0, y0, u0) then its equation will be

(u− u0) = a(x− x0) + b(y − y0)

where a =
∂f

∂x
and b =

∂f

∂y
(both derivatives being evaluated at the point

(x0, y0)). This uses the simple fact that the tangent plane will have the same
gradients in the x and y directions as the original surface. Unfortunately it
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is possible for both of these gradients to exist without there being a tangent
plane. To see this think of a surface which is horizontal in the x and y direc-
tions at (0, 0) but along the line y = x, say, slopes at 45◦ to the horizontal.
Therefore, the existence of the partial derivatives does not of itself guarantee
the existence of a tangent plane. In more advanced texts this point is consid-
ered in some detail. We will simply assume that all the functions which we
consider are differentiable in the sense of having a tangent plane whenever
the partial derivatives exist.

Example 3.3 If u = x3 − 2x2y + 3xy2 − y4, find
∂u

∂x
and

∂u

∂y
.

Solution Note that y is treated as a constant and therefore y2 and y4 are
also treated as constants. Hence

∂u

∂x
= 3x2 − 4xy + 3y2

⃝
∂u

∂y
= −2x2 + 6xy − 4y3.

Example 3.4 If u = (x2 + 4y2)1/2 find
∂u

∂x
and

∂u

∂y
.

Solution Applying the function of a function rule,

∂u

∂x
=

1

2
(x2 + 4y2)−1/2.2x =

x

(x2 + 4y2)1/2

⃝
∂u

∂y
=

1

2
(x2 + 4y2)−1/2.8y =

4y

(x2 + 4y2)1/2

Example 3.5 If u = tan−1

(
x− y

x+ y

)
, prove that x

∂u

∂x
+ y

∂u

∂y
= 0.

Solution Since

u = tan−1

(
x− y

x+ y

)
, tanu =

(
x− y

x+ y

)
.

Differentiating implicitly with respect to x,

sec2 u
∂u

∂x
=

(x+ y)− (x− y)

(x+ y)2
=

2y

(x+ y)2
(1)
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and with respect to y,

sec2 u
∂u

∂y
=

−(x+ y)− (x− y)

(x+ y)2
=

−2x

(x+ y)2
(2)

From (1) and (2)

sec2 u(x
∂u

∂x
+ y

∂u

∂y
) =

2xy

(x+ y)2
− 2xy

(x+ y)2
= 0.

Hence

x
∂u

∂x
+ y

∂u

∂y
= 0

since sec2 u =
1

cos2 u
̸= 0. ⃝

(The video defines partial derivatives and shows how to obtain them. It
also discusses their geometrical interpretation for a function of two variables.

V
At this point you should try examples which involve determining the first

order partial derivatives of functions of several variables.) EX
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4 Higher Order Partial Derivatives

Given u = f(x, y), the partial derivatives
∂u

∂x
and

∂u

∂y
are themselves functions

of the two independent variables x and y and so each may be differentiated
with respect to either x or y to produce the four second-order partial
derivatives of u:-

∂

∂x
(
∂u

∂x
) =

∂2u

∂x2
(or (ux)x = uxx)

∂

∂y
(
∂u

∂x
) =

∂2u

∂y∂x
(or (ux)y = uxy) [not uyx]

∂

∂x
(
∂u

∂y
) =

∂2u

∂x∂y
(or (uy)x = uyx) [not uxy]

∂

∂y
(
∂u

∂y
) =

∂2u

∂y2
(or (uy)y = uyy)

Example 4.1 Find the four second order partial derivatives of u in Exam-
ple 3.4.

Solution
∂u

∂x
= x(x2 + 4y2)−1/2.

Therefore

∂2u

∂x2
= x

{
−1

2
(x2 + 4y2)−3/2.2x

}
+ (x2 + 4y2)−1/2

and so
∂2u

∂x2
=

−x2

(x2 + 4y2)3/2
+

1

(x2 + 4y2)1/2
=

4y2

(x2 + 4y2)3/2
.

Also
∂2u

∂y∂x
= x

{
−1

2
(x2 + 4y2)−3/2.8y

}
=

−4xy

(x2 + 4y2)3/2

and since
∂u

∂y
= 4y(x2 + 4y2)−1/2

∂2u

∂x∂y
= 4y

{
−1

2
(x2 + 4y2)−3/2.2x

}
=

−4xy

(x2 + 4y2)3/2

and
∂2u

∂y2
= 4y

{
−1

2
(x2 + 4y2)−3/2.8y

}
+ 4(x2 + 4y2)−1/2.
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Thus

⃝
∂2u

∂y2
=

−16y2

(x2 + 4y2)3/2
+

4

(x2 + 4y2)1/2
=

4x2

(x2 + 4y2)3/2
.

Note in this example that
∂2u

∂y∂x
=

∂2u

∂x∂y
. This is not a coincidence. For

suitably behaved functions it can be shown that

∂2u

∂y∂x
=

∂2u

∂x∂y
.

This result is the mixed derivatives theorem and will be assumed to
be true for all our work on partial differentiation. (The theorem is valid
whenever the function u and its first and second order partial derivatives are
continuous).

(The video covers the definitions and notation for second order partial
derivatives. It also shows how to obtain them and discusses the mixed deriva-
tive theorem. V

At this point you should try some examples involving the determination
of higher order derivatives.) EX
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5 Functions of more than two variables

(This section is not covered in the videos.)

The ideas of partial differentiation extend to functions of any number of
independent variables. Let u = f(x1, x2, . . . , xn) where x1, x2, . . . , xn are n
independent variables. Then u has n first order partial derivatives,

∂u

∂xi

, i = 1, 2. . . . , n.

Each of these will generate n second order partial derivatives,

∂2u

∂xk∂xi

, k = 1, 2, . . . , n.

However the mixed derivative theorem applies and so

∂2u

∂xi∂xk

=
∂2u

∂xk∂xi

, i, k = 1, 2, . . . , n.

The mixed derivative theorem also applies to higher order derivatives so that,
for example,

∂3u

∂x∂y∂x
=

∂3u

∂x2∂y

and
∂3u

∂xi∂xk∂xj

=
∂3u

∂xj∂xi∂xk

.

[Again, continuity of u and all the derivatives involved is sufficient to ensure
the validity of these equations]
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6 Increments

6.1 Small increments formula

Let u = f(x, y) and suppose changes or increments are made in the values
of x and y. Let x change from x0 to x0 + δx and y from y0 to y0 + δy. Then
the resulting increment in u is δu, where

δu = f(x0 + δx, y0 + δy)− f(x0, y0)

Figure 8: Increment in u generated by increments in x and y.

