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Abstract

Let P (v) denote the maximum number of Pasch configurations in
any Steiner triple system on v points. It is known that
P (v) ≤ M(v) = v(v − 1)(v − 3)/24, with equality if and only if

v is of the form 2n − 1. It is also known that lim sup
v→∞

v 6=2n−1

P (v)

M(v)
= 1. We

give a new proof of this result and improved lower bounds on P (v)
for certain values of v.
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1 Introduction

A Steiner triple system of order v, STS(v), is an ordered pair (V,B) where
V is a v-element set (the points) and B is a set of triples from V (the blocks),
such that each pair from V appears in precisely one block. The necessary
and sufficient condition for the existence of an STS(v) is that v ≡ 1 or 3
(mod 6) [6], and these values of v are said to be admissible. We often omit
set brackets and commas from triples so that {x, y, z} may be written as
xyz when no confusion is likely, and pairs may be treated similarly.
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A Pasch configuration or quadrilateral is a set of four triples on six
distinct points having the form {abc, ade, bdf, cef}. For each admissible
v 6= 7, 13, it is known that there is an STS(v) containing no Pasch con-
figurations [4]. At the other extreme, no STS(v) can contain more than
M(v) = v(v − 1)(v − 3)/24 Pasch configurations, and this upper bound
is only achieved when v = 2n − 1 and the corresponding STS(v) is the
projective system of order 2n − 1 [7]. Apart from the values v = 2n − 1,
the maximum number of Pasch configurations P (v) in systems of order v is
generally unknown. In fact the only known values when v 6= 2n − 1 appear
to be P (9) = 0, P (13) = 13 and P (19) = 84 (for the latter see [2]). How-

ever, it was shown by Gray and Ramsay [5] that lim sup
v→∞

v 6=2n−1

P (v)

M(v)
= 1, and

the proof of this rests on some recursive constructions. Various papers, in
particular [5, 7], give some lower bounds for P (v) for specific values of v, to
which the recursive constructions may be applied to extend these bounds
to infinite classes of admissible values v.

In this current note we improve the lower bounds for P (v) for certain
infinite classes of v. Our bounds provide an alternative direct proof of
the asymptotic result mentioned above. The constructions we use might
best be described as “Add c” constructions since they can, in suitable
circumstances, produce an STS(v + c) from an STS(v) for small values of
c. These constructions are not new; the case c = 2 is described in [3].
We start by describing the cases c = 4 and c = 6. A parallel class in an
STS(6s+ 3) is a set of 2s+ 1 mutually disjoint blocks.

2 Results

Suppose we have an STS(6s+ 3)= (V,B) with two parallel classes P1 and
P2 intersecting in a single common block ∞1∞2∞3. Form a regular graph
of degree 7, G7, on the vertex set V ′ = V \ {∞1,∞2,∞3}. Let ab be an
edge of G7 if abc ∈ Pi (i = 1 or 2) or if ab∞i ∈ B (where i = 1, 2 or 3).
By Vizing’s Theorem, the chromatic index χ′ of G7 must be either seven
or eight. Suppose that χ′(G7) = 7. Then each colour class is a one-factor,
and so we have seven one factors Fj , j = 1, 2, . . . , 7. Now delete those
blocks of B that lie in P1 or P2, or contain any of the points ∞1,∞2,∞3,
to form the set of blocks B′. Then introduce seven new points, say αj ,
j = 1, 2, . . . , 7, and form new blocks by appending αj to each pair ab ∈ Fj .
Finally, add seven new blocks forming an STS(7) on the points αj . The
new blocks together with the blocks of B′ form an STS(6s+7) on the point
set V ′ ∪ {αj : j = 1, 2, . . . , 7}. In a similar way an STS(6s + 9) might be
constructed from an STS(6s+ 3) having three parallel classes intersecting
in a common block. The principal difficulty in applying these constructions
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lies in determining whether or not the graph G7 (or the corresponding 9-
regular graph G9 in the Add 6 case) has the required chromatic index. We
will show that both the Add 4 and the Add 6 constructions may be applied
to the projective STS(22k − 1) when k ≥ 2. We will denote the projective
STS(2n − 1) by Sn.

