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Abstract

Properties of the 11084 874 829 Steiner triple systems of order 19 are examined.
In particular, there is exactly one 5-sparse, but no 6-sparse, STS(19); there is ex-
actly one uniform STS(19); there are exactly two STS(19) with no almost parallel
classes; all STS(19) have chromatic number 3; all have chromatic index 10, except
for 4075 designs with chromatic index 11 and two with chromatic index 12; all are
3-resolvable; and there are exactly two 3-existentially closed STS(19).

Keywords: automorphism, chromatic index, chromatic number, configuration, cycle
structure, existential closure, independent set, partial parallel class, rank, Steiner triple
system of order 19.

1 Introduction

A Steiner triple system (STS) is a pair (X, B), where X is a finite set of points and B is
a collection of 3-subsets of points, called blocks or triples, with the property that every
2-subset of points occurs in exactly one block. The size of the point set, v := | X|, is
the order of the design, and an STS of order v is commonly denoted by STS(v). Steiner
triple systems form perhaps the most fundamental family of combinatorial designs; it is
well known that they exist exactly for orders v = 1,3 (mod 6) [31].

Two STS(v) are isomorphic if there is a bijection between their point sets that maps
blocks onto blocks. Denoting the number of isomorphism classes of STS(v) by N(v),
we have N(3) = 1, N(7) =1, N(9) = 1, N(13) = 2 and N(15) = 80. Indeed, due to
their relatively small number, the STSs up to order 15 have been studied in detail and
are rather well understood. An extensive study of their properties was carried out by
Mathon, Phelps and Rosa in the early 1980s [35].

For the next admissible parameter, we have N(19) = 11084 874 829, obtained in [26].
Of course, this huge number prohibits a discussion of each individual design. Because the
designs are publicly available in compressed form [28], however, examination of some of
their properties can be easily automated. Computing resources set a strict limit on what
is feasible: one CPU year permits 2.8 milliseconds on average for each design.

Many properties of interest can nonetheless be treated. In Section 2, results, mainly
of a computational nature, are presented. They show, amongst other things, that there is
exactly one 5-sparse, but no 6-sparse, STS(19); that there is one uniform STS(19); that
there are two STS(19) with no almost parallel classes; that all STS(19) have chromatic
number 3; that all have chromatic index 10, except for 4 075 designs with chromatic index

*Supported in part by DOD Grant N00014-08-1-1070.

fSupported by the Academy of Finland, Grant No. 117499.

fSupported in part by the Academy of Finland, Grants No. 107493, 110196, 130142, 132122.

$Supported in part by CFI, IRIF and NSERC.

YCurrent address: Finnish Defence Forces Technical Research Centre, P.O. Box 10, 11311 Riihiméki,
Finland. Supported by the Graduate School in Electronics, Telecommunication and Automation, by the
Nokia Foundation and by the Academy of Finland, Grant No. 110196.

THE ELECTRONIC JOURNAL OF COMBINATORICS 16 (2009), #R00 3



Table 1: Automorphism group order

Aut Z Auw|__ # [Aw| __# JAul 7
1 11084710071 8 101 19 1 96 1
2 149522 9 19 24 11 108 1
3 12728 12 37 32 3 144 1
4 2121 16 13 54 2 171 1
6 182 18 11 57 2 432 1

11 and two with chromatic index 12; that all STS(19) are 3-resolvable; and that there are
two 3-existentially closed ST'S(19). Some tables from the original classification [26] are
repeated for completeness. In Section 3, some properties that remain open are mentioned,
and the computational resources needed in the current work are briefly discussed.

2 Properties

2.1 Automorphisms

The automorphisms and automorphism groups of the STS(19) were studied in [6, 26]; we
reproduce the results here (with a correction in our Table 2).

Representing an automorphism as a permutation of the points, the nonidentity auto-
morphisms can be divided into two types based on their order. The automorphisms of
prime order have six cycle types

194, 129 1136 1328, 1726 1734
and the automorphisms of composite order have nine cycle types
1'9%, 1'6%, 1'3%6%, 1'2'4%, 1'2'8% 1382, 134% 132267, 132243

Table 1 gives the order of the automorphism group for each isomorphism class. Tables 2
and 3 partition the possible orders of the automorphism groups into classes based on the
types of prime and composite automorphisms that occur in the group. Compared with
[26], Table 2 has been corrected by transposing the classes 18c and 18d, and the classes
12a and 12b (this correction is incorporated in the table reproduced in [4]).

A list of the 104 ST'S(19) having an automorphism group of order at least 9 is given
in compact notation in the supplement to [6]. Cyclic STS(19) were first enumerated in
[1] and 2-rotational ones (automorphism cycle type 119?) in [38]; these systems are listed
in [35]. The 184 reverse STS(19) (automorphism cycle type 1'29), together with their
automorphism groups, were determined in [10].

In this paper, certain STS(19) are identified as follows: A1-A4 are the cyclic systems
as listed in [35]; B1-B10 are the 2-rotational ST'S(19) as listed in [35]; and S1-S7 are the
sporadic STS(19) listed in the Appendix. In addition, an STS(19) can be identified by
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Table 2: Automorphisms (prime order)

Order Class 19! 1122 1'36 1328 1726 1734 +#
432 * * * * 1
171 * * 1
144 * 1
108 * * 1

96 * * * 1
57 * * 2
54 * * * 2
32 3
24 * 11
19 * 1
18 a * * 1
b * * 2

c * * 6

d * * 2

16 * 13
12 a * * 8
b * 7

C * 12

d * * * 10

9 * 19
8 a * 84
b 17

6 a * * 14
b * 14

C * 116

d * * 10

e * 28

4 a 839
b 662

c * 620

3 a * 12664
b * 64

2 a * 169
b * 78961

c * 70392

# 4 184 12885 80645 72150 124 164758
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Table 3: Automorphisms (composite order)

Class 1'9%2 1'63 1'3%26% 1'214% 12182 1382 1347 13226> 132243 #
432 * * * * 1
171 * 1
144 * * * * 1
108 * * 1
96 * * 1
57 2
54 * 2
32 * * 3
24 * 11
19 1
18a * 1
18b * 2
18c 6
18d 2
16 * * )
16 6
16 * 1
16 1
12a * 8
12b 7
12¢ 12
12d * 10
9 * 9
9 10
8a * 2

82
8b * 5
* 10
* 2
6a * 14
6b 14
6¢ * 104
12
6d * 10
6e 28
4a 839
4b * 498
* 153
11
4c * 48
572

# 10 15 137 518 16 4 185 24 48
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the order of its automorphism group when this is unique (the listings in [6] are useful
for retrieving such designs). Design A4, with an automorphism group of order 171, is
both cyclic and 2-rotational and is therefore also listed as B8 in [35]; it is the Netto
triple system [39]. A reader interested in copies of STS(19) that are not included among
the sporadic examples here will apparently need to carry out some computational work,
perhaps utilizing the catalogue from [28]—the authors of the current work are glad to
provide consultancy for such an endeavour.