Figure 8 gives a geometrical interpretation (for ease of viewing we have
adopted a slightly different eye position from the normal one - look at the axes
to get the perspective right). Assuming the increments are small so that the
upper surface is approximately flat (i.e. it coincides with the tangent plane
at (x0, y0)) then δu is (approximately) given by

δu ≈ δu1 + δu2 (3)

But
δu1

δx
is (approximately)

∂u

∂x
evaluated at (x0, y0). Similarly

δu2

δy
is given

(approximately) by
∂u

∂y
. Hence (3) gives the approximate equation

δu ≈ ∂u

∂x
δx+

∂u

∂y
δy (4)

We can read this as saying that u changes for two reasons (the two terms on
the right hand side). The first is that x changes by δx and this contributes
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∂u

∂x
δx to the change in u. The second is that y changes by δy and this

contributes
∂u

∂y
δy to the change in u.

Equation (4) is really only an approximation but, for reasonable functions
f(x, y) we would expect the accuracy to improve as δx and δy tend to zero.
When δx, δy are very small, the tangent plane at (x0, y0, u0) will lie very
close to the surface. The errors in the approximation will then be small
as a proportion of δu. Sometimes (4) is known as the small increments
formula. It extends easily to functions of more than two variables. If

u = f(x1, x2, . . . , xn)

then small increments δx1, δx2, . . . , δxn in the independent variables will pro-
duce an increment δu in u given (approximately) by

δu ≈ ∂u

∂x1

δx1 +
∂u

∂x2

δx2 + · · ·+ ∂u

∂xn

δxn.

(The small increments formula is discussed in the video) V

6.2 Application to Approximations

We can use the small increments formula to estimate the value of a function
of two variables at points near to a point with a known value.

Example 6.1 If u = (x2 + 4y2)1/2, find an approximate value of u when
x = 2.97 and y = 2.01 using partial derivatives. Compare the approximate
value with the exact value.

Solution From example 3.4

∂u

∂x
=

x

(x2 + 4y2)1/2
,

∂u

∂y
=

4y

(x2 + 4y2)1/2
.

Let (x0, y0) = (3, 2) and (δx, δy) = (−0.03, 0.01) Then, using the small in-
crements formula:

δu ≈ ∂u

∂x
δx+

∂u

∂y
δy

we have

δu ≈ 3

(32 + 4.22)1/2
(−0.03) +

8

(32 + 4.22)1/2
(0.01).

i.e.

δu ≈ −0.09

5
+

0.08

5
= −0.002.
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Therefore
u(2.97, 2.01) ≈ 5− 0.002 = 4.998

The exact value is ((2.97)2 + 4(2.01)2)1/2 = 4.99813 to 5 decimal places. ⃝
(The application of the small increments formula to approximations of

functions is covered in the video V
You should now try some examples on approximating functions with the

small increments formula) EX

6.3 Application to Errors

If a measured quantity, u, is subject to an error of p%, then this means that

the measured quantity lies in the range u ± δu where

∣∣∣∣δuu
∣∣∣∣ ≤ p

100
. The

results of partial differentiation may be used to estimate percentage errors
in functions of two or more variables.

Example 6.2 The period of a simple pendulum is given by T = 2π

√
l

g
. If

the length, l, is subject to a 1% error and the period, T , is subject to a 2%
error, estimate the approximate maximum percentage error in the calculated
value of g.

Solution Here

∣∣∣∣δll
∣∣∣∣ ≤ 1

100
and

∣∣∣∣δTT
∣∣∣∣ ≤ 2

100
. Since

T = 2π

√
l

g
,

then

T 2 =
4π2l

g

and

g =
4π2l

T 2
.

We have now expressed g as a function of the two independent variables, l
and T .

So

δg ≈ ∂g

∂l
δl +

∂g

∂T
δT

Therefore

δg ≈ 4π2

T 2
δl − 8π2l

T 3
δT.
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So
δg

g
≈ 4π2

gT 2
δl − 8π2l

gT 3
δT.

i.e.
δg

g
≈ δl

l
− 2δT

T

and ∣∣∣∣δgg
∣∣∣∣ ≈ ∣∣∣∣δll − 2δT

T

∣∣∣∣ .
Using the triangle inequality, we have (approximately)∣∣∣∣δgg

∣∣∣∣ ≤ ∣∣∣∣δll
∣∣∣∣+ ∣∣∣∣2δTT

∣∣∣∣ ≤ 1

100
+

4

100
=

5

100
.

Therefore the maximum possible error in g is estimated as 5%. ⃝
(The video discusses the application of the small increments formula to

error estimation and covers the above example. V
At this point you should attempt some examples on error estimation.) EX
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7 Chain rules for partial derivatives

7.1 One independent variable

Suppose u = f(x, y), and both x and y are functions of a single variable t,
i.e. x = g(t), y = h(t). We now suppose t changes by a small amount δt
and that this gives rise to small changes δx, δy in x, y and consequently to a
small change δu in u.

Then since

δu ≈ ∂u

∂x
δx+

∂u

∂y
δy,

we have
δu

δt
≈ ∂u

∂x

δx

δt
+

∂u

∂y

δy

δt
.

In the limit as δt → 0, the chain rule for one independent variable is
obtained:-

du

dt
=

∂u

∂x

dx

dt
+

∂u

∂y

dy

dt

Example 7.1 If the radius of a right circular cone increases at 2 cm/minute
and the height at 3 cm/minute, find the rate at which the volume is increasing
when the radius is 10cm and the height is 15cm.

Solution Let V denote the volume of the cone. Then

V =
πr2h

3

where r is the radius and h the height. We have

∂V

∂r
=

2πrh

3
,

∂V

∂h
=

πr2

3
.

Using the chain rule,

dV

dt
=

∂V

∂h

dh

dt
+

∂V

∂r

dr

dt

=
πr2

3

dh

dt
+

2πrh

3

dr

dt

=
πr

3
(r
dh

dt
+ 2h

dr

dt
)

=
π.10

3
(10× 3 + 30× 2)

= 300π

≈ 942.48 cu cms/minute. ⃝
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(The video discusses the chain rule for one independent variable and
solves the above example.) V

7.2 Two independent variables

Suppose u = f(x, y), and both x and y are functions of two independent
variables α and β. i.e.

x = F (α, β) and y = G(α, β).

