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Abstract

A Steiner triple system of order n (STS(n)) is said to be embed-
dable in an orientable surface if there is an orientable embedding of the
complete graph Kn whose faces can be properly 2-coloured (say, black
and white) in such a way that all black faces are triangles and these
are precisely the blocks of the STS(n). If, in addition, all white faces
are triangular, then the collection of all white triangles forms another
STS(n); the pair of such STS(n)s is then said to have an (orientable)
bi-embedding. We study several questions related to embeddings and
bi-embeddings of STSs.
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1 Introduction

The study of the relationship between block designs and graph embeddings
dates back to Heffter who in 1891 realized the connection between twofold
triple systems and surface triangulations. Later work in this field was done
by Emch [8], Alpert [1], White [18], Anderson and White [4], Anderson [2],
Jungerman, Stahl and White [12], Rahn [15], and most recently White [19].
These authors considered various aspects of the above relationship, including
embeddings into closed surfaces, pseudosurfaces and generalized pseudosur-
faces, or embeddings of BIBDs with block size greater than 3, or focusing on
symmetry properties of the resulting embeddings.

Although we discuss briefly the general idea of hypergraph (hence also
block design) embeddings, we are primarily interested in embeddings of
Steiner triple systems. The basic observation which comes from [1] is the
1–1 correspondence between twofold triple systems of order n and triangular
embeddings of the complete graph Kn into generalised pseudosurfaces. A
generalised pseudosurface may be obtained from a finite number of identi-
fications, of finitely many points each (the singular points), on a collection
of compact surfaces so that the resulting topological space is connected. As
shown in [18], the homeomorphism class of the generalised pseudosurface is
an invariant of the twofold triple system. But the main reason why surface
embeddings of triple systems (and designs in general) have been considered
seems to be a kind of ”geometrical” 2-dimensional pictorial representation of
these objects in a 3-dimensional space. That is why we focus in this paper on
embeddings in orientable surfaces, and do not allow any kind of degeneracies
(such as singular points in pseudosurfaces).

The organization of the paper is as follows. In Section 2 we review ba-
sic facts concerning graph and hypergraph embeddings, with emphasis on
Steiner triple systems (STSs). Section 3 deals with embeddings and bi-
embeddings of STSs, phrased in terms of the corresponding embeddings of
complete graphs. Bi-embeddings of STSs are considered in Section 4. In
Section 5 we focus our attention on the particular value n = 19 and give a
complete catalogue of cyclic (bi-)embeddings of STS(19)s; we also construct
examples of cyclic bi-embedded STS(n)s for other values of n ≡ 7 (mod 12).
Finally, Section 6 contains a list of open problems in this area.
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2 Preliminaries

We review some of the basic notions on graph embeddings, which may not
be familiar to design theorists. Let ν : G → S be an embedding of a graph
G in an orientable surface S. Connected components of the set S \ ν(G)
are called regions or (open) faces of ν; the embedding ν is called 2-cell or
cellular if all its regions are homeomorphic to an open disc. We do not
distinguish between G and its embedded copy ν(G); no confusion will be
likely. Assume that ν : G → S is a cellular embedding (which implies that
G is connected). Fixing an orientation of S induces, for each vertex v of G,
a cyclic permutation Pv of directed edges emanating from v (that is, edges
endowed with a direction pointing out of v). Since every e ∈ E(G) gives
rise to one pair of oppositely directed edges, every directed edge appears in
precisely one cyclic permutation Pv. The product P =

∏
v∈V (G) Pv , called

a rotation system in [11], carries the complete information about the cellular
embedding ν : G → S. The face boundaries may be recovered from the
rotation system by means of the involutory permutation I that sends every
directed edge to its reverse: if P is the rotation system for ν, orbits of the
composition PI correspond to face boundaries of the embedding ν : G→ S.

We note that rotation systems can be simplified when working with
graphs without loops or multiple edges. In such a case, the cyclic permu-
tation Pv can be replaced by the corresponding cyclic permutation Qv of
neighbours of v. The collection {Qv; v ∈ V (G)} is then called a rotation
scheme. Since we are only interested in embeddings of complete graphs, we
shall take advantage of using rotation schemes to describe embeddings.

