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Abstract

We prove that for n > 3 every STS(n) has both an orientable and
a nonorientable embedding in which the triples of the STS(n) appear
as triangular faces and there is just one additional large face. We
also obtain detailed results about the possible automorphisms of such
embeddings.
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1 Introduction

Recent papers [3, 6, 7] have dealt with biembeddings of Steiner triple systems.
Such a biembedding comprises a face 2-colourable triangulation of a complete
graph K, in an orientable or in a nonorientable surface S. The triangular
faces in each of the two colour classes determine the triples of a Steiner triple
system of order n, STS(n). In the orientable case, at least one biembedding
exists if and only if n» = 3 or 7 (mod 12). In the nonorientable case, a
necessary condition is that n = 1 or 3 (mod 6) and n > 9. Whenever such
a biembedding exists, it represents a minimum orientable (or nonorientable)
genus face 2-colourable embedding of K, in a surface and hence may be
considered to be a minimum orientable (or nonorientable) genus embedding
of each of the two STS(n)s involved. From Euler’s formula, it is easy to
deduce that in the orientable case the minimum genus is (n — 3)(n — 4)/12
and in the nonorientable case it is (n — 3)(n — 4)/6.

Our focus in this current paper lies at the opposite extreme, namely
on cellular embeddings of Steiner triple systems of maximum orientable (or
nonorientable) genus. To be precise, we seek a face 2-colourable embedding
of a complete graph K, in an orientable (or nonorientable) surface in which
the faces in one of the two colour classes are triangles and so determine an
STS(n), while there is just one face in the second colour class and the interior
of that face is homeomorphic to an open disc. This latter condition ensures
that the embedding is cellular and it precludes artificial inflation of the genus
by the addition of unnecessary handles or crosscaps. In the orientable case
the corresponding genus is (n — 1)(n — 3)/6 and in the nonorientable case it
is (n—1)(n—3)/3. To avoid trivialities, we shall assume that n > 3 and then
the single face in the second colour class, which has n(n—1)/2 > 3 edges may
be referred to unambiguously as the large face. In topological graph theory,
graphs which are cellularly embeddable with precisely one face are called
“upper embeddable”. By analogy with this usage, we use the term upper
embedding for embeddings of STS(n)s of the type just described, appending
the qualifier “orientable” or “nonorientable” as appropriate.

The problem can also be formulated in terms of embeddings of complete
graphs in which certain face boundaries (corresponding to the triples of an
STS(n)) are prescribed. Orientable embeddings where certain directed closed
walks are required to be face boundaries (such that their orientation agrees
with a fixed orientation of the surface) are called oriented relative embeddings
and have been studied before [1, 2, 9, 10]. The big difference between these



oriented relative embeddings and the orientable upper embeddings considered
in the current paper is that the prescribed boundaries of our triangular faces
have no specified orientation. In the nonorientable case, however, our upper
embeddings may be regarded as particular instances of relative embeddings.

An important aspect of topological graph theory is the study of automor-
phism groups of embedded graphs. An automorphism group of an embedding
is fully determined by the image of a single edge having a specified orientation
and a specified side of that edge. Consequently, the order of the automor-
phism group of an embedding cannot exceed four times the number of edges
of the embedded graph. An embedding which achieves this bound is called a
regular map; such embeddings have the greatest possible symmetry and they
are closely related to quotients of triangle groups and Riemann surfaces. For
an embedding which is not regular, one may nevertheless ask if the auto-
morphism group contains a subgroup acting regularly on the vertices of the
embedded graph. Embeddings of this type are called Cayley maps and have
been the focus of much study. These considerations provide a motivation for
analysing the possible automorphisms of our upper embeddings of STS(n)s.

We prove that for n > 3 every STS(n) has both an orientable and a
nonorientable upper embedding. We also obtain detailed results about the
possible automorphisms of such embeddings.