Then
u = f(F (α, β), G(α, β)) ≡ g(α, β) (say).

The chain rule can be used to relate the partial derivatives of u with respect
to α and β to those with respect to x and y. We imagine that α, β, change
by small increments δα, δβ, and that these generate small increments δx, δy
in x and y. These in turn generate a small increment δu in the value of u.
Since

δu ≈ ∂u

∂x
δx+

∂u

∂y
δy,

then
δu

δα
≈ ∂u

∂x

δx

δα
+

∂u

∂y

δy

δα
.

In the limit as δα → 0,

∂u

∂α
=

∂u

∂x

∂x

∂α
+

∂u

∂y

∂y

∂α
.

Similarly
∂u

∂β
=

∂u

∂x

∂x

∂β
+

∂u

∂y

∂y

∂β
.

These equations constitute the chain rule for a function of two independent
variables.

Example 7.2 If u = f(x, y) and x = eα cosh β, y = eα sinh β prove that

1.
∂u

∂α
= x

∂u

∂x
+ y

∂u

∂y
,

∂u

∂β
= y

∂u

∂x
+ x

∂u

∂y

2.
∂2u

∂α∂β
− ∂u

∂β
= xy

(
∂2u

∂x2
+

∂2u

∂y2

)
+ (x2 + y2)

∂2u

∂x∂y
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Solution We have

x = eα cosh β, y = eα sinh β.

So
∂x

∂α
= eα cosh β = x

and
∂y

∂α
= eα sinh β = y.

By the chain rule,

∂u

∂α
=

∂u

∂x

∂x

∂α
+

∂u

∂y

∂y

∂α
= x

∂u

∂x
+ y

∂u

∂y
.

Similarly,
∂x

∂β
= eα sinh β = y

and
∂y

∂β
= eα cosh β = x.

By the chain rule,

∂u

∂β
=

∂u

∂x

∂x

∂β
+

∂u

∂y

∂y

∂β
= y

∂u

∂x
+ x

∂u

∂y
.

To get the higher derivatives such as
∂2u

∂α∂β
we remind ourselves that they

are obtained by repeated first order differentiations. The formulae obtained
above, such as

∂u

∂α
= x

∂u

∂x
+ y

∂u

∂y
.

apply to any “reasonable” function u. It may help if we write this formula
as

∂

∂α
(u) =

(
x
∂

∂x
+ y

∂

∂y

)
(u)

or even as
∂

∂α
= x

∂

∂x
+ y

∂

∂y
.

The two sides of this equation are differential operators. They are equal in
the sense that they produce equal answers when applied to any function. If
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we apply the formula to
∂u

∂β
instead of applying it to u, we get

∂

∂α
(
∂u

∂β
) =

(
x
∂

∂x
+ y

∂

∂y

)
(
∂u

∂β
)

=

(
x
∂

∂x
+ y

∂

∂y

)(
y
∂u

∂x
+ x

∂u

∂y

)
.

Therefore

∂2u

∂α∂β
= xy

∂2u

∂x2
+ x2 ∂2u

∂x∂y
+ x

∂u

∂y
+

y2
∂2u

∂y∂x
+ y

∂u

∂x
+ xy

∂2u

∂y2

= xy

(
∂2u

∂x2
+

∂2u

∂y2

)
+ (x2 + y2)

∂2u

∂x∂y
+ x

∂u

∂y
+ y

∂u

∂x
.

Therefore

⃝∂2u

∂α∂β
− ∂u

∂β
= xy

(
∂2u

∂x2
+

∂2u

∂y2

)
+ (x2 + y2)

∂2u

∂x∂y
.

The chain rule may be extended to any number of variables. If u is a
function of the n variables, x1, x2, . . . xn and each xi is a function of the m
variables, α1, α2, . . . αm,then

∂u

∂α1

=
∂u

∂x1

∂x1

∂α1

+
∂u

∂x2

∂x2

∂α1

+ . . .+
∂u

∂xn

∂xn

∂α1
∂u

∂α2

=
∂u

∂x1

∂x1

∂α2

+
∂u

∂x2

∂x2

∂α2

+ . . .+
∂u

∂xn

∂xn

∂α2
...

...
∂u

∂αm

=
∂u

∂x1

∂x1

∂αm

+
∂u

∂x2

∂x2

∂αm

+ . . .+
∂u

∂xn

∂xn

∂αm

This set of equations can most easily be expressed in matrix form as

∂u

∂α1
∂u

∂α2
...
∂u

∂αm


=



∂x1

∂α1

∂x2

∂α1

. . .
∂xn

∂α1
∂x1

∂α2

∂x2

∂α2

. . .
∂xn

∂α2
...

...
. . .

...
∂x1

∂αm

∂x2

∂αm

. . .
∂xn

∂αm





∂u

∂x1
∂u

∂x2
...
∂u

∂xn


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The large rectangular (m × n) matrix is called the Jacobian matrix and is
sometimes denoted by

∂(x1, x2, . . . , xn)

∂(α1, α2, . . . , αm)

or simply by J .
(The video covers the chain rule for a function of two independent vari-

ables and explains part 1 of the example in this section. V
Now you should try some examples using the chain rule for partial deriva-

tives.) EX

7.3 Application to implicit differentiation

Suppose x and y are related by the implicit relation

f(x, y) = 0

then
dy

dx
may be obtained by implicit differentiation. Alternatively, we can

proceed as follows. Forget for a moment that f(x, y) = 0. If we write
u = f(x, y) and allow x, y to change by small increments δx, δy then the
resulting change in u is given approximately by

δu ≈ ∂f

∂x
δx+

∂f

∂y
δy.

Now for all x and y that satisfy f(x, y) = 0, we have δu = 0. For such x and
y, given δx we have to choose δy to satisfy

0 ≈ ∂f

∂x
δx+

∂f

∂y
δy.

Dividing by δx and taking the limit as δx → 0, we obtain

0 =
∂f

∂x
+

∂f

∂y

dy

dx
.

So
dy

dx
= −

∂f
∂x
∂f
∂y

= −fx
fy

.

Example 7.3 Find
dy

dx
in terms of x and y when

y = sin([2x− y]2).
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Solution Let
u = y − sin([2x− y]2).

Then
∂u

∂x
= −2[2x− y]2 cos([2x− y]2)

and
∂u

∂y
= 1 + 2[2x− y] cos([2x− y]2).