Now we briefly recall how surface embeddings of hypergraphs can be con-
veniently defined [12]. Let H be a connected hypergraph with vertex set
V (H) and hyperedge set E(H). By [17], there is a 1–1 correspondence be-
tween connected hypergraphs and connected bipartite graphs; the bipartite
graph G(H) associated with H has vertex set V (G(H)) = V (H) ∪ E(H)
(which is, at the same time, the bipartition) and edge set E(G(H)) =
{ve; v ∈ e, v ∈ V (H), e ∈ E(H)}. A surface embedding of the hyper-
graph H is constructed as follows. Take an embedding η : G(H) → S in
some surface S. For each vertex e ∈ E(H) of the bipartite graph G(H),
replace e by a small circle (centered at e) on the surface and suppress the
part of the drawing η which lies inside this small circle. (Such a modification
of an embedding is known as truncation.) We thus obtain a new embedding
η′ of a graph G′; note that this new embedding has |E(H)| more faces than
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η. As the last step, we contract (to a point on the surface S) each edge inci-
dent with some vertex v ∈ V (H), that is, we contract each edge not lying in
any of the ”small circles”. The result is a hypergraph embedding η̄ : H → S.
The regions corresponding to the ones bounded by small circles represent the
hyperedges of H while the vertices in the embedding represent the original
vertices of H . For more details we refer the reader to [12].

The (orientable) genus of a connected hypergraph H is naturally defined
as the smallest genus of an (orientable) surface on which the corresponding
bipartite graph G(H) embeds. In this way, one can study questions con-
cerning embeddings (and genera) of block designs, considering the design as
a hypergraph whose vertices are points of the design and whose hyperedges
are blocks of the design. There has been a lot of activity in this field, see for
instance [2, 4, 9, 15, 18, 19].

The situation is particularly interesting in the case of Steiner triple sys-
tems. We recall that a Steiner triple system on a set V is a collection B
of 3-element subsets (blocks) of V such that each 2-element subset of V is
contained in exactly one block of B. Elements of the set V are points, and
blocks of B are often called triples of the system. We will use the acronym
STS for a Steiner triple system; if we want to emphasize that B is an STS
on a point set V we use the extended notation (V,B). Two STSs (V,B) and
(V ′,B′) are isomorphic if there is a bijection f : V → V ′ which maps blocks
of B to blocks of B′, that is, f(B) = B′. It is a well known fact that if (V,B)
is an STS then |V | ≡ 1 or 3 (mod 6).

There is a natural 1–1 correspondence between Steiner triple systems
and edge-decompositions of complete graphs into triangles. If (V,B) is an
STS then the block set B induces a decomposition of the edge set of the
complete graph K on the vertex set V into triangles (i.e., complete graphs on
3 vertices), and vice versa. We shall refer to this correspondence throughout.

As regards surface embeddings of a Steiner triple system (V,B), one can
either view the system as a hypergraphH with vertex set V and hyperedge set
B and embed it as described before, or one may directly consider embeddings
of the complete graph K on the vertex set V with the property that each
block of B appears on the surface as a triangle which bounds a region of
the embedding. The fact that both approaches yield the same family of
embeddings can be checked easily; we prefer here the second one because of
its more explicit links to topological graph theory.
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3 Steiner triple systems on surfaces

Let (V,B) be an STS on n points and let K = K(B) be the associated
complete graph with V (K) = V whose edge set is decomposed into triangles
corresponding to the triples in B. By an embedding of the STS (V,B) in
an orientable surface S we understand any embedding φ : K(B) → S with
the property that for each {u, v, w} ∈ B, the 3-cycle (uvw) constitutes a
boundary of some face of φ. For the sake of convenience, we shall abbreviate
the above definition by just saying that in the embedding φ, every triple of
B is facial. Since every edge of K belongs to precisely one facial triple, the
faces of φ can be properly two-coloured. Standardly, we colour the facial
triples of B black and the remaining faces white.

Conversely, let ψ : Kn → S be an embedding whose faces can be properly
2-coloured (black and white) and such that all black faces are bounded by
3-cycles. Then ψ is an embedding of some STS on n points. Indeed, let
B be the collection of the 3-subsets of V = V (Kn) that correspond to the
boundary triangles of black faces. Since our face colouring is proper, there is
no edge that appears on the boundary of just one face. Thus, each edge of
Kn is incident to precisely one black face, which translates to the fact that
each pair of elements of V belongs to precisely one 3-subset of B. Hence
(V,B) is an STS, as claimed.

