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Abstract

Let P(v) denote the maximum number of Pasch configurations in
any Steiner triple system on v points. It is known that
P(v) < M(v) = v(v — 1)(v — 3)/24, with equality if and only if

v is of the form 2™ — 1. It is also known that lim sup ]‘};((v)) =1. We
v— 00 v

v#2N —1
give a new proof of this result and improved lower bounds on P(v)
for certain values of v.
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1 Introduction

A Steiner triple system of order v, STS(v), is an ordered pair (V, B) where
V is a v-element set (the points) and B is a set of triples from V' (the blocks),
such that each pair from V appears in precisely one block. The necessary
and sufficient condition for the existence of an STS(v) is that v =1 or 3
(mod 6) [6], and these values of v are said to be admissible. We often omit
set brackets and commas from triples so that {z,y, z} may be written as
xyz when no confusion is likely, and pairs may be treated similarly.



A Pasch configuration or quadrilateral is a set of four triples on six
distinct points having the form {abc, ade, bdf,cef}. For each admissible
v # 7,13, it is known that there is an STS(v) containing no Pasch con-
figurations [4]. At the other extreme, no STS(v) can contain more than
M(v) = v(v — 1)(v — 3)/24 Pasch configurations, and this upper bound
is only achieved when v = 2™ — 1 and the corresponding STS(v) is the
projective system of order 2" — 1 [7]. Apart from the values v = 2™ — 1,
the maximum number of Pasch configurations P(v) in systems of order v is
generally unknown. In fact the only known values when v # 2™ — 1 appear
to be P(9) = 0,P(13) = 13 and P(19) = 84 (for the latter see [2]). How-
ever, it was shown by Gray and Ramsay [5] that 1irvIL sup % =1, and
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the proof of this rests on some recursive constructions. Various papers, in
particular [5, 7], give some lower bounds for P(v) for specific values of v, to
which the recursive constructions may be applied to extend these bounds
to infinite classes of admissible values v.

In this current note we improve the lower bounds for P(v) for certain
infinite classes of v. Our bounds provide an alternative direct proof of
the asymptotic result mentioned above. The constructions we use might
best be described as “Add ¢’ constructions since they can, in suitable
circumstances, produce an STS(v + ¢) from an STS(v) for small values of
c. These constructions are not new; the case ¢ = 2 is described in [3].
We start by describing the cases ¢ = 4 and ¢ = 6. A parallel class in an
STS(6s + 3) is a set of 2s + 1 mutually disjoint blocks.

2 Results

Suppose we have an STS(6s + 3)= (V, B) with two parallel classes P; and
P> intersecting in a single common block coj009003. Form a regular graph
of degree 7, G7, on the vertex set V! = V' \ {001, 002,003}. Let ab be an
edge of G7 if abc € P; (i = 1 or 2) or if aboo; € B (where i = 1,2 or 3).
By Vizing’s Theorem, the chromatic index x’ of G7 must be either seven
or eight. Suppose that x'(G7) = 7. Then each colour class is a one-factor,
and so we have seven one factors F;, j = 1,2,...,7. Now delete those
blocks of B that lie in P; or P, or contain any of the points coq, 004, 003,
to form the set of blocks B’. Then introduce seven new points, say «;,
j=1,2,...,7, and form new blocks by appending «; to each pair ab € F;.
Finally, add seven new blocks forming an STS(7) on the points «;. The
new blocks together with the blocks of B’ form an STS(6s+7) on the point
set V'U{e; :j=1,2,...,7}. In a similar way an STS(6s + 9) might be
constructed from an STS(6s + 3) having three parallel classes intersecting
in a common block. The principal difficulty in applying these constructions



lies in determining whether or not the graph G7 (or the corresponding 9-
regular graph Gy in the Add 6 case) has the required chromatic index. We
will show that both the Add 4 and the Add 6 constructions may be applied
to the projective STS(22% — 1) when k > 2. We will denote the projective
STS(2™ — 1) by S,,.