Therefore

⃝
dy

dx
=

4[2x− y] cos([2x− y]2)

1 + 2[2x− y] cos([2x− y]2)
.

The method extends to functions defined implicitly with any number of
variables. For example, if f(x, y, z) = 0 defines z implicitly as a function of
x and y, then

∂z

∂x
= −fx

fz
,

∂z

∂y
= −fy

fz
.

(The video covers the application of partial derivatives to implicit differ-
entiation and discusses the example in this section. V

Now try some examples on the use of partial derivatives to perform im-
plicit differentiation.) EX
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8 Taylor Series for a function of two variables

Before examining the problem of determining stationary points for a function
of two variables, we need to consider expanding a function of two variables
in a Taylor series.

We recall that, if f(x) is suitably well behaved, it has a Taylor series
expansion:-

f(x+ h) = f(x) + hf ′(x) +
h2

2!
f ′′(x) + . . .+

hn

n!
f (n)(x) + . . . .

Consider now a function of two variables, f(x, y). We assume that all the
partial derivatives of f exist and are suitably well behaved, and try to find
an expansion for f(x+ h, y + k). First of all, we regard y as a constant and
expand as a function of x:-

f(x+ h, y + k) = f(x, y + k) + h
∂f

∂x
(x, y + k) +

h2

2!

∂2f

∂x2
(x, y + k) + . . . (5)

[An expression such as
∂f

∂x
(x, y+k) means that the derivative

∂f

∂x
is evaluated

at the point (x, y + k).]
Now consider x to be a constant and expand f(x, y+k) as a Taylor series

in y:-

f(x, y + k) = f(x, y) + k
∂f

∂y
(x, y) +

k2

2!

∂2f

∂y2
(x, y) + . . . (6)

Differentiating this with respect to x gives

∂f

∂x
(x, y + k) =

∂f

∂x
(x, y) + k

∂2f

∂x∂y
(x, y) + . . . (7)

and again,
∂2f

∂x2
(x, y + k) =

∂2f

∂x2
(x, y) + . . . (8)

Substituting the expressions (6),(7),(8) into the right hand side of (5) gives

f(x+ h, y + k) = f(x, y) + k
∂f

∂y
(x, y) +

k2

2!

∂2f

∂y2
(x, y) +

h
∂f

∂x
(x, y) + hk

∂2f

∂x∂y
(x, y) +

h2

2!

∂2f

∂x2
(x, y) + . . .

Rearranging the order of the terms on the right hand side and, for clarity,
omitting the (x, y), we obtain

f(x+h, y+k) = f+

(
h
∂f

∂x
+ k

∂f

∂y

)
+

1

2!

(
h2∂

2f

∂x2
+ 2hk

∂2f

∂x∂y
+ k2∂

2f

∂y2

)
+. . .

(9)
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This is the Taylor series expansion for f(x + h, y + k). Clearly f and
all its partial derivatives must exist at (x, y). Even then the series may not
always converge.

The term containing first derivatives may be written(
h
∂

∂x
+ k

∂

∂y

)
f,

whereas, the term containing second derivatives may be written

1

2!

(
h
∂

∂x
+ k

∂

∂y

)2

f.

The general term is

1

n!

(
h
∂

∂x
+ k

∂

∂y

)n

f,

giving the Taylor series as

f(x+ h, y + k) =
∞∑
n=0

1

n!

(
h
∂

∂x
+ k

∂

∂y

)n

f (10)

where (
h
∂

∂x
+ k

∂

∂y

)0

is defined as 1.
Note that if we replace h and k by small values δx and δy and ignore

terms involving (δx)2,(δy)2, (δx)(δy) and higher powers then (9) and (10)
give

f(x+ δx, y + δy)− f(x, y) ≈ ∂f

∂x
δx+

∂f

∂y
δy.

This is just the small increment formula (see equation (4)).

Example 8.1 Expand the function f(x, y) = cos(xy) as a Taylor series about
the point (1/2, π/2) , up to and including second order terms. Hence estimate
f(0.51, π/2 + 0.01) and compare with its exact value.

Solution We present two methods. The first is the direct application of
Taylor’s theorem of a function of two variables. The second method is to
use standard series for functions of a single variable; in effect we use Taylor’s
theorem for functions of one variable to produce the series in two variables
just as we did above in the proof of Taylor’s theorem.

29



Method 1 We are given that

f(x, y) = cos(xy).

Therefore

∂f

∂x
= −y sin(xy),

∂f

∂y
= −x sin(xy),

∂2f

∂x2
= −y2 cos(xy),

∂2f

∂y2
= −x2 cos(xy),

∂2f

∂x∂y
= − sin(xy)− yx cos(xy).

At

(
1

2
,
π

2

)
,

f

(
1

2
,
π

2

)
= cos

(π
4

)
=

√
2

2
,

∂f

∂x
= −π

2
sin
(π
4

)
= −π

√
2

4
,

∂f

∂y
= −1

2
sin
(π
4

)
= −

√
2

4
,

∂2f

∂x2
= −π2

4
cos
(π
4

)
= −π2

√
2

8
,

∂2f

∂y2
= −1

4
cos
(π
4

)
= −

√
2

8
,

∂2f

∂x∂y
= − sin

(π
4

)
− π

4
cos
(π
4

)
= −

(
1 +

π

4

) √
2

2
.

So the series gives
√
2

2
− π

√
2

4
h−

√
2

4
k +

1

2!

(
−π2

√
2

8
h2 − (1 +

π

4
)
√
2hk −

√
2

8
k2

)
+ . . .

With h = k = 0.01, this gives
√
2

2
− (π + 1)

√
2

4
(0.01)−

√
2

2
(0.01)2

(
π2

8
+ (1 +

π

4
) +

1

8

)
+ . . .
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which is
≈ 0.692242 to 6 decimal places.

This compares with

⃝f(0.51,
π

2
+ 0.01) = cos(0.51(

π

2
+ 0.01)) = 0.6922413 to 7 decimal places.

Method 2 We use the expansion

cos(a+ b) = cos a cos b− sin a sin b

together with the standard series

cosx = 1− x2

2!
+

x4

4!
− x6

6!
+ . . .

sinx = x− x3

3!
+

x5

5!
− x7

7!
+ . . . .