A particularly interesting case occurs when the family of all white faces
constitutes an STS as well. Let (V,B) and (V ′,B′) be two STSs with |V | =
|V ′| = n. We say that the pair B,B′ is bi-embeddable in some orientable
surface S if there is an embedding φ of the STS (V,B) whose white faces are
3-cycles which constitute the blocks of an STS isomorphic to (V ′,B′). Briefly,
in a bi-embedding φ of the pair B,B′, facial triples of B are black while those
corresponding to B′ are white. Necessarily, the bi-embedding φ is then an
orientable triangular embedding of the complete graph on n vertices, and so
n ≡ 0, 3, 4 or 7 (mod 12) (see e.g. [16]) and the surface has minimum genus.
Combining this with the existence condition for STSs, we see that a pair
of STSs on n points can have an orientable bi-embedding only if n ≡ 3 or
7 (mod 12). Conversely, each orientable triangular embedding ψ : Kn → S
whose faces can be properly 2-coloured induces a bi-embedding of a pair of
STSs.

In order to illustrate the above concepts, Fig. 1 depicts a bi-embedding
of the pair B,B′ where B = B′ is the (unique) STS on 7 points. Specifi-
cally, B = {013, 124, 235, 346, 450, 561, 602}, and the isomorphic STS B′ =
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{023, 134, 245, 356, 460, 501, 612}.
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Fig. 1. A bi-embedding of STS(7) in a torus.

Because of the connection between orientable bi-embeddings of STSs and
face 2-colourable orientable triangular embeddings of complete graphs, we
recall a few facts about the latter. Constructions of minimum genus em-
beddings (which include triangulations) of complete graphs in orientable and
nonorientable surfaces have a rich history. They form the essential part of
the solution of the famous Heawood problem of determining the chromatic
number of a surface, or, equivalently, determining the genus of a complete
graph. Most of the solution (which also gave birth to modern topological
graph theory as treated in [11]) is due to Ringel and Youngs; we recommend
Ringel’s book [16] for details. However, the majority of the known minimum
genus orientable embeddings of complete graphs are not face 2-colourable.

In the case when n ≡ 3 (mod 12) the embeddings of Kn found in [16]
are indeed face 2-colourable. The proof technique of [16] uses the theory of
current graphs. However no information is yielded concerning the STS(n)s
which have been embedded, which is the main focus of this paper. In the
next section we present a proof of this result using exclusively design-theoretic
methods. To our mind this is not only simpler and more transparent, it also
positively identifies the STS(n)s so embedded. They are those obtained from
the well-known Bose construction based on a Latin square constructed as the
square-root Cayley table of an odd-order cyclic group.

7



In the case when n ≡ 7 (mod 12) there is the toroidal embedding of K7

given above and the face 2-colourable triangular embedding of K19 given in
[18] (see also [13]). Youngs [20] produces triangular embeddings of Kn

by means of current assignments on ladder graphs. Amongst the variety of
ladder graphs used in [20] it is possible to find, for each n ≡ 7 (mod 12),
one which is bipartite [c.f. especially pages 39-44 of [20]]. Anderson [3]
points out the significance of a bipartition; for our purposes this ensures
that the corresponding triangular embedding is face 2-colourable. Indeed,
the embedding is cyclic (see below) and the bipartition ensures that the face
2-colourability condition for cyclic embeddings (also described below) is sat-
isfied. Thus it is known that there are biembeddings for all n ≡ 7 (mod 12).
But here also, no information is produced about the STSs which have been
embedded. In Section 4 we give a design-theoretic proof that such embed-
dings exist for half of the residue class n ≡ 7 (mod 12). In another paper
[10] we also construct such embeddings by topological methods.

The method of constructing face 2-colourable triangulations directly from
Steiner triple system seems to have one more advantage. In contrast with
the known topological methods, it seems to produce a large number of new
embeddings, as will be documented in Section 5.

4 Bi-embeddings of STSs

We start with rephrasing a well known result in topological graph theory (see
[16]).

Theorem 1 Let n ≡ 3 (mod 12). Then there exists a pair of bi-embedded
STSs of order n in an orientable surface.

Proof. Take the group Z4s+1 and define on it the operation ◦ by i ◦ j =
(i+ j)/2 = (2s+ 1)(i+ j). Use the classical Bose construction [5] to build a
STS (V,B) on the point set V = Z4s+1×Z3. The block set B consists of 4s+1
triples of the form (i, 0), (i, 1), (i, 2), i ∈ Z4s+1, together with 3 × (4s+ 1)2s
triples of the form (i, k), (j, k), (i ◦ j, k + 1) where i, j ∈ Z4s+1, i 6= j and
k ∈ Z3. Let n = 12s + 3. We define two STSs (Zn,B0) and (Zn,B1), both
isomorphic to (V,B), using the bijections fm : V → Zn, m = 0, 1, given
by fm(i, k) = 3i + (−1)mkt where t = 6s + 1; naturally, Bm = fm(B). (It
is understood that on the right side of the equation for fm(i, k) we have
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i ∈ {0, 1, . . . , 4s}, k ∈ {0, 1, 2}, and the addition is mod n.) It can easily be
checked that B0 ∩ B1 = ∅, i.e., the two STSs are disjoint.