2.2  Subsystems and Ranks

A subsystem in an STS is a subset of blocks that forms an STS on a subset of the points.
A subsystem in an STS(v) has order at most (v — 1)/2; hence a subsystem in an STS(19)
has order 3, 7 or 9. Moreover, the intersection of two subsystems is a subsystem. It
follows that each STS(19) has at most one subsystem of order 9, with equality for 284 457
isomorphism classes [42]. The number of subsystems of each order in each isomorphism
class was determined in [29] and these results are collected in Table 4. The ST'S(19) with 12
subsystems of order 7 and 1 subsystem of order 9 is the system having an automorphism
group of order 432, and the other two STS(19) with 12 subsystems of order 7 are the
systems having automorphism groups of orders 108 and 144.

The rank of an STS is the linear rank of its point-block incidence matrix over GF(2).
In this setting, a nonempty set of points is (linearly) dependent if every block intersects
the set in an even number of points. Counting the point—block incidences in a dependent
set in two different ways, one finds that a dependent set necessarily consists of (v + 1)/2
points so that its complement is the point set of a subsystem of order (v — 1)/2. An
in-depth study of the rank of STSs has been carried out in [11].

In particular, for v = 19 there is at most one dependent set, with equality if and
only if there exists a subsystem of order 9. It follows that the rank of an STS(19) is
18 if there exists a subsystem of order 9 (284457 isomorphism classes) and 19 otherwise
(11084 590 372 isomorphism classes).

The rank over GF(2) gives the dimension of the binary code generated by the (rows
or columns of) the incidence matrix. The code generated by the rows of a point—block
incidence matrix is the point code of the STS. There exist nonisomorphic STS(19) that
have equivalent point codes [27].

2.3 Small Configurations

A configuration C in an STS (X, B) is a subset of blocks C C B. Small configurations in
STSs have been studied extensively; see [8, Chapter 13|, [17] and [19]. The number of any
configuration of size at most 3 is a function of the order of the STS. We address small
configurations with some particular properties.

A configuration C with |C| = ¢ and | Ugec C| = k is a (k, £)-configuration. A config-
uration is even if each of its points occurs in an even number of blocks. If no point of a
configuration occurs in exactly one block, then the configuration is full.
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Table 4: Number of subsystems

STS(7) STS(9) Z STS(7) STS(9)  #
0 0 10997902498 3 1 45
0 1 270784 4 0 2449
1 0 86101058 4 1 25
1 1 12956 6 0 75
2 0 572471 6 1 5
2 1 641 12 0 2
3 0 11819 12 1 1

The only even (and only full) configuration of size 4 is the Pasch configuration, the
(6,4)-configuration depicted in Figure 1. The numbers of Pasch configurations in the
STS(19) were tabulated in [26]; for completeness, we repeat the result in Table 5.

Table 5: Number of Pasches

Pasch # Pasch # Pasch # Pasch  #
0 2591 17 954710609 34 2190166 51 366
1 35758 18 845596671 35 1301951 52 482
2 263 646 19 716603299 36 775233 53 78
3 1315161 20 583321976 37 452306 54 278
4 4958 687 21 457755898 38 267642 55 69
5 15095372 22 347324307 39 152122 56 137
6 38481 050 23 255589428 40 92056 57 24
7 84 328 984 24 182938899 41 51019 58 104
8 162045054 25 127614183 42 31587 59 6
9 276886518 26 87003115 43 16974 60 41

10 426050673 27 58052942 44 11827 62 47
11 596271997 28 38010203 45 6008 64 3
12 765958 741 29 24457073 46 4629 66 18
13 910510124 30 15492114 47 2151 70 5
14 1008615673 31 9663499 48 2099 78 2
15 1047850033 32 5956 712 49 724 84 3
16 1027129335 33 3623 356 50 991

Three STS(19) with 84 Pasch configurations were found in [23]. Indeed, 84 is the
maximum possible number of Pasch configurations and the list of such STS(19) in [23]
is complete. The three systems are those having automorphism groups of order 108, 144
and 432, also encountered in Section 2.2.

Replacing the blocks of a Pasch configuration, say P = {{a,b,c}, {a,y, z},{z,b, 2},
{z,y,c}}, by the blocks of P' = {{x,y, z},{z,b,c},{a,y,c},{a,b, z}} transforms an STS
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into another STS. This operation is a Pasch switch. All but one of the 80 isomorphism
classes of STS(15) contain at least one Pasch configuration. Any one of these can be
transformed to any other by some sequence of Pasch switches [16, 22]. A natural question
is whether the same is true for the STS(19), that is, if each STS(19) containing at least
one Pasch configuration can be transformed to any other such design via Pasch switches.
The answer is in the negative.

In [21] the concept of twin Steiner triple systems was introduced. These are two STSs
each of which contains precisely one Pasch configuration that when switched produces the
other system. If in addition the twin systems are isomorphic we have identical twins. In
[20] nine pairs of twin STS(19) are given. By examining all ST'S(19) containing a single
Pasch configuration, we have established that there are in total 126 pairs of twins, but no
identical twins.

We also consider STSs that contain precisely two Pasch configurations, say P and Q,
such that when P (respectively Q) is switched what is obtained is an STS containing just
one Pasch configuration P’ (respectively Q). There are precisely 9 such systems. In every
case the two single Pasch systems obtained by the Pasch switches are nonisomorphic. One
such system is S1 (in the Appendix).

For size 6, there are two even configurations, known as the grid and the prism (or
double triangle); these (9, 6)-configurations are depicted in Figure 1.

o o o
e  J
[ o °
Pasch Grid Prism

Figure 1: The even configurations of size at most 6

Every STS contains an even configuration of size at most 8, see [15]. However, no
STS(19) missing either a grid or a prism was known. Indeed, a complete enumeration
of grids and prisms establishes that there is no such STS(19). The distribution of the
numbers of grids is shown in Table 9 and that for prisms in Table 10. The smallest
number of grids in an STS(19) is 21 (design S4) and the largest is 384 (the STS(19) with
automorphism group order 432). The smallest number of prisms is 171 (design A4) and
the largest is 1152 (the designs with automorphism group orders 108, 144 and 432). In
particular, then, every STS(19) contains both even (9, 6)-configurations.

An STS is k-sparse if it does not contain any (n + 2,n)-configuration for any 4 <
n < k. In studying k-sparse systems it suffices to focus on full configurations, because an
(n + 2, n)-configuration that is not full contains an (n 4+ 1,n — 1)-configuration. Because
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k-sparse STS(19) with k& > 4 are anti-Pasch, one could simply check the 2591 anti-Pasch
STS(19). A more extensive tabulation of small (n + 2, n)-configurations was carried out
in this work.