We have

cos

((
1

2
+ h

)(π
2
+ k
))

= cos

(
π

4
+

πh

2
+

k

2
+ kh

)
= cos

π

4
cos

(
πh

2
+

k

2
+ kh

)
− sin

π

4
sin

(
πh

2
+

k

2
+ kh

)
But cos

π

4
= sin

π

4
=

√
2

2
, and so using the standard series

cos

((
1

2
+ h

)(π
2
+ k
))

=

√
2

2

[
1− 1

2!

(
πh

2
+

k

2
+ kh

)2

+ . . .

]

−
√
2

2

[(
πh

2
+

k

2
+ kh

)
− 1

3!

(
πh

2
+

k

2
+ kh

)3

+ . . .

]

=

√
2

2
− π

√
2

4
h−

√
2

4
k

+
1

2!

(
−π2

√
2

8
h2 − (1 +

π

4
)
√
2hk −

√
2

8
k2

)
+ . . .

(discarding terms of order greater than 2).

The evaluation of f
(
0.51,

π

2
+ 0.01

)
now follows as in method 1. ⃝

(The video explains how to expand a function of two variables as a Taylor
series and then demonstrates the method by expanding f(x, y) = exe

y
as a

Taylor seies about (0, 0). V
At this point you should try some examples involving the expansion of a

function of two variables as a Taylor series.) EX
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9 Application of Taylor Series to Stationary

Points

Given u = f(x, y), then u has a local maximum at (x, y) provided f(x, y)
is always greater than f(x + h, y + k) for all arbitrary, small h, k (but not
both zero).i.e. f(x + h, y + k) − f(x, y) < 0 as h, k vary but remain small.
(see Figure 9.)

Figure 9: Local maximum of u = f(x, y).

Similarly, u has a local minimum at (x, y), provided f(x, y) is always
less than f(x + h, y + k) for all arbitrary small h, k (but not both zero).i.e.
f(x+ h, y + k)− f(x, y) > 0 as h, k vary but remain small.

Note that the definitions do not require the function to be differentiable
at the point concerned, nor to have a Taylor series expansion about it. Never-
theless we shall assume that f(x, y) has a Taylor series expansion and explore
under what circumstances (x, y) can be a local maximum or a local minimum.

Using the Taylor series expansion

f(x+h, y+k)−f(x, y) =

(
h
∂f

∂x
+ k

∂f

∂y

)
+
1

2!

(
h2∂

2f

∂x2
+ 2hk

∂2f

∂x∂y
+ k2∂

2f

∂y2

)
+. . .

When h and k are sufficiently small, because h2, hk and k2 will be negli-
gible compared with h and k, the sign of the right hand side will normally

be determined by the sign of (h
∂f

∂x
+k

∂f

∂y
). This will change sign if the signs

of both h and k are changed, unless

h
∂f

∂x
+ k

∂f

∂y
= 0.
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Thus for a local maximum or a minimum, we require

h
∂f

∂x
+ k

∂f

∂y
= 0 for arbitrary small h, k.

This implies that, at a local maximum or minimum,

∂f

∂x
= 0 and

∂f

∂y
= 0.

Geometrically this means that the tangent plane is horizontal (i.e. parallel
to the Oxy plane).

Any point at which both
∂f

∂x
= 0 and

∂f

∂y
= 0 is called a stationary

point of f . The stationary points of f are those where the tangent plane is
horizontal.

Assume that (x, y) is a stationary point of f . Then, provided that the
second derivatives are not all zero, the sign of f(x + h, y + k) − f(x, y) will
depend, for small values of h and k, on the sign of

h2∂
2f

∂x2
+ 2hk

∂2f

∂x∂y
+ k2∂

2f

∂y2
.

Let

a =
∂2f

∂x2
, b =

∂2f

∂x∂y
, c =

∂2f

∂y2

and assume that
∂2f

∂x2
̸= 0 (i.e. a ̸= 0). Then

ah2 + 2bhk + ck2 = a

(
h2 +

2b

a
hk +

c

a
k2

)
= a

{(
h+

b

a
k

)2

+
c

a
k2 − b2

a2
k2

}

= a

{(
h+

b

a
k

)2

+
(ac− b2)

a2
k2

}
(11)

We reiterate that at a stationary point, equation (11) determines the sign
of f(x+ h, y + k)− f(x, y) for small h, k.

If ac > b2,the expression in {} in equation (11) is always non-negative
and it is zero only if h = k = 0. Hence if ac > b2 and a > 0, the whole
expression in equation (11) is always positive (except when h = k = 0) and
so the point in question is a local minimum.
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i.e. if (
∂2f

∂x2
)(
∂2f

∂y2
) > (

∂2f

∂x∂y
)2 and

∂2f

∂x2
> 0, (x, y) is a local minimum.

If ac > b2 and a < 0, the expression in equation (11) is always negative
(except when h = k = 0) and so the point in question is a local maximum.

i.e. if (
∂2f

∂x2
)(
∂2f

∂y2
) > (

∂2f

∂x∂y
)2 and

∂2f

∂x2
< 0, (x, y) is a local maxi-

mum.
Finally if ac < b2 then the expression in equation (11) can be made to

assume both positive and negative values for arbitrarily small h, k. A sta-
tionary point with this property is called a saddle point (so called because
it resembles a saddle - see Figure 10).

i.e. if (
∂2f

∂x2
)(
∂2f

∂y2
) < (

∂2f

∂x∂y
)2, then (x, y) is a saddle point.

Figure 10: Saddle point of u = f(x, y).

Note that if ac = b2, the test is inconclusive and provides no information.
We assumed that a ̸= 0; if on the other hand a = 0 and ac < b2 the point is
a saddle point and if a = 0 and ac = b2, the test is also inconclusive. (We
cannot have a = 0 and ac > b2 of course).
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The results may be summarised in a table:-

LOCAL MAXIMUM LOCAL MINIMUM SADDLE POINT
If If If

(a)
∂f

∂x
=

∂f

∂y
= 0 and (a)

∂f

∂x
=

∂f

∂y
= 0 and (a)

∂f

∂x
=

∂f

∂y
= 0 and

(b)
∂2f

∂x2

∂2f

∂y2
> (

∂2f

∂x∂y
)2 (b)

∂2f

∂x2

∂2f

∂y2
> (

∂2f

∂x∂y
)2 (b)

∂2f

∂x2

∂2f

∂y2
< (

∂2f

∂x∂y
)2

and and then the point (x, y)

(c)
∂2f

∂x2
< 0 (c)

∂2f

∂x2
> 0 is a saddle point

then the point (x, y) then the point (x, y)
is a local maximum is a local minimum

The matrix, H, defined by

H(x, y) =


∂2f

∂x2

∂2f

∂x∂y
∂2f

∂x∂y

∂2f

∂y2


is called the Hessian matrix. The condition that

∂2f

∂x2

∂2f

∂y2
>

(
∂2f

∂x∂y

)2

is equivalent to the statement that the determinant of the Hessian matrix is
positive. So we have det(H) > 0 for a maximum or minimum, det(H) < 0
for a saddle point.