The point set of S, may be taken as Z3 \ {0} and abc is a block if and
only if a + b+ ¢ = 0. For n > 3, it will be convenient to denote a point
(i1,d2,. .. ,in) € ZY as a; 4, where a = (i3, i4, .. .,in) € Z3~ 2. For example,
011 denotes (1,1,0,...,0). Our first step is to prove the following lemma.

Lemma 2.1 For k > 2, the projective system Sox has four parallel classes
intersecting in a single common block.

Proof Note first that Sy, the unique STS(3), comprises a single parallel
class. Suppose, inductively, that for some k > 2, Sy;_o has a parallel
class P, and choose an ordering for the points in each of the blocks of P.
Then the following are four parallel classes of Sy intersecting in the single
common block 091010011 (here 0 € Z%k%).

P1 = {aoobiici1, aioboocio, aoiboicoo, aiibiocor : abe € P} U {001010011 }
P2 = {agobiocio, aioboicit, ao1boocor, ai1biicoo : abe € P}U{001010011}-
P3 = {aooboico1, a10biocoo, ao1biicio, ai1boocii @ abe € P}U{001010011}

Ps = {aooboocoo, aiobiicor, aoibiocii, aiiboicio @ abe € P}U{001010011 }
(We will henceforth refer to the points 01, 010, 011 as infinity points.) 0O

Lemma 2.2 The Add 4 construction may be applied to the projective sys-
tem Sop, for k > 2.

Proof To apply the Add 4 construction, use the parallel classes P; and
P3. The corresponding graph G7 is disconnected, with each component
on the 12 points derived from a block abc of Sii_2, namely the points
aij,bij,cij for 4,5 = 0,1. We must show that G7 has chromatic index
X'(G7) = 7. Clearly it suffices to do this for each component of G;. We
will denote the seven colours by the integers 1,2,...,7. A 7-edge-colouring
of the component corresponding to abc is shown in Table 1 where, for
example, agpaigl denotes that the edge agpaig receives colour 1. These
triples, together with those of an STS(7) on the colours, are the new blocks
used in the construction to form an STS(22% + 3). =

_ The number of Pasch configurations in a projective system of order v is
;—Z(l —o(1)) as v — oo, while the number containing a particular block
is linear in v. So any construction that removes only a linear number of



apoa10l @poao12 aooai1d aipao1d aioai12 apiail
boob1ol  boobo12  boob113  biobo13  biob112  bo1biil
cooc10l  cooco12  cooc113  cioco13  cioc112  cpiciil
apob116  apoc117  biiciid  agobiod  aooc105  biociob
a10bood  aioci04  boocio7  aiobo17  aipc116  boiciid
ap1bo16  ap1coo7 boicood  aop1bood  apico1d  booco1b
a11b105  a11c014  bioco17 a11b117  a11coe6  b11cped

Table 1: A 7T-edge colouring of G7.

blocks will leave a system containing % (1—o(1)) Pasch configurations. This
observation and the result of the previous lemma are sufficient to provide an
alternative proof of the asymptotic result of Gray and Ramsay. However,
we aim for a rather more precise count of the Pasch configurations. So
let T} denote the system of order 22* + 3 = v 4 4 created by the Add 4
construction as explained above and taking the STS(7) on the colours to
have the blocks 123,145,167, 246,257,347,356. Our first step is to count
the Pasch configurations that are destroyed in forming 7.

Lemma 2.3 For k > 2, the number of Pasch configurations of Sai that
contain one of the infinity points 0g1, 010,011 or a block from either of the
two parallel classes Py, Py is (v — 3)(17v — 150) /12, where v = 22F — 1.