There is one full (7,5)-configuration (the mitre) and two full (8,6)-configurations,
known as the hexagon (or 6-cycle) and the crown. These are drawn in Figure 2, and their
numbers are presented in Tables 11, 12 and 13.

Mitre Hexagon Crown

Figure 2: The full (7,5)- and (8, 6)-configurations

The existence of a 5-sparse STS(19) was known [7]. By Table 11 there are exactly
four nonisomorphic anti-mitre STS(19). Moreover, by Tables 12 and 13 there is a unique
STS(19) with no hexagon and exactly four with no crown. Considering the intersections
of the classes of ST'S(19) with these properties, and the anti-Pasch ones, only two ST'S(19)
are in more than one of the classes: one has no Pasch and no mitre, and one has no Pasch
and no crown.

Theorem 1. The numbers of 4-sparse, 5-sparse and 6-sparse STS(19) are 2591, 1 and
0, respectively.

The unique 5-sparse—that is, anti-Pasch and anti-mitre—STS(19) is A4. The unique
STS(19) having no Pasch and no crown is A2, and the unique STS(19) with no hexagon
is S5. The other three anti-mitre systems are B4, S6 and A3, and the other three anti-
crown systems are those with automorphism group orders 108, 144 and 432. The largest
number of mitres, hexagons and crowns in an STS(19) is 144 (for the three STS(19) with
automorphism group orders 108, 144 and 432), 171 (for A4) and 314 (for S7), respectively.

2.4 Cycle Structure and Uniform Systems

Any two distinct points z,y € X of an STS determine a cycle graph in the following way.
The points z, y occur in a unique block {x,y, z}. The cycle graph has one vertex for each
point in X \ {z,y, 2} and an edge between two vertices if and only if the corresponding
points occur together with x or y in a block.

A cycle graph of an STS is 2-regular and consists of a set of cycles of even length. Hence
they can be specified as integer partitions of v —3 using even integers greater than or equal
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to 4. For v = 19, the possible partitions are [; = 44+4+4+4,lo =4+4+8, I3 =4+6+6,
ly =44+12, 15 =6+ 10, l[§ = 8+ 8 and [y = 16. The cycle vector of an STS is a tuple
showing the distribution of the cycle graphs; for STS(19) we have (a1, ag, as, a4, as, ag, ar)
with Zzzl a; = (129) = 171, where a; denotes the number of occurrences of the partition

The cycle vector (0,0,0,0,0,0,171) is of particular interest; an STS all of whose cycle
graphs consist of a single cycle is perfect. It is known [25] that there is no perfect STS(19).
A more general family consists of the STSs with a; = (;’) for some i; such STSs are uniform.
Uniform STS(19) are known to exist [39].

An extensive investigation of the cycle vectors of ST'S(19) was carried out. The results
are summarized in Table 6, where the designs are grouped according to the support of
the cycle vector, that is, {i : a; # 0}. Only 28 out of 128 possible combinations of cycle
graphs are actually realised.

Table 6: Combinations of cycle graphs

Type # Type # Type #
5 1 3567 125 24567 75 786 636
57 5 4567 5009893 34567 174351 058
134 3 12347 39 123457 51146
347 1 12457 56 123467 15
357 1 12467 1 124567 8658 874
457 17 13457 89 134567 11039468
567 2585 13467 2 234567 8685731027
1347 5 14567 135588 1234567 2124060807
2457 255 23457 46863

3457 259 23567 10

The main observation from Table 6 is the following.
Theorem 2. There is exactly one uniform STS(19).

The following conclusions can also be drawn from Table 6. The anti-Pasch systems
are one with cycle graph 5; five with cycle graphs 5 and 7; and 2 585 with cycle graphs 5,
6 and 7. The unique 6-cycle-free system has cycle graphs 1, 2, 4, 6 and 7. The numbers
of k-cycle-free systems for k = 4, 6, 8, 10, 12 and 16 are 2591, 1, 381, 66, 2727 and 4,
respectively. The unique uniform STS(19) is the 5-sparse system A4 of Theorem 1.

2.5 Independent Sets

An independent set I C X in a Steiner triple system (X, B) is a set of points with
the property that no block of B is contained in I. A mazimum independent set is an
independent set of maximum size. There exists an STS(19) that contains a maximum
independent set of size m if and only if m € {7,8,9,10}, and m = 10 arises precisely
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when the design contains a subsystem of order 9; see [8, Chapter 17|. The following
theorem collects the results of a complete determination.

Theorem 3. The numbers of STS(19) with mazimum independent set size 7, 8, 9 and
10 are 2, 10133102887, 951 487 483 and 284 457, respectively.

The two systems that have maximum independent set of size 7 are the (cyclic) systems
A2 and A4.

2.6 Chromatic Number

A colouring of a Steiner triple system (X, B) is a partition of X into independent sets. A
partition of X into k independent sets is a k-colouring. The chromatic number of an STS
is the smallest integer k such that the STS has a k-colouring, and corresponding colourings
are optimal. Designs with a unique optimal colouring have been termed uniquely colourable
[41]. A colouring is equitable if the cardinalities of the colour classes differ by at most
one. An STS is k-balanced if every k-colouring is equitable.

No STS(v) with v > 3 is 2-chromatic [40]. Moreover, every STS(19) is 4-colourable
[13, Theorem 6.1]; see also [24, Theorem 5]. Consequently, the chromatic number of any
STS(19) is either 3 or 4. No STS(19) with chromatic number 4 was known; indeed as we
see next, none exists. An exhaustive search establishes the following.

Theorem 4. Fvery STS(19) is 3-chromatic. More specifically,
(i) every STS(19) has a 3-colouring with colour class sizes (7,7,5) and

(i) every STS(19) except for designs A2 and A4 has a 3-colouring with colour class
sizes (8,6,5).

Next we show that Theorem 4 completes the determination of the combinations of
3-colouring patterns that can occur in an STS(19). For a given 3-colouring of an STS(19),
let the colour classes be (C1,C5y,C3). Let ¢; = |C;| for 1 < ¢ < 3. Without loss of
generality suppose that ¢; > ¢y > ¢3, and denote the pattern of colour class sizes by the
corresponding integer triple (c1, ¢z, ¢3). Informally, we refer to the colour classes Cy, Cy, Cs
as red, yellow and blue. It is shown in [12, Section 2.4] and [13] that any 3-colouring of
an STS(19) must have one of the six patterns

(7,6,6), (7,7,5), (8,6,5), (8,7,4), (9,5,5), (9,6,4),
and that certain reductions are possible.
Lemma 1. An STS(19) that has a 3-colouring with colour class sizes
(i) (7,7,5) also has one with sizes (7,6,6),
(i) (8,6,5) either has one with sizes (7,7,5) or one with sizes (7,6,6),
(71) (8,7,4) also has one with sizes (7,7,5),
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either has one with sizes (9,6,4) or one with sizes (8,6,5),

also has one with sizes (8,6,5),

(8,6,5)

(8,6,5)

also has one with sizes (8,6,5),
(9,5,5)

)

)

)

) also has one with sizes (8,6,5),
)

) also has one with sizes (9,5,5),
)

also has one with sizes (8,7,4).