We claim that the pair B0,B1 is bi-embeddable in an orientable surface.
To show this, let us think of the triples in B0 (B1) as pairwise disjoint black
(white) topological triangles, i.e., objects homeomorphic to a closed disc. For
each pair of distinct points u, v ∈ Zn we now take the corresponding black and
white triangle, both containing u and v as vertices, and glue these triangles
together along the side uv. Let S be the resulting topological space; then S
is certainly a generalized pseudosurface. Our aim is to prove that, in fact, S
is an orientable surface. This will be done by exhibiting a rotation scheme
Q = {Qi; i ∈ Zn} for an orientable triangular embedding of the complete
graph Kn in which the facial triangles will be in a 1–1 correspondence with
the triples in B0 ∪ B1.

The scheme can be obtained by identifying all triples in B0∪B1 (=triangles
in the embedding) that contain a given fixed element of Zn. Taking into ac-
count the obvious action of the group Z4s+1 on the triples of B (and hence also
on B0 and B1), it suffices to do that for the three points 0, 1, 2. The computa-
tion is elementary but cumbersome, and a patient reader can convince himself
that the cyclic permutations Qi for i = 0, 1, 2 can be described as follows. Let
us define three auxiliary 6-term sequences Aq, Bq and Cq as follows: Aq =
q, 2q+1, q+1,−q−3,−2q−7,−q−4, Bq = q, 2q+1, q−t,−q−t,−2q+1,−q,
and Cq = q, 3 − q, 2 − 2q, t+ 3 − q, t+ 3 + q, 2q + 2. Then,

Q0 = (t, A−6s+1, A−6(s−1)+1, . . . , A−5,−t,−A−6s+1, . . . ,−A−5) ,

Q1 = (B3, B6, . . . , B6s,−t, 0) , and

Q2 = (C3, C6, . . . , C6s, t+ 2, t+ 3) .

The remaining cyclic permutations are defined by the recursion

Qi(j) = Qi−3(j − 3) + 3 for each i, j ∈ Zn, i 6= j.

An easy but tedious checking shows that the family Q = {Qi; i ∈ Zn} is
indeed a rotation scheme for a triangular embedding of Kn whose triangular
faces are precisely the triples in B0 ∪ B1. �

We note here that a similar approach to the above, constructing triangular
embeddings of Kn using the Bose construction, can also be found in [7].
However the proof given there, which applies for all n ≡ 3 (mod 6), n ≥
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9, always produces an embedding in a non-orientable surface which is not
suitable for our purposes.

Theorem 2 If m ≡ 3 (mod 12) then, from an orientable bi-embedding of a
pair of STS(m)s, we may construct an orientable bi-embedding of a pair of
STS(3m− 2)s.

Proof. Let m = 12s+3. Consider an STS(m) (V,B) where V = Zm−1 ∪
∞. Suppose further that (V,B) is embedded in an orientable surface of
minimum genus (i.e., the corresponding face 2-colourable embedding of Km

is triangular) and that Q = {Qi; i ∈ V } is the rotation scheme. (The
existence of such an embedding for all s is proved in Theorem 1.) Let
{<∞, bi, ai> : i = 0, 1, 2, . . . , 6s} be the set of (oriented) blocks containing
the point ∞. Without loss of generality, suppose that

Q∞ = (a0, b0, a1, b1, a2, b2, . . . , a6s, b6s) .

For i = 0, 1, 2, . . . , 6s let

Qai
= (bi,∞, ci,1, di,1, ci,2, di,2, . . . , ci,6s, di,6s) ,

Qbi
= (∞, ai, ei,1, fi,1, ei,2, fi,2, . . . , ei,6s, fi,6s) .