Example 9.1 Find all the stationary points of the function

f(x, y) = 8x3 − 2xy2 − 9x2 + 6y2

and determine their nature.

Solution We have

∂f

∂x
= 24x2 − 2y2 − 18x,

∂f

∂y
= −4xy + 12y

For stationary points,

24x2 − 2y2 − 18x = 0 (12)
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and
−4xy + 12y = 0 (13)

From (13)
−4y(x− 3) = 0.

Therefore
y = 0 or x = 3

Putting y = 0 in (12) gives

24x2 − 18x = 0

i.e. 6x(4x− 3) = 0.

Therefore x = 0 or 3/4.

Putting x = 3 in (12) gives

24× 9− 2y2 − 18× 3 = 0.

i.e. 2y2 = 162

Therefore y = ±9

Hence the stationary points are

(0, 0), (3/4, 0), (3, 9), (3,−9)

Now
∂2f

∂x2
= 48x− 18,

∂2f

∂x∂y
= −4y,

∂2f

∂y2
= −4x+ 12.

Constructing a table:-

POINT
∂2f

∂x2

∂2f

∂y2
∂2f

∂x∂y
det(H) CONCLUSION

(0, 0) −18 12 0 −216 SADDLE POINT
(3/4, 0) 18 9 0 162 LOCAL MINIMUM
(3, 9) 126 0 −36 −362 SADDLE POINT

(3,−9) 126 0 36 −362 SADDLE POINT ⃝
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Example 9.2 Show that a rectangular closed box of given surface area, S,
which has maximum volume is a cube.

Solution Let x, y and z be the lengths of the sides of the box and let V
denote its volume. Then

V = xyz (14)

and
S = 2(xy + yz + zx) (15)

where x, y and z are not all independent variables. We take x and y as
independent variables and compute z from (15). This gives

(y + x)z =
S

2
− xy.

So

z =
S − 2xy

2(y + x)
(16)

Substituting for z in (14) gives

V =
xy(S − 2xy)

2(y + x)
.

For a stationary point,
∂V

∂x
= 0 and

∂V

∂y
= 0. Now

∂V

∂x
=

1

2

{
(y + x)(Sy − 4xy2)− xy(S − 2xy)

(y + x)2

}
.

Therefore
∂V

∂x
= 0 when

y(y + x)(S − 4xy)− xy(S − 2xy) = 0.

i.e. when
y(Sy + Sx− 4xy2 − 4x2y − Sx+ 2x2y) = 0.

i.e. when
y(Sy − 4xy2 − 2x2y) = 0.

i.e. when
y2(S − 4xy − 2x2) = 0.

Clearly y = 0 will not give a maximum volume. Therefore, for a maximum,

S − 4xy − 2x2 = 0. (17)
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By symmetry, putting ∂V
∂y

= 0 will yield

S − 4xy − 2y2 = 0. (18)

By subtracting (18) from (17)

−2x2 + 2y2 = 0.

Therefore
y2 = x2.

i.e.
y = ±x.

Since x and y are the lengths of the box, they must both be positive and so
y = x. Putting y = x in (17) gives

S − 6x2 = 0,

i.e.
x2 = S/6.

Therefore

y = x =

√
S

6

Finally, substituting for y and x in (16)

z =
S − 2S

6

2
(
2
√

S
6

) =
S
6√
S
6

=

√
S

6
.

Hence x = y = z =
√

S
6
and V = (S

6
)3/2. Is this a maximum volume?

Evaluating the second derivatives and applying the standard tests would be
very tedious in this case. We can argue on physical grounds that there must
be a maximum volume for a box of fixed surface area. Since this is the only
candidate it must be the maximum. ⃝

(The video covers the principles of determining stationary points and
solves the first example in this section. V

Now you should try several examples involving the determination of sta-
tionary points and the identification of their nature.) EX
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10 Use of Lagrange Multipliers

(This section is not covered in the videos.)

In the last example of the previous section we found the maximum volume
of a rectangular closed box of given surface area. This reduced to finding the
maximum of V = xyz subject to S−2(xy+yz+zx) = 0. This is an example
of a constrained maximisation problem and the second equation is called a
constraint. We were able to eliminate z using the constraint and then solve

the problem by putting
∂V

∂x
and

∂V

∂y
equal to zero.

We can express this type of problem more generally by saying that we
wish to find the stationary point of

w = f(x, y, z)

subject to the constraint that c(x, y, z) = 0. In principle, we solve the con-
straint equation for z, so that z is expressed as a function of x and y: i.e.
c(x, y, z) = 0 gives z = z(x, y) and then

w = f(x, y, z(x, y))

The stationary points are given by solving the equations
∂w

∂x
= 0 and

∂w

∂y
= 0.

These equations give

∂f

∂x
+

∂f

∂z

∂z

∂x
= 0 and

∂f

∂y
+

∂f

∂z

∂z

∂y
= 0 (19)

We have to be very careful with the notation here.
∂f

∂x
means differentiate

f(x, y, z) with respect to x ignoring the fact that z itself depends on x. On the

other hand
∂w

∂x
means differentiate f(x, y, z(x, y)) with respect to x taking

account of the fact that z is a function of x and y.
However, it may not always be easy, or indeed possible, to solve the con-

straint equation for z (or x or y). The Method of Lagrange Multipliers
neatly circumvents this problem. Lagrange introduced this method in his
famous paper on mechanics, written when he was nineteen.

We let
g(x, y, z) = f(x, y, z) + λc(x, y, z)

where λ is called a Lagrange Multiplier; it is a constant. Then the sta-
tionary values of the constrained problem are the solutions of

∂g

∂x
= 0,

∂g

∂y
= 0,

∂g

∂z
= 0 and c(x, y, z) = 0 (20)
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In fact these equations also determine the value of λ but this is usually of
little interest.