Proof. For (i)—(v), see [12, Section 2.4] or [13, Section 4]. It remains only to prove
(vi)—(ix).

Let 25, 1 <17 < j < k, denote the number of blocks containing points belonging
to colour classes C;, C; and C}, with appropriate multiplicities. Thus, for example, x99
is the number of blocks that contain a red point and two yellow points. Write x for
Togz. As in the proof of [12, Theorem 2.4.1] we can construct the following table by a
straightforward computation.

(Cb C2, 03) T122 X133 T112 T113 T223 X233 Z123
(7,6,6) 15—z =z 34z 18—z =z 15—z 6
(7,7,5) 21—z -5 14z 20—z =z 15—x 5
(8,6,5) 1B—2z -3 74z 21—z =z 13—z 4
(8,7,4) 20— xx—7 642 22—z x 13—z 2
(9,5,5) 10—z z—2 1242 24—z =z 12—z 1
(9,6,4) 15—2z -6 124z 24—z =z 12—z 0

Suppose we have an (8,7,4) 3-colouring of an STS(19). Then z > 7 since x133 =
x — 7 > 0. Moreover, w933 = 13 — x < 6. Therefore we can find a yellow point to change
to blue without creating a blue-blue-blue block. This proves (vi).

Suppose we have a (9,5,5) 3-colouring. Since Z193 + 133 = 8 < 9 we can find a red
point to be changed to either yellow or blue. This proves (vii).

Suppose we have a (9,6,4) 3-colouring. If x933 < 6, we can change a yellow point to
blue. So we may assume that xo33 = 6. Then x133 = 2123 = 0. Hence each blue point
occurs exactly three times in the yellow-blue-blue blocks and paired with three yellow
points. So each blue point must occur paired with three yellow points in yellow-yellow-
blue blocks. This is impossible; hence (viii) is proved.

Again, suppose we have a (9,6,4) 3-colouring. If x190 < 9, we can change a red point
to yellow. Otherwise w199 > 9. This forces * = x93 = T233 = 6 and x133 = 123 = 0,
which is impossible by the same argument as in the proof of (viii). This proves (iz). O

The main result of this section is a straightforward consequence of Theorem 4 and
Lemma 1.
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Theorem 5. Any STS(19) is 3-colourable with one of the following six combinations of
3-colouring patterns:

¢ = {(7,6,6),(7,7,5)},
C: = {(7,6,6),(7,7,5),(8,6,5)},

C; = {(7,6,6),(7,7,5),(8,6,5), (87, 4)},

C; = {(7,6,6),(7,7,5),(8,6,5),(9,5,5)},

C; = {(7,6,6),(7,7,5),(8,6,5),(874),(9,5,5)},

Co = {(7,6,6),(7,7,5),(8,6,5),(8,7.4),(9,5,5), (9,6,4)}.

The first combination in Theorem 5, {(7,6,6), (7,7,5)}, occurs in only two STS(19),
both of which are cyclic; in fact these are the two exceptions of Theorem 4(ii), systems A2
and A4. The other two cyclic STS(19), A1 and A3, have the colouring pattern combination
{(7,6,6),(7,7,5),(8,6,5)}. It is easy to find examples exhibiting each of the remaining
combinations.

We are now able to answer the open problem of whether there exists a 3-balanced
STS(19) [13, Problem 1]. By [13, Theorem 4.1] and Theorems 4 and 5 we immediately
get the following.

Corollary 1. Every STS(19) is 3-chromatic and has an equitable 3-colouring. There
exists no 3-balanced STS(19).

In a separate computation we obtained the frequency of occurrence of each combination
of 3-colouring patterns. We also obtained information concerning the size of maximum
independent sets. Our results are presented in Table 7 in the form of a two-way frequency
table of maximum independent set size against combinations of 3-colouring patterns C;
as defined in Theorem 5. The cell in row C;, column j gives the number of STS(19) that
have 3-colouring pattern combination C; and maximum independent set size j. Observe
that the total count for size 10 is in agreement with [42], and it is worth pointing out
that the zero entries in rows Cy to Cg can be deduced by elementary arguments without
the need for any extensive computation. In particular, it is not difficult to show that an
independent set of size 10 excludes the possibility of a (9,5,5) 3-colouring.

2.7 Almost Parallel Classes

A set of nonintersecting blocks that do not contain all points of the design is a partial
parallel class, and a partial parallel class with |v/3] blocks is an almost parallel class.
Consequently, six nonintersecting blocks of an STS(19) form an almost parallel class. For
each STS(19) we determined the total number of almost parallel classes in the following
way.

For each STS(19), the point to be missed by the almost parallel class is specified, after
which the problem of finding the almost parallel classes can be formulated as instances
of the exact cover problem. In the exact cover problem, a set U and a collection S of
subsets of U are given, and one wants to determine (one or all) partitions of U using sets
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Table 7: Colourings and maximum independent sets

Colouring 7 8 9 10 Total
Cy 2 0 0 0 2

Co 0 53680512 2650830 1241 56 332583

Cs 0 10079422375 421936849 283216 10501642440

Cy 0 0 2912144 0 2912144

Cs 0 0 464995662 0 464 995 662

Cs 0 0 58991998 0 58991998
Total 2 10133102887 951487483 284457 11084874829

from S. To solve instances of the exact cover problem, the libexact software [30], which
implements ideas from work by Knuth [32], was utilized. The results are presented in
Table 8.

There is a conjecture that for all v = 1,3 (mod 6), v > 15, there exists an STS(v)
whose largest partial parallel class has fewer than |v/3] blocks [4, Conjecture 2.86],
[8, Conjectures 19.4 and 19.5], [41, Section 3.1]. The results in the current work are in
accordance with this conjecture.

In fact, Lo Faro already showed that every STS(19) has a partial parallel class with
five blocks [33] and, constructively, that there indeed exists an STS(19) with no almost
parallel class [34]. The current work shows that there are exactly two STS(19) with no
almost parallel classes. These are A4 and the unique design with automorphism group of
order 432. The largest number of almost parallel classes, 182, arises in S3.