We here recall that an STS(n) may be formally defined as an ordered pair
(V, B), where V is an n-element set (the points) and B is a set of 3-element
subsets of V' (the triples), such that every 2-element subset of V' appears in
precisely one triple. A necessary and sufficient condition for the existence of
an STS(n) is that n = 1 or 3 (mod 6); such values of n are called admissible.
An STS(n) is said to be cyclic if it has an automorphism comprising a single
cycle of length n. A cyclic STS(n) exists for every admissible n apart from
n =29. (See [4] for details.)

We assume that the reader is familiar with basic facts concerning graph
embeddings in surfaces, in particular with lifts of embeddings by means of
voltage assignments as treated in Chapters 2 - 4 of [8]. When working with
embedded designs and graphs, we shall use the same notation for points
and vertices of the abstract designs and graphs as well as for the embedded
versions; no confusion will be likely. Some of our constructions involve the
addition of handles or crosscaps to existing surfaces; we represent these in
figures as shown in Figure 1.

A face 2-colourable embedding is one which admits a 2-colouring of faces
(black and white) such that no two faces of the same colour share an edge.
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Handle Crosscap

Figure 1: Representation of handles and crosscaps.

Our embeddings will portray triangular faces as black and the large face as
white. Two embeddings are isomorphic if there is a bijection between the
corresponding vertex sets, preserving all incidences between vertices, edges
and faces. An isomorphism may reverse orientation. In principle, an isomor-
phism may reverse the colour classes of a face 2-colourable embedding but,
in practice, such isomorphisms will not arise in this paper since the colour
classes we consider here contain faces of different types, namely triangles and
the large face. An automorphism of an embedding is an isomorphism of that
embedding with itself. An embedding of K, is said to be cyclic if it has an
automorphism comprising a single cycle of length n.

2 Existence of embeddings
Theorem 2.1 Every STS(n) has an orientable upper embedding.

Proof: The triples of the STS(n) will be represented as black triangles of
the embedding. The initial step is to take all the black triangles containing a
fixed point oo of the STS(n). From these one may construct a face 2-coloured
planar embedding of a connected simple graph G on n points, having for its
faces the (n —1)/2 black triangles incident with oo, and one white face. The
graph G and its embedding are illustrated in Figure 2.

We now proceed to add the remaining (n — 1)(n — 3)/6 triples of the
STS(n), one at a time, increasing the genus by 1 at each step. Consider at
any stage the boundary of the white face. We will assume that every point
of the STS(n) appears on this boundary at least once. This assumption is
certainly true for the initial embedding illustrated in Figure 2. If the next
triple to be added is {u, v, w} then we locate one occurrence of each of these
points on the boundary of the white face, add a handle to the white face,



Figure 2: The planar embedding of G.

and paste on the triangle (u,v,w) (or (u,w,v), depending on the order of
the selected points around the white face). This is illustrated in Figure 3.

u v

w
(a) (b)
Figure 3: Adding a black triangle.

Figure 3(a) gives a schematic representation of the operation while Figure
3(b) shows the location of the triangle relative to the handle. If the points
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u, v, w originally divided the boundary of the white face into three sections
A, B and C, then it is easy to see that after the addition of the black triangle
(u,v,w) as shown in Figure 3, there still remains just one white face with
boundary A(vw)C(uv)B(wu). This face has three more edges than at the
previous stage and every point of the STS(n) still appears on the boundary.
It is also clear that if the interior of the white face was homeomorphic to an
open disc prior to the addition of the black triangle, then it remains so after
this addition. O

We remark that it is not necessary to start with the planar embedding
specified in the proof. All that is required is a planar embedding of a graph
G containing only black triangles from the STS(n) and a single white face
incident with all the points of the STS(n).

Theorem 2.2 Every STS(n) (with n > 3) has a nonorientable
upper embedding.

Proof: The proof is identical with that of Theorem 2.1 up to the addition of
the final black triangle. This is added to the white face using two crosscaps
rather than one handle. Figure 4 illustrates this final step. For clarity, the
edges uv, vw and wu are labelled a, b and c respectively.

Figure 4: Adding the final black triangle.