We now prove that these equations have the same solutions for
x and y as the equations (19)

Substituting for g(x, y, z) in the equations (20) we have

∂f

∂x
+ λ

∂c

∂x
= 0 (21)

∂f

∂y
+ λ

∂c

∂y
= 0 (22)

∂f

∂z
+ λ

∂c

∂z
= 0 (23)

From (23)

λ = −∂f

∂z
/
∂c

∂z
(24)

Putting equation (24) into equation (21) gives

0 =
∂f

∂x
+

(
−∂f

∂z
/
∂c

∂z

)
∂c

∂x
(25)

Since c(x, y, z) = 0, then differentiating with respect to x we obtain

∂c

∂x
+

∂c

∂z

∂z

∂x
= 0.

From this
∂c

∂z
= − ∂c

∂x
/
∂z

∂x
(26)

Now equations (25) and (26) give

0 =
∂f

∂x
+

(
∂f

∂z

∂z

∂x
/
∂c

∂x

)
∂c

∂x
=

∂f

∂x
+

∂f

∂z

∂z

∂x

This is the first of equations (19). In a similar way the second of equations
(19) may be obtained. It follows that equations (20) have the same solutions
as equations (19). 2

Example 10.1 Find the stationary points of w = x2 + y2 + z2 subject to
x+ 2y = z − 3.

Solution Firstly, rewrite the constraint as x+ 2y − z + 3 = 0. Let

g = x2 + y2 + z2 + λ(x+ 2y − z + 3).
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Then
∂g

∂x
=

∂g

∂y
=

∂g

∂z
= 0 give

2x+ λ = 0 (27)

2y + 2λ = 0 (28)

2z − λ = 0 (29)

We solve these together with the constraint

x+ 2y − z + 3 = 0 (30)

to find the values of x, y and z.
From (29), λ = 2z and so (27,28) give

2x+ 2z = 0

and
2y + 4z = 0.

Thus x = −z and y = −2z. Substituting in (30) yields

−z − 4z − z + 3 = 0.

Therefore
6z = 3.

Hence
z = 1/2, x = −1/2, y = −1

⃝
Note that the numerical value of λ is not of any interest although it is

sometimes convenient to obtain it in the elimination process.
In the last example, z can easily be eliminated to give

w = x2 + y2 + (x+ 2y + 3)2.

The equations
∂w

∂x
=

∂w

∂y
= 0 then give

2x+ 2(x+ 2y + 3) = 0

and
2y + 4(x+ 2y + 3) = 0

and these equations have the same solution, x = −1/2, y = −1, that we
have already found. From the constraint

z = x+ 2y + 3,
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we obtain z = 1/2 as before.

The method of Lagrange multipliers extends to a function of n variables

w = f(x1, x2, . . . , xn)

subject to m constraints:-

c1(x1, x2, . . . , xn) = 0

c2(x1, x2, . . . , xn) = 0
...

cm(x1, x2, . . . , xn) = 0

where m < n. The constrained stationary values of w are determined by the
solutions of

∂w

∂x1

+ λ1
∂c1
∂x1

+ λ2
∂c2
∂x1

+ . . .+ λm
∂cm
∂x1

= 0

∂w

∂x2

+ λ1
∂c1
∂x2

+ λ2
∂c2
∂x2

+ . . .+ λm
∂cm
∂x2

= 0

...
∂w

∂xn

+ λ1
∂c1
∂xn

+ λ2
∂c2
∂xn

+ . . .+ λm
∂cm
∂xn

= 0

together with the constraint equations. Each constraint requires its own
Lagrange multiplier.

Note that the method of Lagrange multipliers locates stationary points
without determining their nature. (i.e. as local maxima, minima and saddle
points). In practical problems it may be necessary to appeal to physical
arguments to determine the nature of the points found by the Lagrange
method; the second derivative test is frequently too unwieldly to be applied.
It remains the case that, if you are asked to locate a maximum, it is not
sufficient to simply produce stationary points with no further comment.

(At this point you should try to solve some constrained maximum and
minimum problems using Lagrange multipliers.) EX
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11 Curve Fitting

(This section is not covered in the videos.)

Suppose we have a set of n points

{(x1, y1), (x2, y2), . . . , (xn, yn)}

which are thought to satisfy a linear relationship of the form y = a+ bx. In
practice, due to experimental or rounding errors for example, the points will
not all lie exactly on a straight line. The situation is illustrated by Figure 11

Figure 11: Data points.

The question arises as to how we determine the “best” straight line that
fits this data. We can use our techniques from partial differentiation to find
values for a and b so that y = a+ bx is the “best” straight line. But first we
need to define precisely what we mean by “best”.

We shall assume that the x-values, (x1, x2, . . . , xn) are exactly correct and
we let the line be y = f(x) = a + bx. Because of experimental or rounding
errors, the values of y obtained from this formula will differ from the values
y1, y2, . . . , yn obtained experimentally. In other words, f(xi) = a + bxi will
not be exactly equal to yi. Let

di = yi − f(xi) i = 1, . . . , n

so that di represents the vertical distance from the line to the point (xi, yi).
See Figure 12.
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Figure 12: Distances from the line to points (xi, yi).

We want to choose a and b to minimise the di’s. But if we try to minimise
the sum of all the di’s the negative and positive ones will tend to cancel out.
Instead we minimise the sum of all the d 2

i ’s; the sum of the squared errors.
Let

S =
n∑

i=1

[yi − f(xi)]
2

=
n∑

i=1

[yi − a− bxi]
2

This expression for S is minimised by setting
∂S

∂a
and

∂S

∂b
equal to 0. Note

that xi and yi here are fixed numbers, not variables. Carrying out the partial
differentiation:-

∂S

∂a
=

n∑
i=1

2[yi − a− bxi](−1) = 0.

i.e.
n∑

i=1

[yi − a− bxi] = 0

or

na+ b
n∑

i=1

xi =
n∑

i=1

yi (31)
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[note that
n∑

i=1

a = a+ a+ · · ·+ a︸ ︷︷ ︸
n terms

= na]

Likewise,
∂S

∂b
=

n∑
i=1

2[yi − a− bxi](−xi) = 0.

or

a

n∑
i=1

xi + b

n∑
i=1

x2
i =

n∑
i=1

xiyi (32)

Equations (31) and (32) are two simultaneous equations, called the nor-
mal equations, which determine a and b. The method is referred to as
the “method of least squares” and the straight line obtained is called the
regression line of y on x.