A set of blocks of a design with the property that each point occurs in exactly « of
these blocks is an a-parallel class. A partition of all blocks into a-parallel classes is an
a-resolution, and a design that admits an a-resolution is a-resolvable. A Steiner triple
system whose order v is not divisible by 3 cannot have a (1-)parallel class, but may have
a 3-parallel class. The existence of Steiner triple systems of order at least 7 without a
3-parallel class is an open problem [8, p. 419].

A complete search demonstrates that every STS(19) not only has a 3-parallel class,
but a 3-resolution. It is, however, not always the case that every 3-parallel class can
be extended to a 3-resolution. That is, some STS(19) contain a 6-parallel class that is
nonseparable, in that it does not further partition into two 3-parallel classes. Using [3],
the largest o for which an STS(v) contains a nonseparable a-parallel class is 3, 1, 3, 5
and 6 for v = 7,9, 13, 15 and 19, respectively.

2.8 Chromatic Index

While the chromatic number concerns colouring points, the chromatic index concerns
colouring blocks. More precisely, the chromatic index of an STS is the smallest number
of colours that can be used to colour the blocks so that no two intersecting blocks receive
the same colour.
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Table 8: Number of almost parallel classes

APC # APC # APC # APC #

0 2 79 764738 110 526902725 141 43290
36 1 80 1224282 111 495595995 142 25609
40 1 81 1924007 112 458547878 143 14838
48 5 82 2974055 113 417254801 144 8604
50 1 83 4513033 114 373408256 145 4827
o1 1 84 6737331 115 328678489 146 2907
52 2 85 9882490 116 284606260 147 1581
o4 bt 86 14239039 117 242381171 148 1028
56 14 87 20170633 118 203039046 149 522
o7 6 88 28071379 119 167316900 150 386
58 16 89 38411235 120 135654277 151 210
59 6 90 51637134 121 108190905 152 173
60 31 91 68231490 122 84895844 153 75
61 27 92 88611342 123 65517542 154 85
62 58 93 113110188 124 49778191 155 32
63 65 94 141933285 125 37203375 156 53
64 158 95 175017943 126 27381347 157 6
65 225 96 212214494 127 19807367 158 22
66 476 97 252843760 128 14108068 159 6
67 774 98 296203531 129 9891578 160 24
68 1606 99 341097019 130 6829506 162 5
69 2801 100 386153551 131 4633657 164 12
70 5363 101 429813668 132 3105171 166 3

71 9930 102 470269272 133 2044697 167 1
72 18098 103 505968628 134 1327796 168 1
7332270 104 535235668 135 847519 172 4
74 56959 105 556712827 136 536040 174 4
75 98415 106 569489811 137 332998 180 1
76 168833 107 572707805 138 203608 182 1
77 284405 108 566389062 139 123411

78 470557 109 550847618 140 74672
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An STS(v) is resolvable if and only if its chromatic index is (v —1)/2. Since 19 is not
divisible by 3, there is no resolvable STS(19), and the smallest possible chromatic index
for such a design is [57/6] = 10.

By elementary counting, an STS(19) with chromatic index 10 must have at least 7
disjoint almost parallel classes. Moreover, the chromatic index of an STS(19) with no

almost parallel classes is at least [57/5] = 12. We now describe the computational
approach used to show that 10, 11 and 12 are the only possible chromatic indices for an
STS(19).

Exact algorithms and greedy algorithms for finding the chromatic index and upper
bounds on the chromatic index of STSs were presented in the early 1980s [2, 5]. Now
modern algorithms for finding colourings and chromatic numbers of graphs can be used
to determine the chromatic number of the line graph of the design, which equals the
chromatic index of the design.

To find a 10-colouring, the algorithm starts by finding sets of 7 disjoint almost parallel
classes. To do this, for each STS(19), all almost parallel classes are first found (as in
Section 2.7). Using these, sets of 7 disjoint ones are obtained by an algorithm for finding
cliques in graphs (form one vertex for each almost parallel class and place edges between
disjoint classes). The Cliquer software [37] can be utilized to find the cliques. The final
step is an exhaustive search for three partial parallel classes to partition the remaining
57 — 7 -6 = 15 blocks.

A more general exhaustive search algorithm was applied to instances with chromatic
index greater than 10. The final result is as follows.

Theorem 6. The numbers of STS(19) that have chromatic index 10, 11 and 12 are
11084870752, 4075 and 2, respectively.

Consequently, exactly the two STS(19) with no almost parallel classes (see Section 2.7)
have chromatic index 12. Our results are consistent with the observation that no STS(v)
with v > 7 and chromatic index exceeding the minimum chromatic index by more than 2
is known to exist [8, pp. 366-367|, [41, p. 411].

2.9 Existential Closure

The block intersection graph of an STS has one vertex for each block and an edge between
two vertices exactly when the corresponding blocks intersect. A graph G = (V| E) is
n-existentially closed if for every n-element subset S C V' of vertices and for every subset
T C S, there exists a vertex x ¢ S that is adjacent to every vertex in 7" and nonadjacent
to every vertex in S\ 7.

In [14] n-existentially closed block intersection graphs of STSs are studied. The block
intersection graph of an STS(v) is 2-existentially closed if and only if v > 13, it cannot
be 4-existentially closed [36, Theorem 1] for any v, and the only possible orders for which
it can be 3-existentially closed are 19 and 21. In fact, two STS(19) possess 3-existentially
closed block intersection graphs [14].

The following result from [14, Theorem 4.1] helps in designing an algorithm for deter-
mining whether the block intersection graph of an STS is 3-existentially closed.
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Theorem 7. The block intersection graph of an STS(v) is 3-existentially closed if and
only if
(i) the STS(v) contains no subsystem STS(7),

(i) the STS(v) contains no subsystem STS(9),

(@ii) for every set of three monintersecting blocks, ifv < 19 there exists a block that
intersects none of the three, and if v > 19 there exists a block that intersects all
three.

No STS(19) other than those discovered in [14] is 3-existentially closed.
Theorem 8. The number of 3-existentially closed STS(19) is 2.
The two 3-existentially closed STS(19) are A3 and S2.

3 Conclusions

The main aim of the current work has been to compute all kinds of properties of STS(19)
and collect them in a single place. However, it is impossible to accomplish this task in
an exhaustive manner, so we omit discussion of properties that (1) we do not consider to
have large general interest, (2) we are not able to present in a compact manner, or (3) we
simply are not able to compute at the present time.

For example, we consider various kinds of colouring problems, such as those studied
in [9, 18], to be of the first type. Any properties that have been used as invariants for
STSs cannot, by definition, be tabulated in a compact way and are of the second type;
examples of this type include various forms of so-called trains.

The third type of problems contain some very interesting open problems, including
those of determining intersection numbers of STSs, maximal sets of disjoint STSs, and
whether all STSs are derived. Further information on these problems can be found in
[4, 8]. For example, just determining whether a single STS is derived remains a major
challenge.