The point set of Sn may be taken as Zn
2 \ {0} and abc is a block if and

only if a + b + c = 0. For n ≥ 3, it will be convenient to denote a point
(i1, i2, . . . , in) ∈ Z

n
2 as ai1i2 where a = (i3, i4, . . . , in) ∈ Z

n−2
2 . For example,

011 denotes (1, 1, 0, . . . , 0). Our first step is to prove the following lemma.

Lemma 2.1 For k ≥ 2, the projective system S2k has four parallel classes

intersecting in a single common block.

Proof Note first that S2, the unique STS(3), comprises a single parallel
class. Suppose, inductively, that for some k ≥ 2, S2k−2 has a parallel
class P , and choose an ordering for the points in each of the blocks of P .
Then the following are four parallel classes of S2k intersecting in the single
common block 001010011 (here 0 ∈ Z

2k−2
2 ).

P1 = {a00b11c11, a10b00c10, a01b01c00, a11b10c01 : abc ∈ P} ∪ {001010011}.

P2 = {a00b10c10, a10b01c11, a01b00c01, a11b11c00 : abc ∈ P} ∪ {001010011}.

P3 = {a00b01c01, a10b10c00, a01b11c10, a11b00c11 : abc ∈ P} ∪ {001010011}.

P4 = {a00b00c00, a10b11c01, a01b10c11, a11b01c10 : abc ∈ P} ∪ {001010011}.

(We will henceforth refer to the points 001, 010, 011 as infinity points.)

Lemma 2.2 The Add 4 construction may be applied to the projective sys-

tem S2k for k ≥ 2.

Proof To apply the Add 4 construction, use the parallel classes P1 and
P2. The corresponding graph G7 is disconnected, with each component
on the 12 points derived from a block abc of S2k−2, namely the points
aij , bij , cij for i, j = 0, 1. We must show that G7 has chromatic index
χ′(G7) = 7. Clearly it suffices to do this for each component of G7. We
will denote the seven colours by the integers 1, 2, . . . , 7. A 7-edge-colouring
of the component corresponding to abc is shown in Table 1 where, for
example, a00a101 denotes that the edge a00a10 receives colour 1. These
triples, together with those of an STS(7) on the colours, are the new blocks
used in the construction to form an STS(22k + 3).

The number of Pasch configurations in a projective system of order v is
v3

24 (1 − o(1)) as v → ∞, while the number containing a particular block
is linear in v. So any construction that removes only a linear number of
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a00a101 a00a012 a00a113 a10a013 a10a112 a01a111
b00b101 b00b012 b00b113 b10b013 b10b112 b01b111
c00c101 c00c012 c00c113 c10c013 c10c112 c01c111
a00b116 a00c117 b11c114 a00b104 a00c105 b10c106
a10b005 a10c104 b00c107 a10b017 a10c116 b01c115
a01b016 a01c007 b01c004 a01b004 a01c015 b00c016
a11b105 a11c014 b10c017 a11b117 a11c006 b11c005

Table 1: A 7-edge colouring of G7.

blocks will leave a system containing v3

24 (1−o(1)) Pasch configurations. This
observation and the result of the previous lemma are sufficient to provide an
alternative proof of the asymptotic result of Gray and Ramsay. However,
we aim for a rather more precise count of the Pasch configurations. So
let Tk denote the system of order 22k + 3 = v + 4 created by the Add 4
construction as explained above and taking the STS(7) on the colours to
have the blocks 123, 145, 167, 246, 257, 347, 356. Our first step is to count
the Pasch configurations that are destroyed in forming Tk.

Lemma 2.3 For k ≥ 2, the number of Pasch configurations of S2k that

contain one of the infinity points 001, 010, 011 or a block from either of the

two parallel classes P1,P2 is (v − 3)(17v − 150)/12, where v = 22k − 1.