Now let n = 36s + 7 = 3(12s + 2) + 1, and consider further an STS(n)
(V̄ , B̄) where V̄ = Zm−1∪Z

′

m−1∪Z
′′

m−1∪{∞}. We describe a rotation scheme
Q̄ = {Q̄i; i ∈ V̄ } in terms of the rotation scheme Q, which will determine
an embedding of (V̄ , B̄) within a face 2-colourable orientable triangular em-
bedding of Kn. Let

Q̄∞ = (a0, b
′

0, a
′

1, b
′′

1, a
′′

2, b2, a3, b
′

3, a
′

4, b
′′

4, a
′′

5, b5, . . . , a6s, b
′

6s,

a′0, b
′′

0, a
′′

1, b1, a2, b
′

2, a
′

3, b
′′

3, a
′′

4, b4, a5, b
′

5, . . . , a
′

6s, b
′′

6s,

a′′0, b0, a1, b
′

1, a
′

2, b
′′

2, a
′′

3, b3, a4, b
′

4, a
′

5, b
′′

5, . . . , a
′′

6s, b6s) ,
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Q̄ai
= (b′i,∞, ci,1, d

′

i,1, c
′′

i,1, d
′′

i,1, c
′

i,1, di,1, ci,2, d
′

i,2, c
′′

i,2, d
′′

i,2, c
′

i,2, di,2, . . . ,

ci,6s, d
′

i,6s, c
′′

i,6s, d
′′

i,6s, c
′

i,6s, di,6s, bi, b
′′

i , a
′

i, a
′′

i ) ,

Q̄bi
= (∞, a′′i , a

′

i, b
′

i, b
′′

i , ai, ei,1, f
′

i,1, e
′′

i,1, f
′′

i,1, e
′

i,1, fi,1, ei,2, f
′

i,2, e
′′

i,2, f
′′

i,2,

e′i,2, fi,2, . . . , ei,6s, f
′

i,6s, e
′′

i,6s, f
′′

i,6s, e
′

i,6s, fi,6s) ,

where i = 0, 1, 2, . . . , 6s. The permutations Q̄a′

i
(resp. Q̄a′′

i
) are constructed

from Q̄ai
by replacing undashed elements by their corresponding dashed

(double-dashed) elements, dashed elements by their corresponding double-
dashed (undashed) elements and double-dashed elements by their corre-
sponding undashed (dashed) elements. Similarly for Q̄b′

i
and Q̄b′′

i
.

Again what remains is to check that Q̄ is a rotation scheme with the
required properties. This may be deduced from the corresponding properties
of Q by considering firstly the collection of n(n − 1)/2 pairs obtained from
alternate pairs of adjacent entries in the rotations forming Q̄, i.e. the pairs
formed from the entries in positions 1 and 2, 3 and 4,. . . , 12s+1 and 12s+2
in each Q̄z (z ∈ V̄ ). It is feasible, if somewhat tedious, to verify that every
pair of distinct elements from V̄ appears precisely once as such an entry-pair
and that if Q̄z ”contains” such a pair (x, y) in that order then Q̄x ”contains”
(y, z) in that order. The checking is then repeated for the remaining adjacent
pairs, i.e. those from positions 2 and 3, 4 and 5,. . . ,12s+2 and 1. We suggest
that the reader first works through the easy cases where s = 0 and s = 1,
using the embedding of the STS(15) constructed in Theorem 1. �

Theorem 3 If m ≡ 7 (mod 12) then, from an orientable bi-embedding of a
pair of STS(m)s, we may construct an orientable bi-embedding of a pair of
STS(3m− 2)s.

Proof. The construction is similar to that of the previous Theorem but
now with m = 12s + 7 and the suffices i, j on a, b, c, d, e, f running up to
6s+ 2. We proceed as before except that we select precisely one of the pairs
(ai, bi), say (a0, b0), for special treatment. Take Q̄a0

, Q̄b0 as before and then
apply the permutation (a′0 a′′0)(b

′

0 b′′0). Having done this, Q̄a′

0
, Q̄a′′

0
, Q̄b′

0
, Q̄b′′

0

are formed as before, but from the modified Q̄a0
, Q̄b0 . Next take

Q̄∞ = (a0, b
′′

0, a
′′

1, b1, a2, b
′

2, a
′

3, b
′′

3, a
′′

4, b4, a5, b
′

5, . . . , a6s+2, b
′

6s+2,
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a′0, b0, a1, b
′

1, a
′

2, b
′′

2, a
′′

3, b3, a4, b
′

4, a
′

5, b
′′

5, . . . , a
′

6s+2, b
′′

6s+2,

a′′0, b
′

0, a
′

1, b
′′

1, a
′′

2, b2, a3, b
′

3, a
′

4, b
′′

4, a
′′

5, b5, . . . , a
′′

6s+2, b6s+2) ,

The remaining rotation schemes follow the same pattern as before. The
checking procedure is as previously described; we suggest that the reader
first works through the case s = 0 using the bi-embedding of the STS(7)
given earlier. �

We note here that applying Theorem 2 to the bi-embedding produced
by Theorem 1 gives a bi-embedding for n ≡ 7 (mod 36). Applying Theorem
3 to this gives a bi-embedding for n ≡ 19 (mod 108). Proceeding in this
fashion we obtain bi-embeddings for 1

3
+ 1

9
+ 1

27
+ · · · = 1

2
of the residue class

n ≡ 7 (mod 12). We also observe that the ”twist” given to the pair (a0, b0) in
the proof of Theorem 3 may be applied to any individual pair. In fact, in the
constructions of both Theorems 2 and 3 we may ”twist” any number, say k,
of the pairs (ai, bi) provided in the former case that k ≡ 0 or 1 (mod 3) and
in the latter case that k ≡ 1 or 2 (mod 3). We can thereby produce a large
number of different bi-embeddings which may or may not be isomorphic.

5 Cyclic bi-embeddings of STSs

Consider a cyclic STS(n) defined on Zn and let Q = {Qi; i ∈ Zn} be a
rotation scheme of an embedding of the system in an orientable surface of
minimum genus, given by the formula ⌈(n− 3)(n− 4)/12⌉. The embedding
is said to be cyclic if Qi(j) = Q0(j − i) + i for each i, j ∈ Zn, i 6= j. An
example of a cyclic (bi-) embedding is that given in Fig. 1 for STS(7). To
exhibit a cyclic embedding it is necessary only to specify Q0, the rotation
scheme at the point 0. We do this below for bi-embeddings with values of
n ≡ 7 (mod 12). (Because of the short orbit, no such embeddings can exist
for n ≡ 3 (mod 12).) In the case when n = 19, the listing is complete and
all calculations were done by hand. For other values of n, the results were
produced by computer calculations and are examples only. The empirical
evidence indicates that there are indeed very many such embeddings. For
example when n = 31 our present estimate is that this is likely to be in excess
of 1, 000 non-isomorphic embeddings. We hope to make this the subject of
a further paper.
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To assist the reader in checking the results, note that the condition on
Q0 which determines that Q0 is a triangulation is that Q0(Q0(i) − i) = −i
for all i ∈ Zn \ {0}. This may be seen by considering the faces on the two
sides of any edge ab. The condition on Q0 which ensures that such a cyclic
triangulation is face 2-colourable is that, for each i ∈ Zn \ {0}, the equation
Qki

0 (i) = −i should imply that ki is odd. To see this, suppose that the
condition is satisfied; we can then give a procedure for colouring the faces.

Take any (directed) edge 0x incident with 0. The orientation of the
embedding induces two ”sides” to this edge. Colour this edge B/W; that is,
colour one side black and the other side white. Now colour the remaining
directed edges 0y incident with 0 alternating B/W and W/B. For a non-zero
vertex a colour the edges incident with a in a similar fashion by taking the
colouring of the (directed) edge ab to be that of 0(b − a). Now consider
any triangular face {p, q, r} and suppose, for sake of argument, that the
directed edge pq is coloured B/W. Then 0(q − p) is colored B/W and, since
Qk

0(q − p) = p − q implies k odd, we have the edge 0(p− q) coloured W/B,
and hence qp is also coloured W/B. (See Fig. 2a.)
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Fig. 2a. Fig 2b.

Note also that the directed edge pr has the colouring of 0(r − p) which
is alternate to that of 0(q − p), and so pr has the colour W/B. Similarly
qr has the colour B/W and the reverse edges, as before, have the reverse
colourations. This gives rise to Fig. 2b. Thus the procedure determines a
unique colour for any triangle {p, q, r} (in this case black) and ensures that
all the neighbouring triangles have the opposite colour.
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There exist precisely four pairwise non-isomorphic cyclic STS(19)s, [14].
In the interest of completeness we list the base triples for each system below.

A1 : 0 1 4, 0 2 9, 0 5 11

A2 : 0 1 4, 0 2 12, 0 5 13

A3 : 0 1 8, 0 2 5, 0 4 10

A4 : 0 1 8, 0 2 5, 0 4 13

We find that there are precisely eight non-isomorphic cyclic bi-embeddings
of STS(19)s. These are listed below together with an identification of the
two systems. For each pair of the embedded systems, the realization of the
first system is as above and so can be immediately checked by the reader.
The second system is an isomorphic copy of one of the above systems and
this too is fairly easily verified.