Proof We first calculate the number of Pasch configurations in Sy con-
taining at least one infinity point. Since any pair of intersecting blocks
determines exactly two Pasch configurations in Sog, the number of Pasch
configurations that contain any particular point is (v — 1)(v — 3)/4. We
also need to know the number of configurations that contain exactly two
and exactly three infinity points respectively. Configurations with exactly
two infinity points have one of the forms:

(i) aooai0010 (i1)  apoa10010 (443)  aooa11011
ao1a11010 ao1a11010 ao1a10011
apoao1001 apoa11011 a0o@01001
a10a11001 ap1a10011 a10a11001

where a € Z2*72\ {0}. There are therefore (v — 3)/4 configurations of each
type. Configurations with exactly three infinity points are of the forms:

(1) aooaio0i0  (#%) aooa10010  (444) ap1a11010  (0) ap1a11010

apoa11011 ao1a10011 a00a11011 ap1a10011
a10a11001 apoao1001 apoao1001 a10a11001
010011001 010011001 010011001 010011001



and there are therefore (v — 3) configurations with three infinity points.
Putting this together, the number of configurations containing at least one
infinity point is:

3v—=1)(v—3) 3(v—3) - (Bv—14)(v —-3)
. — 1 —2w=-3)= - (1)

Next we calculate the number of Pasch configurations that contain at
least one block from either P; or Ps, but no infinity points. In these two
parallel classes there are 2(v — 3)/3 blocks, excluding the common infinity
block. Each of these blocks lies in (v—3) Pasch configurations, which would
give a total of 2(v — 3)?/3 Pasch configurations, were it not for the facts
that some of these are counted twice and some contain an infinity point.

First we determine how many of the 2(v — 3)2/3 correspond to a Pasch
configuration containing an infinity point. So consider how a block from
Po (@ = 1,2,3 or 4) may lie in a Pasch configuration with a block con-
taining an infinity point (excluding the common infinity block). Suppose
that a;;bnecmn is a block from P, and that a;;a,400 is a block containing
an infinity point co = 0g1, 019 or 017. There are two Pasch configurations
containing these two blocks and each has precisely one other block con-
taining the point oo, while the other block is necessarily in Ps for some
B # a. We may therefore count these Pasch configurations by choosing
intersecting blocks from P, and Pg. The block from P, may be chosen in
(v — 3)/3 ways, there are 3 choices for 8, and the intersecting block from
‘Ps may be chosen in 3 ways; the remaining two blocks, which must contain
an infinity point, are then determined. So there are 3(v — 3) distinct Pasch
configurations containing a block from P, and a block containing an infin-
ity point (excluding the common infinity block). By applying this result for
a = 1,2, it is apparent that 6(v—3) must be subtracted from 2(v—3)?/3 to
take account of Pasch configurations containing an infinity point. Note this
also takes into account the double counting of those configurations with an
infinity point that have been counted twice because they have blocks from
each of P; and Ps.

It remains to determine the number of Pasch configurations that contain
blocks from both P; and P, but no infinity point, since these have been
counted twice. Such a Pasch configuration must also contain blocks from
P3 and P4. So each choice of a block from P; and intersecting block from
Py gives rise to only one Pasch configuration of this type. Consequently,
the number of such configurations is 3 x (v — 3)/3 = (v — 3), Hence a
further (v — 3) must be subtracted from 2(v — 3)2/3 to take account of
double counting of Pasch configurations having blocks from all four parallel
classes.

Thus the number of Pasch configurations in Ss; having at least one



block from either P; or Ps, but no infinity points is

2(v — 3)? —3)(2v —27
M_av_g)_(v_g):w. 2)
3 3
Finally, by combining equations (1) and (2), it follows that for k£ > 2,
the number of Pasch configurations of S that contain one of the infinity
points, or a block from P; or Ps is
(3v — 14)(v — 3) n (v—=3)(2v—-27) (v—3)(17v —150)

4 3 12 ' O

The second step in obtaining the Pasch count for T} is to determine the
number of Pasch configurations added by the inclusion of the new blocks.
(v —3)(3v —28)

Lemma 2.4 For k > 2 the new blocks lie in a total of 1

Pasch configurations in Ty.