Proof We first calculate the number of Pasch configurations in S2k con-
taining at least one infinity point. Since any pair of intersecting blocks
determines exactly two Pasch configurations in S2k, the number of Pasch
configurations that contain any particular point is (v − 1)(v − 3)/4. We
also need to know the number of configurations that contain exactly two
and exactly three infinity points respectively. Configurations with exactly
two infinity points have one of the forms:

(i) a00a10010 (ii) a00a10010 (iii) a00a11011
a01a11010 a01a11010 a01a10011
a00a01001 a00a11011 a00a01001
a10a11001 a01a10011 a10a11001

where a ∈ Z
2k−2
2 \ {0}. There are therefore (v− 3)/4 configurations of each

type. Configurations with exactly three infinity points are of the forms:

(i) a00a10010 (ii) a00a10010 (iii) a01a11010 (iv) a01a11010
a00a11011 a01a10011 a00a11011 a01a10011
a10a11001 a00a01001 a00a01001 a10a11001
010011001 010011001 010011001 010011001
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and there are therefore (v − 3) configurations with three infinity points.
Putting this together, the number of configurations containing at least one
infinity point is:

3(v − 1)(v − 3)

4
−

3(v − 3)

4
− 2(v − 3) =

(3v − 14)(v − 3)

4
. (1)

Next we calculate the number of Pasch configurations that contain at
least one block from either P1 or P2, but no infinity points. In these two
parallel classes there are 2(v − 3)/3 blocks, excluding the common infinity
block. Each of these blocks lies in (v−3) Pasch configurations, which would
give a total of 2(v − 3)2/3 Pasch configurations, were it not for the facts
that some of these are counted twice and some contain an infinity point.

First we determine how many of the 2(v− 3)2/3 correspond to a Pasch
configuration containing an infinity point. So consider how a block from
Pα (α = 1, 2, 3 or 4) may lie in a Pasch configuration with a block con-
taining an infinity point (excluding the common infinity block). Suppose
that aijbhℓcmn is a block from Pα and that aijapq∞ is a block containing
an infinity point ∞ = 001, 010 or 011. There are two Pasch configurations
containing these two blocks and each has precisely one other block con-
taining the point ∞, while the other block is necessarily in Pβ for some
β 6= α. We may therefore count these Pasch configurations by choosing
intersecting blocks from Pα and Pβ . The block from Pα may be chosen in
(v − 3)/3 ways, there are 3 choices for β, and the intersecting block from
Pβ may be chosen in 3 ways; the remaining two blocks, which must contain
an infinity point, are then determined. So there are 3(v− 3) distinct Pasch
configurations containing a block from Pα and a block containing an infin-
ity point (excluding the common infinity block). By applying this result for
α = 1, 2, it is apparent that 6(v−3) must be subtracted from 2(v−3)2/3 to
take account of Pasch configurations containing an infinity point. Note this
also takes into account the double counting of those configurations with an
infinity point that have been counted twice because they have blocks from
each of P1 and P2.

It remains to determine the number of Pasch configurations that contain
blocks from both P1 and P2, but no infinity point, since these have been
counted twice. Such a Pasch configuration must also contain blocks from
P3 and P4. So each choice of a block from P1 and intersecting block from
P2 gives rise to only one Pasch configuration of this type. Consequently,
the number of such configurations is 3 × (v − 3)/3 = (v − 3), Hence a
further (v − 3) must be subtracted from 2(v − 3)2/3 to take account of
double counting of Pasch configurations having blocks from all four parallel
classes.

Thus the number of Pasch configurations in S2k having at least one
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block from either P1 or P2, but no infinity points is

2(v − 3)2

3
− 6(v − 3)− (v − 3) =

(v − 3)(2v − 27)

3
. (2)

Finally, by combining equations (1) and (2), it follows that for k ≥ 2,
the number of Pasch configurations of S2k that contain one of the infinity
points, or a block from P1 or P2 is

(3v − 14)(v − 3)

4
+

(v − 3)(2v − 27)

3
=

(v − 3)(17v − 150)

12
.