1. Q0 = (4, 1, 12, 10, 6, 14, 16, 15, 9, 2, 5, 11, 18, 3, 17, 7, 8, 13); A1 and A3.

2. Q0 = (4, 1, 8, 13, 9, 2, 16, 15, 6, 14, 17, 7, 18, 3, 5, 11, 12, 10); A1 and A3.

3. Q0 = (4, 1, 12, 2, 16, 15, 9, 7, 8, 14, 17, 10, 6, 11, 18, 3, 5, 13); A2 and A3.

4. Q0 = (4, 1, 12, 2, 5, 13, 9, 7, 8, 14, 16, 15, 6, 11, 18, 3, 17, 10); A2 and A3.

5. Q0 = (4, 1, 8, 14, 16, 15, 6, 11, 12, 2, 5, 13, 9, 7, 18, 3, 17, 10); A2 and A3.

6. Q0 = (4, 1, 8, 14, 17, 10, 6, 11, 12, 2, 16, 15, 9, 7, 18, 3, 5, 13); A2 and A3.

7. Q0 = (4, 1, 12, 2, 16, 15, 6, 11, 18, 3, 5, 13, 9, 7, 8, 14, 17, 10); A2 and A4.

8. Q0 = (4, 1, 8, 14, 16, 15, 9, 7, 18, 3, 17, 10, 6, 11, 12, 2, 5, 13); A2 and A4.

Embedding # 1 is isomorphic to the embedding C given in [13] and embed-
ding # 6 is isomorphic to that given by figure 27 of [20]. Note we have also
proved that every cyclic STS(19) can be embedded in an orientable surface
of genus ⌈(19 − 3)(19 − 4)/12⌉ = 20, which is the orientable genus of the
complete graph K19.

The following seven rotation schemes describe cyclic bi-embeddings of the
projective STS(31). In each example the orientations of the cyclic orbits and
therefore triples of the projective system are the same. However, the other
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bi-embedded systems in each case are pairwise non-isomorphic thus showing
that the embeddings are themselves non-isomorphic.

1. Q0 = (12, 1, 8, 3, 16, 6, 17, 4, 26, 23, 24, 2, 21, 15, 18, 14, 20, 19,

29, 22, 27, 13, 28, 5, 9, 7, 30, 11, 25, 10)

2. Q0 = (12, 1, 8, 3, 16, 6, 20, 19, 21, 15, 18, 14, 25, 10, 29, 22, 27, 13,

28, 5, 9, 7, 30, 11, 17, 4, 26, 23, 24, 2)

3. Q0 = (12, 1, 8, 3, 16, 6, 20, 19, 29, 22, 27, 13, 28, 5, 9, 7, 30, 11,

17, 4, 26, 23, 24, 2, 21, 15, 18, 14, 25, 10)

4. Q0 = (12, 1, 8, 3, 18, 14, 20, 19, 21, 15, 28, 5, 9, 7, 30, 11, 25, 10,

29, 22, 27, 13, 16, 6, 17, 4, 26, 23, 24, 2)

5. Q0 = (12, 1, 8, 3, 18, 14, 20, 19, 29, 22, 26, 23, 24, 2, 21, 15, 28, 5,

27, 13, 16, 6, 17, 4, 9, 7, 30, 11, 25, 10)

6. Q0 = (12, 1, 8, 3, 18, 14, 20, 19, 29, 22, 27, 13, 16, 6, 17, 4, 26, 23,

24, 2, 21, 15, 28, 5, 9, 7, 30, 11, 25, 10)

7. Q0 = (12, 1, 8, 3, 18, 14, 25, 10, 29, 22, 27, 13, 16, 6, 20, 19, 21, 15,

28, 5, 9, 7, 30, 11, 17, 4, 26, 23, 24, 2)

Observe that there are 80 pairwise non-isomorphic cyclic STS(31)s [6], each
of which is composed of 5 orbits, giving rise to 24 = 16 different orbit orien-
tations on the surface. Clearly the total number of cyclic bi-embeddings of
the STS(31)s is very large.

Finally in this section we list a rotation scheme of a cyclic bi-embedding
for a pair of STS(n)s where n ≡ 7 (mod12), 43 ≤ n ≤ 91.

1. n = 43.

Q0 = (9, 1, 12, 2, 21, 6, 14, 3, 28, 22, 24, 7, 20, 4, 38, 13, 36, 17, 33, 31, 32, 29,

35, 34, 39, 16, 26, 19, 41, 10, 27, 23, 30, 25, 40, 11, 42, 8, 37, 15, 18, 5).

2. n = 55.