+7

Proof A Pasch configuration that contains a new block (i.e. with a colour
from {1,2,...,7}) must contain either exactly two, or exactly four, new
blocks.

In the case of exactly two new blocks, these must have the form a;;an¢ IV,
bpgbrs N, where a # b, N € {1,2,3} and i+h = p+r, j+{ = g+ s (mod 2).
Either a and b lie in different blocks of P, or they lie in the same block of
P. In the former case, ab is a pair not covered by P and so it lies in some
block abx ¢ P. The remaining two blocks of this Pasch configuration must
then consist of abx appropriately subscripted. For example, when N = 1
there are eight Pasch configurations of this form in T}:

(Z) aooaml (Z’L) aooaml (Z’LZ) a00a101 (’L’U) aooaml
boob1ol boob1ol bo1b111 bo1b111
aoobooToo aopob10r10 aoobo1To1 agob11711
a10b10T00 a10booT10 a10b11201 a10bo1711

(’U) a01a111 (’U’L) a01a111 (’U’Ll) a01a111 (’UZ’LZ) a01a111
boob1ol boob1ol bo1b111 bo1b111
ao1booTo1 ap1bior1y ao1bo1700 ap1b11710
a11b10T01 a11booT11 a11b11200 a11bo1710

The number of choices for a is (v — 3)/4, and then b cannot be a or either

of the two points occurring with a in P, so there are (v — 3)/4 — 3 =

(v—15) /4 choices for b. Hence the pair ab may be chosen in 2 (¥73)(¥=15) =

2\71 1
%2”715) ways and the colour selected may be 1, 2 or 3. So the number

of Pasch configurations created in this way is
(v—=3)(v—15) 3(v—-3)(v—15)

3 x 8 x 35 = 1 . (3)




The second possibility for a Pasch configuration having exactly two
new blocks is that a and b lie in the same block abc € P. The remaining
blocks of this Pasch configuration must then consist of abc appropriately
subscripted. Since these must intersect, one must lie in P3, and the other in
P4. Each pair of intersecting blocks from Ps and P, (excluding the infinity
block) gives a Pasch configuration with two new blocks containing one of
the colours 1, 2 or 3. For example, agoboicor € P3 and agobgocog € Py lie
in a Pasch configuration with the blocks bygbg12 and cogco12. There are
(v — 3)/3 non-infinity blocks in P3 and each intersects three blocks in Py.
So the number of Pasch configurations of this type in T} is (v — 3).

Next consider the 42 blocks in Table 1, together with the 7 blocks of
the STS(7) on the colours. An exhaustive search shows that there are 46
Pasch configurations that have their four blocks taken from these 49 blocks.
Seven of these Pasch configurations come from the STS(7). Thus each block
abc € P in Soi_o gives rise to 39 distinct Pasch configurations, and the total
number arising in this way is therefore 39(v — 3)/12 = 13(v — 3) /4.

Finally, the STS(7) on the seven colours has a further 7 Pasch config-
urations. So the total number of Pasch configurations in T} containing a
new point is

3(v—3)(v—15)

13(v —3) L7 (v —3)(3v —28)
4

+(v—-3)+ 1 1

+ 7.

O

Theorem 2.1 For k > 2, the number of Pasch configurations in Ty is
(v —3)(v? — 17v + 132)

7 + 7, where v = 2%k — 1.

Proof The projective system Sy, contains v(v — 1)(v — 3)/24 Pasch con-
figurations. In the construction of T}, by Lemma 2.3 (v —3)(17v — 150)/12
have been removed, and by Lemma 2.4 (v — 3)(3v — 28)/4 + 7 have been
added. So the total in T}, is

v —1)(v—-3) (v-3)(17v —150) n (v —3)(3v —28)
24 12 4

(v —=3)(v? —17v +132)
= o + 7. 0

+7

Next we turn our attention to the Add 6 construction.