Note that we have not shown that the stationary point obtained is a
minimum. This can be verified using the second derivative test. (Alterna-
tively, note that there is only one stationary point and S clearly has a local
minimum; so this must be it!)

Example 11.1 A rod is heated to various temperatures (measured in degC)
and its length in millimetres is measured:-

Temperature, T 10 20 30 40 50 60 70
Length, l 962.3 962.5 962.6 962.9 963.0 963.2 963.4

Assuming that there is no error in the temperature measurement find the
best straight line, l = a+ bT , which fits this data.

Solution Here T is the independent variable and l the dependent variable.
We need to calculate

7∑
i=1

Ti,

7∑
i=1

li,

7∑
i=1

T 2
i and

7∑
i=1

liTi.

We draw up a table
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Ti li liTi T 2
i

10 962.3 9623 100
20 962.5 19250 400
30 962.6 28878 900
40 962.9 38516 1600
50 963.0 48150 2500
60 963.2 57792 3600
70 963.4 67438 4900∑
280 6739.9 269647 14000

The normal equations become

7a+ 280b = 6739.9 (33)

and
280a+ 14000b = 269647 (34)

Eliminating a,

(40× 280− 14000)b = 40× 6739.9− 269647

and so
b = 0.01821 to 4 s.f.

Eliminating b,

(50× 7− 280)a = 50× 6739.9− 269647

and so
a = 962.1 to 4 s.f.

Hence, to 4 s.f., the best straight line is

⃝
l = 962.1 + 0.0182T.

The method extends to fitting curves other than straight lines. For ex-
ample to fit the parabola y = a+ bx+ cx2 to the data points (xi, yi) we need
to minimise

S =
n∑

i=1

[yi − a− bxi − cx2
i ]

2
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by equating
∂S

∂a
,
∂S

∂b
and ∂S

∂c
to zero. This gives

∂S

∂a
=

n∑
i=1

2[yi − a− bxi − cx2
i ](−1) = 0

∂S

∂b
=

n∑
i=1

2[yi − a− bxi − cx2
i ](−xi) = 0

∂S

∂c
=

n∑
i=1

2[yi − a− bxi − cx2
i ](−x2

i ) = 0

The normal equations are then

na+ b
n∑

i=1

xi + c
n∑

i=1

x2
i =

n∑
i=1

yi

a
n∑

i=1

xi + b
n∑

i=1

x2
i + c

n∑
i=1

x3
i =

n∑
i=1

xiyi

a
n∑

i=1

x2
i + b

n∑
i=1

x3
i + c

n∑
i=1

x4
i =

n∑
i=1

x2
i yi

Solution of these simultaneous equations determines a, b and c.
(Now you should try some examples on curvefitting.) EX
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12 Summary

When you have completed this package you should be able to do the things
listed below.

� understand what is meant by the partial derivatives of a function of
several variables,

� obtain the first order partial derivatives of a function of several
variables,

� interpret geometrically the first order partial derivatives of a function
of two variables,

� obtain higher derivatives of a function of several variables,

� understand the small increments formula for functions of several
variables,

� apply the small increments formula to approximations and errors,

� use the chain rule for partial derivatives to relate the derivatives
of a function with respect to transformed variables to its partial deriva-
tives with respect to its original variables,

� carry out implicit differentiation using the methods of partial dif-
ferentiation,

� obtain the Taylor series for functions of two variables,

� determine the stationary points of a function of two variables and
investigate their nature,

� apply the method of Lagrange multipliers to constrained maxima
and minima problems,

� determine the regression line for a set of data points,

� fit simple polynomial curves to a set of data points.
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14 Appendix - Video Summaries

There are four videos associated with the topic of partial differentiation.
The presenter is Mike Grannell from the Department of Mathematics at the
University of Central Lancashire. We recommend that you read the preamble
to these notes which makes some suggestions about how you should approach
viewing the videos.

Video title: Partial Differentiation (part 1). (32 minutes)

Summary

1. Examples of functions of several variables.

2. Geometric representation of functions of two variables as surfaces.
Right-handed axes. The example

u = 100− x2 − y2.
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3. Partial Derivatives: Definition of partial derivatives and how to ob-
tain them. The examples

u = x3 − 2x2y + 3xy2 − y4

u = (x2 + 4y2)1/2

4. Geometric interpretation of the partial derivatives
∂u

∂x
,
∂u

∂y
as the gra-

dients of the surface u = f(x, y) in the x and y directions.

Video title: Partial Differentiation (part 2). (34 minutes)

Summary

1. Notation for partial derivatives

2. Definitions of and notation for second order partial derivatives.
The example

u = x3 − 2x2y + 3xy2 − y4

3. The mixed derivative theorem. Conditions for

∂2u

∂x∂y
=

∂2u

∂y∂x

4. The small increments formula for u = f(x, y)

δu ≈ ∂u

∂x
δx+

∂u

∂y
δy.

5. Approximations of functions using the small increments formula. The
example u = (x2 + 4y2)1/2 at x = 2.97 and y = 2.01

6. Use of the small increments formula to estimate errors. The example
g = 4π2l/T 2 when l, T are subject to 1% and 2% errors respectively.
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Video title: Partial Differentiation (part 3). (29 minutes)

Summary

1. The chain rule for one independent variable. The example: Find
dV

dt
when V = 1

3
πr2h,

dr

dt
= 2 and

dh

dt
= 3.

2. The chain rule for two independent variables. The example: If
u = f(x, y), x = eα cosh β, y = eα sinh β prove that

∂u

∂α
= x

∂u

∂x
+ y

∂u

∂y
and

∂u

∂β
= y

∂u

∂x
+ x

∂u

∂y
.

3. Use of partial derivatives to perform implicit differentiation. The

example: Find
dy

dx
in terms of x and y when y = sin ([2x− y]2).

Video title: Partial Differentiation (part 4). (37 minutes)

Summary

1. Taylor’s theorem for a function of two variables; notation and rela-
tion to small increments formula. The example: Expand f(x, y) = exe

y

as a Taylor series about (0, 0) up to and including second order terms.
(Two methods are demonstrated: a) direct use of Taylor’s theorem for
two variables and b) repeated use of Taylor’s theorem for one variable).

2. Stationary points; local maxima, minima and saddle points.

3. Testing stationary points; statement of the test. The example

f(x, y) = 8x3 − 2xy2 − 9x2 + 6y2.
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