The second step in obtaining the Pasch count for Tk is to determine the
number of Pasch configurations added by the inclusion of the new blocks.

Lemma 2.4 For k ≥ 2 the new blocks lie in a total of
(v − 3)(3v − 28)

4
+7

Pasch configurations in Tk.

Proof A Pasch configuration that contains a new block (i.e. with a colour
from {1, 2, . . . , 7}) must contain either exactly two, or exactly four, new
blocks.

In the case of exactly two new blocks, these must have the form aijahℓN ,
bpqbrsN , where a 6= b, N ∈ {1, 2, 3} and i+h = p+r, j+ℓ = q+s (mod 2).
Either a and b lie in different blocks of P , or they lie in the same block of
P . In the former case, ab is a pair not covered by P and so it lies in some
block abx 6∈ P . The remaining two blocks of this Pasch configuration must
then consist of abx appropriately subscripted. For example, when N = 1
there are eight Pasch configurations of this form in Tk:

(i) a00a101 (ii) a00a101 (iii) a00a101 (iv) a00a101
b00b101 b00b101 b01b111 b01b111
a00b00x00 a00b10x10 a00b01x01 a00b11x11

a10b10x00 a10b00x10 a10b11x01 a10b01x11

(v) a01a111 (vi) a01a111 (vii) a01a111 (viii) a01a111
b00b101 b00b101 b01b111 b01b111
a01b00x01 a01b10x11 a01b01x00 a01b11x10

a11b10x01 a11b00x11 a11b11x00 a11b01x10

The number of choices for a is (v − 3)/4, and then b cannot be a or either
of the two points occurring with a in P , so there are (v − 3)/4 − 3 =
(v−15)/4 choices for b. Hence the pair abmay be chosen in 1

2 (
v−3
4 )(v−15

4 ) =
(v−3)(v−15)

32 ways and the colour selected may be 1, 2 or 3. So the number
of Pasch configurations created in this way is

3× 8×
(v − 3)(v − 15)

32
=

3(v − 3)(v − 15)

4
. (3)
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The second possibility for a Pasch configuration having exactly two
new blocks is that a and b lie in the same block abc ∈ P . The remaining
blocks of this Pasch configuration must then consist of abc appropriately
subscripted. Since these must intersect, one must lie in P3, and the other in
P4. Each pair of intersecting blocks from P3 and P4 (excluding the infinity
block) gives a Pasch configuration with two new blocks containing one of
the colours 1, 2 or 3. For example, a00b01c01 ∈ P3 and a00b00c00 ∈ P4 lie
in a Pasch configuration with the blocks b00b012 and c00c012. There are
(v − 3)/3 non-infinity blocks in P3 and each intersects three blocks in P4.
So the number of Pasch configurations of this type in Tk is (v − 3).

Next consider the 42 blocks in Table 1, together with the 7 blocks of
the STS(7) on the colours. An exhaustive search shows that there are 46
Pasch configurations that have their four blocks taken from these 49 blocks.
Seven of these Pasch configurations come from the STS(7). Thus each block
abc ∈ P in S2k−2 gives rise to 39 distinct Pasch configurations, and the total
number arising in this way is therefore 39(v − 3)/12 = 13(v − 3)/4.

Finally, the STS(7) on the seven colours has a further 7 Pasch config-
urations. So the total number of Pasch configurations in Tk containing a
new point is

3(v − 3)(v − 15)

4
+ (v − 3) +

13(v − 3)

4
+ 7 =

(v − 3)(3v − 28)

4
+ 7.

Theorem 2.1 For k ≥ 2, the number of Pasch configurations in Tk is
(v − 3)(v2 − 17v + 132)

24
+ 7, where v = 22k − 1.

Proof The projective system S2k contains v(v − 1)(v − 3)/24 Pasch con-
figurations. In the construction of Tk, by Lemma 2.3 (v− 3)(17v− 150)/12
have been removed, and by Lemma 2.4 (v − 3)(3v − 28)/4 + 7 have been
added. So the total in Tk is

v(v − 1)(v − 3)

24
−

(v − 3)(17v − 150)

12
+

(v − 3)(3v − 28)

4
+ 7

=
(v − 3)(v2 − 17v + 132)

24
+ 7.