Lemma 2.5 The Add 6 construction may be applied to the projective sys-
tem Sor for k > 2.



Proof To apply the Add 6 construction, use the parallel classes P1, Po
and Ps3. The corresponding graph Gy is disconnected, with each component
on the 12 points derived from a block abc of Si;_2, namely the points
aij,bij,¢i5 for 4,5 = 0,1. We must show that Gg has chromatic index
X' (Gy) = 9. Clearly it suffices to do this for each component of Gg. We
will denote the nine colours by the integers 1,2,...,9. A 9-edge-colouring
of the component corresponding to abc is shown in Table 2 where, for
example, agpaigl denotes that the edge agpaig receives colour 1. These

apoa10l  @poao12 agoa11d aipao1d aipai12 apiail
boob1ol  boobo12  boob113  biobo13  biob112  bo1biil
cooc10l  cooco12  cooc113  cioco13  cioc112  cprciil
apob115  apoc114  bi1c116  agobio6  apoci07  b1oc109
a10bood  @10c105  boocio6  @10b016  aipc117  boicii9
ap1bo1d  ap1cood  boicoo7 aop1boo7 apico16  boocor8
a11bi04  a11c01d  bioco17  a11b117  aricob  bi1coo8
agobo18 apoco19  boicoid  a1pb108 a1ocoo9  b1ocood
ap1b119  ao1c108  biiciod  a11boo9 aiic1i8  boociid

Table 2: A 9-edge colouring of Gy.

triples, together with those of an STS(9) on the colours, are the new blocks
used in the construction to form an STS(2%* + 5). 0

Now let Uy, denote the system of order 22* +5 = v+6 created by the Add
6 construction as explained above and taking the STS(9) on the colours to
have the blocks 123, 148,157,169, 249, 256, 278, 345, 368, 379, 467, 589. The
STS(9), which is unique up to isomorphism, contains no Pasch configura-
tions. Our first step is to count the Pasch configurations that are destroyed
in forming Uy.

Lemma 2.6 For k > 2, the number of Pasch configurations of Sai that
contain one of the infinity points 0p1,010,011 or a block from any of the
three parallel classes P1,Pa, P3 is T(v — 3)(v — 10)/4, where v = 22k — 1.

Proof Asin the proof of Lemma 2.3, the number of configurations contain-
ing at least one infinity point is (3v — 14)(v — 3)/4. We must also calculate
the number of Pasch configurations that contain at least one block from
P1, P2 or P3, but no infinity points. In these three parallel classes there
are (v — 3) blocks, excluding the common infinity block. Each of these
blocks lies in (v — 3) Pasch configurations, which would give a total of
(v — 3)% Pasch configurations, were it not for the facts that some of these
are counted two or three times and some contain an infinity point.

Again, as in the proof of Lemma 2.3, the number of Pasch configura-
tions containing a block from P, and a block containing an infinity point



(excluding the common infinity block) is 3(v — 3). By applying this result
for « = 1,2,3, it is apparent that 9(v—3) must be subtracted from (v — 3)?
to take account of Pasch configurations containing an infinity point. Note
this also takes into account the double counting of those configurations with
an infinity point that have been counted twice because they have blocks
from Py and Py, or from P; and Ps, or from P, and Ps.

It remains to determine the number of Pasch configurations that contain
blocks from P; and P; ((4,75) = (1,2),(1,3),(2,3)), but no infinity point,
since these have been subject to multiple counting. Such a Pasch configu-
ration must contain blocks from all four parallel classes and, as shown in
the proof of Lemma 2.3, the number of such configurations is (v — 3). Each
is counted 3 times, once for the block in Py, once for the block in Ps, and
once for the block in P3. So a further 2(v — 3) must be subtracted from
(v—3)? to take account of multiple counting of Pasch configurations having
blocks from all four parallel classes.