Q0 = (11, 1, 14, 2, 19, 4, 22, 5, 25, 7, 16, 3, 47, 23, 29, 9, 48, 18, 51, 15,
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27, 6, 32, 24, 34, 28, 43, 41, 42, 39, 46, 20, 50, 17, 53, 12, 40, 36,

38, 33, 37, 30, 35, 26, 49, 21, 45, 44, 52, 13, 54, 10, 31, 8).

3. n = 67.

Q0 = (13, 1, 16, 2, 21, 4, 24, 5, 35, 8, 18, 3, 26, 6, 60, 22, 33, 10, 59, 27,

58, 28, 53, 51, 52, 49, 57, 23, 64, 15, 66, 12, 50, 46, 48, 43,

47, 41, 44, 34, 56, 25, 39, 30, 62, 19, 65, 14, 42, 31, 40, 32,

37, 9, 36, 11, 45, 38, 55, 54, 61, 20, 63, 17, 29, 7).

4. n = 79.

Q0 = (15, 1, 18, 2, 23, 4, 26, 5, 40, 13, 43, 32, 42, 12, 31, 7, 71, 25, 28, 6, 20, 3,

54, 46, 55, 48, 60, 56, 58, 53, 57, 51, 76, 17, 78, 14, 73, 22, 75, 19, 67, 30,

66, 27, 68, 36, 49, 37, 69, 34, 63, 61, 62, 59, 65, 64, 72, 24, 70, 29, 45, 35,

74, 21, 77, 16, 50, 41, 52, 39, 44, 10, 47, 11, 38, 9, 33, 8).

5. n = 91.

Q0 = (17, 1, 20, 2, 25, 4, 28, 5, 42, 11, 38, 9, 22, 3, 35, 8, 48, 12, 33, 7,

81, 40, 83, 27, 80, 31, 46, 32, 88, 19, 90, 16, 77, 45, 76, 37, 86, 23,

89, 18, 52, 15, 60, 49, 54, 39, 57, 13, 82, 29, 55, 43, 51, 41, 47, 34,

73, 71, 72, 69, 78, 44, 85, 24, 87, 21, 79, 36, 65, 58, 70, 66, 68, 63,

67, 61, 75, 74, 84, 26, 62, 53, 64, 56, 59, 14, 30, 6, 50, 10).
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6 Concluding remarks

It is one purpose of this paper to establish the study of embeddings of com-
binatorial designs on surfaces as legitimate mathematical activity. The work
is closely related to classical Topological Graph Theory; the Heawood map
colour theorem. However the emphasis is different. Our main focus is on the
embedding of the design rather than the graph. For this reason we call this
study ”Topological Design Theory”. We point the way forward by outlining
some of the fundamental problems. Although they will almost certainly be
difficult, we do not believe that all will be intractable, and so progress should
be possible.

Problem 1. Produce a design-theoretic proof that for all n ≡ 3 or
7 (mod 12), there exists an STS(n) which can be embedded in an orientable
surface of genus (n− 3)(n− 4)/12. The theorems proved in this paper leave
only half of the cases n ≡ 7 (mod 12) to be considered.

Much more dificult and probably at this stage beyond the scope of current
methods is

Problem 2. Can every STS(n) for n ≡ 3 or 7 (mod 12) be so embedded?

Although the empirical evidence is still flimsy we believe that the answer to
this problem is in the affirmative. Our reason for saying this is that we have
embeddings of both the unique anti-Pasch STS(15) (Theorem 1) and the
projective STS(31) containing the maximum number of quadrilaterals; two
systems which structurally are as diverse as possible. A more realistic goal
might be to restrict attention to the case n = 15. There are 80 pairwise non-
isomorphic STS(15)s [14] and at the moment we know only of the embedding
of one of them.

Also of interest is the problem of bi-embeddings of pairs of STSs.

Problem 3. For n ≡ 3 or 7 (mod 12), and a given pair B,B′ of STS(n)s
defined on the same base set, does there exist an orientable face 2-colourable
triangular embedding of Kn with the property that the two STSs so formed
are isomorphic to B and B′?

In comparison to Problem 2 we believe that the answer here is in the negative
and that the construction of a counter-example may be possible.

Finally, there is the case when n ≡ 1 or 9 (mod 12). Here any embedding
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of an STS(n) in any orientable surface is not a triangulation and hence no
bi-embeddings are possible. Nevertheless we still ask

Problem 4. For a given STS(n), n ≡ 1 or 9 (mod 12), what is the
minimum genus γ of the orientable surface into which it can be embedded?
In particular when does γ = ⌈(n − 3)(n − 4)/12⌉ ? The cases n = 9 and
n = 13 might repay further study.
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