Next we turn our attention to the Add 6 construction.

Lemma 2.5 The Add 6 construction may be applied to the projective sys-

tem S2k for k ≥ 2.
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Proof To apply the Add 6 construction, use the parallel classes P1,P2

and P3. The corresponding graph G9 is disconnected, with each component
on the 12 points derived from a block abc of S2k−2, namely the points
aij , bij , cij for i, j = 0, 1. We must show that G9 has chromatic index
χ′(G9) = 9. Clearly it suffices to do this for each component of G9. We
will denote the nine colours by the integers 1, 2, . . . , 9. A 9-edge-colouring
of the component corresponding to abc is shown in Table 2 where, for
example, a00a101 denotes that the edge a00a10 receives colour 1. These

a00a101 a00a012 a00a113 a10a013 a10a112 a01a111
b00b101 b00b012 b00b113 b10b013 b10b112 b01b111
c00c101 c00c012 c00c113 c10c013 c10c112 c01c111
a00b115 a00c114 b11c116 a00b106 a00c107 b10c109
a10b004 a10c105 b00c106 a10b016 a10c117 b01c119
a01b015 a01c004 b01c007 a01b007 a01c016 b00c018
a11b104 a11c015 b10c017 a11b117 a11c006 b11c008
a00b018 a00c019 b01c014 a10b108 a10c009 b10c005
a01b119 a01c108 b11c104 a11b009 a11c118 b00c115

Table 2: A 9-edge colouring of G9.

triples, together with those of an STS(9) on the colours, are the new blocks
used in the construction to form an STS(22k + 5).

Now let Uk denote the system of order 22k+5 = v+6 created by the Add
6 construction as explained above and taking the STS(9) on the colours to
have the blocks 123, 148, 157, 169, 249, 256, 278, 345, 368, 379, 467, 589. The
STS(9), which is unique up to isomorphism, contains no Pasch configura-
tions. Our first step is to count the Pasch configurations that are destroyed
in forming Uk.

Lemma 2.6 For k ≥ 2, the number of Pasch configurations of S2k that

contain one of the infinity points 001, 010, 011 or a block from any of the

three parallel classes P1,P2,P3 is 7(v − 3)(v − 10)/4, where v = 22k − 1.

Proof As in the proof of Lemma 2.3, the number of configurations contain-
ing at least one infinity point is (3v− 14)(v− 3)/4. We must also calculate
the number of Pasch configurations that contain at least one block from
P1,P2 or P3, but no infinity points. In these three parallel classes there
are (v − 3) blocks, excluding the common infinity block. Each of these
blocks lies in (v − 3) Pasch configurations, which would give a total of
(v − 3)2 Pasch configurations, were it not for the facts that some of these
are counted two or three times and some contain an infinity point.

Again, as in the proof of Lemma 2.3, the number of Pasch configura-
tions containing a block from Pα and a block containing an infinity point
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(excluding the common infinity block) is 3(v − 3). By applying this result
for α = 1, 2, 3, it is apparent that 9(v−3) must be subtracted from (v−3)2

to take account of Pasch configurations containing an infinity point. Note
this also takes into account the double counting of those configurations with
an infinity point that have been counted twice because they have blocks
from P1 and P2, or from P1 and P3, or from P2 and P3.

It remains to determine the number of Pasch configurations that contain
blocks from Pi and Pj ((i, j) = (1, 2), (1, 3), (2, 3)), but no infinity point,
since these have been subject to multiple counting. Such a Pasch configu-
ration must contain blocks from all four parallel classes and, as shown in
the proof of Lemma 2.3, the number of such configurations is (v− 3). Each
is counted 3 times, once for the block in P1, once for the block in P2, and
once for the block in P3. So a further 2(v − 3) must be subtracted from
(v−3)2 to take account of multiple counting of Pasch configurations having
blocks from all four parallel classes.