The problems were addressed using three different computational environments (in
Canada, Finland and Great Britain), so we do not try to give exact details about the
computations. The computational resources needed partition the problems roughly into
three groups: those taking days or at most a couple of weeks (“easy”), those taking up to
a couple of years (“intermediate”) and those taking up to ten years (“hard”). These CPU
times are roughly the times needed for one core of a “contemporary microprocessor”.

The intermediate calculations were those of determining subconfigurations (10 CPU
weeks), determining the almost parallel classes (1.5 CPU years), constructing the fre-
quency table of maximum independent set size against 3-colouring pattern combination
(12 CPU weeks), showing existence of 3-parallel classes (7 CPU months) and searching for
3-existentially closed designs (9 CPU months). The only one belonging to the category
of hard calculations was the determination of the chromatic indices, which consumed just
under 8 CPU years. All remaining calculations were “easy”.
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Appendix

We use the same method for compressing STSs as in the supplement to [6]. That is,
for the points we use the symbols a-s and represent an STS by a string of 57 symbols

T1T2

---x57. The symbol z; is the largest element in the ith block. The other two symbols

in the ith block are the smallest pair of symbols not occurring in earlier blocks under the
colexicographic ordering of pairs: a pair y, z with y < z is smaller than a pair ¢/, 2/ with
y <2 iff z <2, or z =2 and y < y/. The order of the automorphism group is given
after each design.

S1: edgfhghijkllmnl jompgporgsnslogprmrsnnopsrqgprosqsrpsqrrss
S2: cefggfhijijklmnokppgmrsolrsqngpsnrmornsoqpsqporpqrsrsqsrs
S3: cefghngjljrikogplrngmskmsnonsmrlpmoprqpqosopqsrrpsqqsrsrs

SH: cefghfgjoiksmrlpnksgkmpsnlrnogmmngposrprqoorpgsrspqqrssrs
S6: cefghigomjsinksllsjgkmropnlqrpomnrpgpqornsopqrsrpgsqsrsrs

(1)
(8)
(3)
S4: cefghigpojlijgmplrqokomsnngpslrommnsrgprnsoprqsrspqqsrsrs (1)
(6)
(9)
(1)

S7: cefihkgsojosmigmnrlpjgklospnqlpormprnsprqonsoprqsrqqrssrs
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Table 9: Number of grids

Grid # Grid # Grid Z Grid 7
21 1 58 421406261 95 5466378 132 19595
22 1 59 455538873 96 4452414 133 17568
23 1 60 483962320 97 3625512 134 17390
24 6 61 505587977 98 2964501 135 15125
25 27 62 519737441 99 2419681 136 14765
26 44 63 525975481 100 1984363 137 12845
27 156 64 524399635 101 1625523 138 12707
28 403 65 515397821 102 1340634 139 10911
29 1012 66 499528245 103 1103378 140 10689
30 2577 67 47787798 104 915322 141 9228
31 6067 68 451447963 105 756727 142 9097
32 13721 69 421183378 106 629794 143 7629
33 29607 70 388549216 107 522121 144 7495
34 62549 71 354553810 108 439478 145 6593
35 125648 72 320163173 109 365162 146 6407
36 246636 73 286220933 110 310349 147 5325
37 461547 74 253571165 111 256766 148 5266
38 840481 75 222621207 112 219625 149 4318
30 1484562 76 193840439 113 183979 150 4336
40 2534581 77 167454239 114 157625 151 3507
41 4196398 78 143611784 115 133530 152 3515
42 6739474 79 122366578 116 115251 153 2820
43 10522877 80 103592757 117 97139 154 2838
44 15960510 81 87177751 118 85923 155 2265
45 23562586 82 72978536 119 72545 156 2455
46 33871296 83 60813771 120 65014 157 1830
A7 47412716 84 50428258 121 55582 158 1905
48 64736436 85 41665785 122 50393 159 1433
49 86205567 86 34306651 123 43478 160 1552
50 112103389 87 28141430 124 40275 161 1124
51 142489811 88 23037710 125 34759 162 1284
52 177059163 89 18809436 126 32578 163 913
53 215192146 90 15344880 127 28746 164 1010
54 256144342 91 12489931 128 27080 165 766
55 208709622 92 10159180 129 23884 166 843
56 341446147 93 8261382 130 23163 167 557
57 382864465 94 6721096 131 20281 168 664
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Table 9: Number of grids (cont.)

Grid  # Grid # Grid # Grid #
160 490 194 80 219 2 249 3
170 527 195 19 220 23 250 2
171 324 196 90 221 2 252 10
172 429 197 21 222 14 254 1
173 267 198 70 223 5 255 2
174 383 199 8 224 33 256 7
175 206 200 97 225 5 258 1
176 328 201 16 226 8 260 7
177 153 202 39 227 5 262 1
178 232 203 6 228 31 264 8
179 126 204 79 229 2 267 2
180 223 205 5 230 4 272 7
181 128 206 25 231 3 276 4
182 207 207 13 232 21 280 4
183 109 208 59 234 10 284 3
184 155 209 4 235 1 288 5
185 75 210 51 236 26 204 1
186 149 211 2 238 5 300 1
187 57 212 46 239 1 303 1
188 159 213 10 240 26 308 1
189 45 214 14 242 1 312 3
190 91 215 2 243 1 320 2
191 44 216 38 244 7 336 2
192 123 217 3 245 1 384 1
193 36 218 15 248 11
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Table 10: Number of prisms

Prism # Prism # Prism # Prism #
171 1 250 75976 287 42388161 324 198341505
189 1 251 98 127 288 46639711 325 196983412
200 1 252 125286 289 51169522 326 195225803
207 1 253 158108 290 55931715 327 193085136
211 1 254 200729 291 60918787 328 190605951
216 2 255 253967 292 66151873 329 187795686
217 1 256 318185 293 71586084 330 184649280
219 6 257 397908 294 77237835 331 181212592
221 1 258 492617 295 83032700 332 177549753
222 6 259 610716 296 88988957 333 173586201
223 17 260 753 345 297 95089 060 334 169440136
224 22 261 921675 298 101293200 335 165109202
225 27 262 1126793 299 107579627 336 160640418
226 25 263 1368838 300 113892453 337 155982892
227 41 264 1655279 301 120225453 338 151293063
228 73 266 1993377 302 126496164 339 146440917
229 130 266 2390574 303 132753692 340 141569 668
230 166 267 2851791 304 138902842 341 136664720
231 245 268 3389099 305 144926 038 342 131727398
232 321 269 4010807 306 150790370 343 126770273
233 448 270 4727106 307 156429753 344 121858 346
234 667 271 5547565 308 161884623 345 116981409
235 932 272 6485240 309 167038214 346 112190976
236 1291 273 7552715 310 171888128 347 107410238
237 1750 274 8757871 311 176448741 348 102737476
238 2462 275 10118769 312 180620616 349 98136704
239 3344 276 11640128 313 184476735 350 93657722
240 4558 277 13335175 314 187911 346 351 89292744
241 6221 278 15233835 315 190927860 352 85046 857
242 8341 279 17317913 316 193530670 353 80920249
243 11120 280 19617190 317 195702979 354 76911822
244 14888 281 22137761 318 197395867 355 73054525
245 20119 282 24884491 319 198675356 356 69332115
246 26400 283 27887561 320 199497261 357 65735409
247 34577 284 31140015 321 199874535 358 62291 346
248 44753 285 34623522 322 199760946 359 58986226
249 58845 286 38376738 323 199286571 360 55805608
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Table 10: Number of prisms (cont.)