Thus the number of Pasch configurations in Sox having at least one block
from P; or Py or P3, but no infinity points, is (v—3)% —9(v—3)—2(v—3) =
(v—=3)(v—14).

It follows that for k > 2, the number of Pasch configurations of Soj, that
contain one of the infinity points, or a block from P; or Ps or Pj3 is

(3v—14)(v — 3)
4

+(073)(0714):—7(1)73)4(0710). -

The second step in obtaining the Pasch count for Uy, is to determine the
number of Pasch configurations added by the inclusion of the new blocks.

(v — 3)(9v — 85)

Lemma 2.7 For k > 2 the new blocks lie in a total of D

Pasch configurations in Uy.

Proof As in the proof of Lemma 2.4, consider first a pair ab that is not
covered by the parallel class P in Ss,_o. Suppose that this pair lies in a
block abz in that system. The number of Pasch configurations that contain
two blocks of the form a;janeN, bpqbrs N and two further blocks obtained by
subscripting abx appropriately is, as shown previously in Lemma 2.4, 3(v —
3)(v—15)/4. However, unlike Lemma 2.4, there are no Pasch configurations
containing exactly two blocks of the form a;jane N, bpgbrs N when abc is a
block of P.

Next consider the 54 blocks in Table 2, together with the 12 blocks of
the STS(9) on the colours. An exhaustive search shows that there are 60
Pasch configurations that have their four blocks taken from these 66 blocks.
None of these Pasch configurations comes from the STS(9) itself. Thus each
block abc € P in Ss;_o gives rise to 60 distinct Pasch configurations, and

10



the total number arising in this way is therefore 60(v — 3)/12 = 5(v — 3).
It follows that the total number of Pasch configurations in Uj, containing a
new point is

3(v—3)(v—15)
4

+5(v—3):—(”*3)(f”*25). -

Theorem 2.2 For k > 2, the number of Pasch configurations in Uy is
—3)(v? — 25v + 270
(w=3) 51 v ), where v = 22F — 1.

Proof The projective system Sy, contains v(v — 1)(v — 3)/24 Pasch con-
figurations. In the construction of Uy, by Lemma 2.6 7(v — 3)(v — 10)/4
have been removed, and by Lemma 2.7 (v — 3)(3v —25)/4 have been added.
So the total in Uy, is

viv=1)(v=3) T(v—3)(v—10) n (v —3)(3v — 25)

24 4 4
(v —3)(v? — 25v + 270)

B 24 ' U

3 Concluding remarks

It is possible to generalize the results of Lemmas 2.1, 2.2 and 2.5. From the
proof of Lemma 2.1 it may be seen that, given an STS(u) with a parallel
class, the STS(v) with v = 4u + 3 constructed by two successive applica-
tions of the standard doubling construction [1, Construction 2.15] has four
parallel classes intersecting in a common block. The Add 4 and Add 6
constructions may then be applied to this STS(v), with proofs following
closely those of Lemmas 2.2 and 2.5.

The choices of STS(7) and STS(9) used in our constructions have been
optimized for the colourings of G7 and Gg shown in Tables 1 and 2 to
maximize the number of Pasch configurations obtained.

The bounds obtained in Theorems 2.1 and 2.2 may be expressed as
follows.

w —7)(w? — 25w + 216)
24
(w — 9)(w? — 37w + 456)

(i) If w = 2%% +5 then P(w) > 51 .

+ 7.

(i) If w = 2% + 3 then P(w) > (

11



We believe that these are currently the best lower bounds for P(w) when w
has one of the two forms shown. In particular, P(67) > 7582 and P(69) >
6660. It appears that the best that can be achieved for P(67) using previous
results is a lower bound of 3992 obtained by doubling the STS(33) with 345
Pasch configurations as described by Gray and Ramsay in [5].
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