Thus the number of Pasch configurations in S2k having at least one block
from P1 or P2 or P3, but no infinity points, is (v−3)2−9(v−3)−2(v−3) =
(v − 3)(v − 14).

It follows that for k ≥ 2, the number of Pasch configurations of S2k that
contain one of the infinity points, or a block from P1 or P2 or P3 is

(3v − 14)(v − 3)

4
+ (v − 3)(v − 14) =

7(v − 3)(v − 10)

4
.

The second step in obtaining the Pasch count for Uk is to determine the
number of Pasch configurations added by the inclusion of the new blocks.

Lemma 2.7 For k ≥ 2 the new blocks lie in a total of
(v − 3)(9v − 85)

12
Pasch configurations in Uk.

Proof As in the proof of Lemma 2.4, consider first a pair ab that is not
covered by the parallel class P in S2k−2. Suppose that this pair lies in a
block abx in that system. The number of Pasch configurations that contain
two blocks of the form aijahℓN , bpqbrsN and two further blocks obtained by
subscripting abx appropriately is, as shown previously in Lemma 2.4, 3(v−
3)(v−15)/4. However, unlike Lemma 2.4, there are no Pasch configurations
containing exactly two blocks of the form aijahℓN , bpqbrsN when abc is a
block of P .

Next consider the 54 blocks in Table 2, together with the 12 blocks of
the STS(9) on the colours. An exhaustive search shows that there are 60
Pasch configurations that have their four blocks taken from these 66 blocks.
None of these Pasch configurations comes from the STS(9) itself. Thus each
block abc ∈ P in S2k−2 gives rise to 60 distinct Pasch configurations, and
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the total number arising in this way is therefore 60(v − 3)/12 = 5(v − 3).
It follows that the total number of Pasch configurations in Uk containing a
new point is

3(v − 3)(v − 15)

4
+ 5(v − 3) =

(v − 3)(3v − 25)

4
.

Theorem 2.2 For k ≥ 2, the number of Pasch configurations in Uk is
(v − 3)(v2 − 25v + 270)

24
, where v = 22k − 1.

Proof The projective system S2k contains v(v − 1)(v − 3)/24 Pasch con-
figurations. In the construction of Uk, by Lemma 2.6 7(v − 3)(v − 10)/4
have been removed, and by Lemma 2.7 (v−3)(3v−25)/4 have been added.
So the total in Uk is

v(v − 1)(v − 3)

24
−

7(v − 3)(v − 10)

4
+

(v − 3)(3v − 25)

4

=
(v − 3)(v2 − 25v + 270)

24
.

3 Concluding remarks

It is possible to generalize the results of Lemmas 2.1, 2.2 and 2.5. From the
proof of Lemma 2.1 it may be seen that, given an STS(u) with a parallel
class, the STS(v) with v = 4u + 3 constructed by two successive applica-
tions of the standard doubling construction [1, Construction 2.15] has four
parallel classes intersecting in a common block. The Add 4 and Add 6
constructions may then be applied to this STS(v), with proofs following
closely those of Lemmas 2.2 and 2.5.

The choices of STS(7) and STS(9) used in our constructions have been
optimized for the colourings of G7 and G9 shown in Tables 1 and 2 to
maximize the number of Pasch configurations obtained.

The bounds obtained in Theorems 2.1 and 2.2 may be expressed as
follows.

(i) If w = 22k + 3 then P (w) ≥
(w − 7)(w2 − 25w + 216)

24
+ 7.

(ii) If w = 22k + 5 then P (w) ≥
(w − 9)(w2 − 37w + 456)

24
.
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We believe that these are currently the best lower bounds for P (w) when w
has one of the two forms shown. In particular, P (67) ≥ 7582 and P (69) ≥
6660. It appears that the best that can be achieved for P (67) using previous
results is a lower bound of 3992 obtained by doubling the STS(33) with 345
Pasch configurations as described by Gray and Ramsay in [5].
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