Prism # Prism # Prism # Prism #
361 52776788 398 5210998 435 424445 472 95566
362 49877144 399 4870806 436 400992 473 92467
363 47109094 400 4555184 437 375930 474 89604
364 44477939 401 4255687 438 356 584 475 86116
365 41956 665 402 3975185 439 335932 476 83388
366 39596 950 403 3710635 440 318533 477 80516
367 37316718 404 3468155 441 300617 478 78206
368 35158337 405 3235022 442 286 646 479 74644
369 33131446 406 3021856 443 271545 480 72289
370 31199621 407 2817205 444 258555 481 68924
371 29360909 408 2632611 445 245429 482 67293
372 27626089 409 2454635 446 235409 483 63891
373 25997783 410 2292545 447 224067 484 62065
374 24455068 411 2137919 448 214575 485 58964
375 22993528 412 1995564 449 205399 486 56790
376 21604049 413 1861521 450 197610 487 54505
377 20310057 414 1737449 451 188729 488 52492
378 19075074 415 1616932 452 182542 489 49354
379 17916453 416 1509591 453 176 060 490 47536
380 16819109 417 1404929 454 168815 491 45253
381 15795662 418 1314772 455 162976 492 43832
382 14826839 419 1225935 456 158019 493 40816
383 13907432 420 1144721 457 152147 494 39536
384 13050725 421 1067065 458 148600 495 37181
385 12241906 422 995655 459 142312 496 35949
386 11482906 423 927859 460 138498 497 33708
387 10762834 424 868000 461 134174 498 32268
388 10084561 425 811642 462 130272 499 30063
389 9453238 426 758276 463 125969 500 28901
390 8853538 427 709328 464 122632 501 27030
391 8294860 428 663317 465 117860 502 25906
392 7771024 429 619097 466 115901 503 24000
393 7269785 430 582159 467 111021 504 23162
394 6806485 431 544981 468 108594 505 21754
395 6363581 432 513193 469 104985 506 20937
396 5960984 433 479631 470 101572 507 19322
397 5569324 434 452765 471 98344 508 18497
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Table 10: Number of prisms (cont.)

Prism # Prism # Prism # Prism #

509 17095 546 1731 283 334 620 2116
510 16519 047 1499 o84 421 621 2254
511 15154 048 1394 285 413 622 2301
012 14143 549 1222 586 434 623 2357
513 13411 550 1291 87 392 624 2510
514 12808 551 1103 588 480 625 2523
515 11849 552 1094 289 420 626 2527
516 11530 553 926 290 465 627 2581
517 10468 554 1000 591 474 628 2719
518 10064 555 826 592 572 629 2826
519 9280 556 885 593 521 630 2966
520 8869 257 719 294 593 631 3099
521 8064 558 757 295 599 632 3144
522 TT74 559 648 596 662 633 3059
523 7153 560 728 297 647 634 3157
524 6714 561 532 598 710 635 3236
525 6300 062 629 299 729 636 3362
526 6014 563 517 600 830 637 3384
527 5362 564 511 601 872 638 3465
528 5209 565 436 602 972 639 3487
529 4847 566 505 603 959 640 3393
530 4551 567 416 604 1011 641 3423
531 4184 568 497 605 1050 642 3599
532 4108 269 374 606 1149 643 3580
533 3736 570 452 607 1188 644 3753
534 3743 571 358 608 1375 645 3622
535 3116 572 387 609 1308 646 3827
536 3141 73 349 610 1358 647 3643
37 2792 074 345 611 1471 648 3812
538 2744 575 330 612 1495 649 3744
539 2548 576 381 613 1553 650 3902
540 2452 57T 336 614 1701 651 3579
541 2100 578 351 615 1703 652 3790
042 2155 o279 326 616 1875 653 3752
543 1864 580 382 617 1868 654 3713
544 1844 581 315 618 1980 655 3683
545 1613 582 399 619 2027 656 3662
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Table 10: Number of prisms (cont.)

Prism # Prism # Prism # Prism #
657 3649 694 1495 731 194 768 27
658 3597 695 1380 732 211 769 22
659 3637 696 1400 733 175 770 21
660 3667 697 1250 734 177 771 14
661 3567 698 1324 735 164 772 21
662 3416 699 1141 736 152 773 12
663 3464 700 1136 737 154 774 24
664 3326 701 1010 738 147 775 10
665 3370 702 1024 739 116 776 16
666 3370 703 931 740 116 (O
667 3294 704 935 741 88 778 13
668 3155 705 833 742 123 779 3
669 3170 706 844 743 89 780 5
670 3123 707 729 744 97 781 8
671 3023 708 759 745 75 782 10
672 3036 709 669 746 103 783 6
673 2903 710 666 747 68 784 9
674 2895 711 636 748 90 785 5
675 2735 712 624 749 79 786 10
676 2797 713 597 750 91 787 5
677 2606 714 564 751 56 788 9
678 2600 715 511 752 60 789 2
679 2416 716 531 753 44 790 8
680 2493 717 433 754 65 791 8
681 2302 718 455 755 43 792 12
682 2238 719 439 756 45 793 1
683 2215 720 394 757 46 795 2
684 2072 721 359 758 39 796 2
685 2115 722 366 759 42 797 2
686 2023 723 334 760 35 798 3
687 1880 724 326 761 28 799 1
688 1868 725 262 762 30 800 2
689 1724 726 306 763 23 801 1
690 1645 727 229 764 40 805 1
691 1620 728 253 765 15 806 5
692 1595 729 253 766 16 807 1
693 1497 730 218 767 19 808 4
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Table 10: Number of prisms (cont.)

Prism # Prism # Prism # Prism #
809 1 838 1 856 1 912 2
814 1 840 2 864 2 918 6
816 3 844 1 88 1 1152 3
818 1 846 2 870 4
822 14 850 1 878 1
832 1 852 1 888 2
Table 11: Number of mitres
Mitre # Mitre # Mitre # Mitre #
0 4 29 666 856 068 56 699975 83 39
3 11 30 726726670 b7 427224 84 83
4 27 31 765630873 58 261965 85 16
5 94 32 780912655 59 162576 86 47
6 463 33 771673239 60 105125 87 20
7 1587 34 739625001 61 68560 88 34
8 5196 35 688305207 62 47177 89 7
9 16 130 36 622481814 63 32413 90 54
10 45051 37 547576707 64 23643 91 1
11 119156 38 468917351 65 16778 92 19
12 292925 39 391303591 66 12393 93 9
13 685 985 40 318424938 67 8661 94 7
14 1502196 41 252876637 68 6489 96 27
15 3122990 42 196124480 69 4295 98 2
16 6160011 43 148685094 70 3264 99 2
17 11527121 44 110224646 71 2181 100 6
18 20542885 45 79959174 72 1700 102 7
19 34903297 46 56803086 73 990 104 2
20 56577514 47 39545210 74 909 105 2
21 87700390 48 26981662 75 469 108 5
22 130128895 49 18067853 76 465 112 3
23 185013010 50 11873632 7 270 114 1
24 252364501 51 7665089 78 263 116 2
25 330721805 52 4870654 79 122 120 2
26 416700734 53 3046 823 80 191 144 3
27 505540524 54 1883004 81 72
28 591121831 55 1150672 82 96
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Table 12: Number of hexagons

Hexa # Hexa # Hexa # Hexa  #
0 1 34 724247745 66 436234 98 110
2 1 35 714131642 67 326333 99 62
4 8 36 685867252 68 239208 100 77
5 2 37 642422184 69 179527 101 33
6 18 38 587540455 70 134495 102 T4
7 42 39 525307321 71 100405 103 17
8 275 40 459726 499 72 75980 104 35
9 1060 41 394271746 73 57056 105 28

10 3 888 42 331862444 74 43803 106 28
11 13543 43 274475233 75 31922 107 10
12 42046 44 223366 811 76 26629 108 136
13 119420 45 179088 397 77 17366 109 10
14 315586 46 141683536 78 13996 110 17
15 769997 47 110703 052 79 9867 111 10
16 1750488 48 85587484 80 8815 112 14
17 3711050 49 65546910 81 5 888 113 1
18 7390 282 50 49813749 82 5139 114 17
19 13851974 51 37586617 83 3120 115 1
20 24536316 52 28199864 84 2880 116 18
21 41147211 53 21046347 85 1883 117 4
22 65593940 54 15677184 86 2264 118 1
23 99604643 55 11622883 87 1127 120 10
24 144448598 56 8623 668 88 1016 121 1
25 200532422 57 6370044 89 615 122 4
26 266967992 58 4713086 90 1645 124 8
27 341559277 59 3483045 91 436 126 16
28 420712045 60 2580662 92 408 128 1
29 499765074 61 1909874 93 249 132 3
30 573401076 62 1419396 94 234 144 12
31 636579383 63 1050752 95 150 171 1
32 684620989 64 786 486 96 248

33 714416762 65 577280 97 75
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Table 13: Number of crowns

Crown  # Crown # Crown # Crown #
0 4 75 84 112 39276 149 11026967
24 8 76 225 113 46 162 150 12418598
28 1 7 98 114 55376 151 13951975
32 7 78 230 115 65172 152 15649589
34 1 79 146 116 78169 153 17504989
36 17 80 303 117 92109 154 19550198
40 4 81 184 118 110533 155 21784052
42 2 82 352 119 130711 156 24217202
44 3 83 271 120 155188 157 26857968
45 1 84 507 121 183383 158 29735229
46 3 85 409 122 218318 159 32838784
48 17 86 625 123 256913 160 36187030
49 2 87 538 124 304546 161 39768756
50 4 88 788 125 357058 162 43644429
51 3 89 745 126 420855 163 47762633
52 19 90 1103 127 493066 164 52146277
54 23 91 997 128 580012 165 56809902
55 5 92 1448 129 678149 166 61761576
56 37 93 1460 130 794787 167 66960296
57 9 94 1941 131 925609 168 72455628
58 16 95 1999 132 1080365 169 78205211
59 6 96 2809 133 1256516 170 84194952
60 72 97 2861 134 1462493 171 90422800
61 5 98 3569 135 1691178 172 96907778
62 22 99 3832 136 1960531 173 103579676
63 16 100 5157 137 2262445 174 110428354
64 65 101 5644 138 2612802 175 117487564
65 16 102 7012 139 3008486 176 124638538
66 77 103 7868 140 3455009 177 131927624
67 19 104 9735 141 3958995 178 139275613
68 71 105 11111 142 4536189 179 146638317
69 32 106 13806 143 5178047 180 154028623
70 81 107 15906 144 5903 381 181 161359146
71 55 108 19655 145 6715687 182 168619294

72 173 109 22619 146 7629172 183 175716385
73 65 110 27800 147 8645817 184 182665320
74 144 111 32269 148 9772477 185 189374242
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Table 13: Number of crowns (cont.)

Crown # Crown # Crown # Crown #
186 195806871 217 134563689 248 4411819 279 3866
187 201907700 218 126661 383 249 3734688 280 3026
188 207659159 219 118861873 250 3149311 281 2220
189 212988838 220 111206681 251 2648386 282 1621
190 217852023 221 103671809 252 2219528 283 1190
191 222201411 222 96346526 253 1850527 284 880
192 226058774 223 89252032 254 1538216 285 617
193 229322865 224 82406974 255 1272656 286 458
194 231961935 225 75860206 256 1051337 287 337
195 233966 564 226 69578295 257 862379 288 237
196 235362932 227 63614491 258 707331 289 186
197 236055372 228 57977229 259 576064 290 135
198 236115675 229 52664490 260 468744 291 88
199 235469719 230 47671940 261 378298 292 63
200 234145518 231 43011588 262 304621 293 35
201 232142509 232 38676935 263 244241 294 36
202 229517435 233 34668107 264 194690 295 12
203 226209636 234 30961644 265 155113 296 19
204 222338699 235 27551781 266 123781 297 14
205 217827123 236 24435171 267 96 942 298 5
206 212820389 237 21602222 268 76 095 299 7
207 207301265 238 19035194 269 59785 300 4
208 201303814 239 16706493 270 46 762 301 1
209 194883375 240 14612461 271 36 086 302 1
210 188122519 241 12739285 272 27879 303 4
211 180992703 242 11064520 273 21426 306 1
212 173617922 243 9577688 274 16 461 309 2
213 166018485 244 8260815 275 12570 314 1
214 158267 357 245 7095407 276 9619
215 150399412 246 6078 552 277 7117
216 142486139 247 5188692 278 5272
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