Using the same notation as in the proof of Theorem 2.1, the boundary of
the white face after the addition of the black triangle (u, v, w) is A(vw)B(vu)
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C(wu). The resulting surface has ((n—1)(n—3)/6)—1 handles and 2 crosscaps
giving nonorientable genus (n — 1)(n — 3)/3. 0

Both Theorems 2.1 and 2.2 have alternative proofs based on embeddings
of the vertez-block incidence graph of an STS(n) = (V, B). This graph is the
bipartite graph whose vertex set is V U B and whose edges are determined
by joining p € V to T € B if and only if p € T. Given an embedding of the
vertex-block incidence graph with precisely one face, an upper embedding
of the associated STS(n) = (V,B) may be obtained by surrounding each
vertex T' € B by a small disc on the surface and each of the three edges
incident with T by a thin strip, so that the union of the disc and the three
strips forms a triangle whose vertices are the three points py,p2,ps € T. To
prove Theorems 2.1 and 2.2 it therefore suffices to show the existence of a
single-face embedding of the vertex-block incidence graph of every STS(n).
In the nonorientable case this is trivial because every graph has such an
embedding [5, 11]. In the orientable case we may appeal to a theorem of
Xuong [13] which asserts the existence of a single-face embedding of a graph
G provided that the Betti number 8(G) = 1 — |[V(G)| + |E(G)| is even and
that G has a spanning tree whose complement in G has no component with
an odd number of edges. If G is the vertex-block incidence graph of an
STS(n) = (V, B) then |V(G)| =n+n(n—1)/6 and |E(G)| = 3-n(n —1)/6,
so B(G) = (n—1)(n—3)/3 is even. A spanning tree of G having the required
property may be constructed by choosing a vertex x € V, taking all edges
of G incident with z, all edges of G incident with each T € B for which
x € T, and finally any choice from the remaining edges of G which results in
a spanning tree. In the complement, each T' € B has degree 0 or 2, and so
each component of the complement has an even number of edges. We thank
Volodymyr Korzhyk who originally suggested this alternative approach to
proving Theorems 2.1 and 2.2.

Theorems 2.1 and 2.2 enable us to remark that for each admissible n, the
number of non-isomorphic orientable (or nonorientable) upper embeddings
of STS(n)s is at least as great as the number of non-isomorphic STS(n)s.
This number is asymptotic to n™ /6 [12].



3 Automorphisms

In this section we obtain detailed results about the possible automorphisms
of orientable and nonorientable upper embeddings of STS(n)s. We repeat
the assumption that n > 3.

Theorem 3.1 If ¢ is an automorphism of an orientable (or nonorientable)
upper embedding of an STS(n) then ¢, represented as a permutation of the
points, has one of two forms:

(a) ¢ comprises a product of disjoint cycles of equal length, or

(b) ¢ comprises a single fized point together with a product of disjoint cycles
of equal length.

Furthermore, ¢ preserves the direction around the large face and the common
cycle length is odd.

Proof: Suppose that ¢ has two fixed points, ¢ and b. Since ¢ must preserve
the large face and the edge ab appears somewhere on the boundary of this
face, it must fix the points adjacent to the edge ab on this boundary. By
repetition of this argument, ¢ fixes every point of the STS(n). Thus ¢ is the
identity mapping and so is both of type (a) and type (b). It follows that if
¢ is not the identity mapping then it can have at most one fixed point.

Next suppose that ¢ contains two disjoint cycles of lengths p and ¢, where
1 < p < q. Then ¢* is an automorphism with p fixed points and a cycle of
length at least 2. By the previous paragraph, this is not possible. Hence ¢
must take one of the forms (a) or (b) defined in the statement of the theorem.

Now assume that ¢ has the form (a) and that it reverses the direction
around the large face. Clearly ¢ is not the identity. Consider any edge ab
which is mapped by ¢ to an edge a'b’ appearing on the boundary of the large
face as shown in Figure 5.

If ¢ is adjacent to b on this boundary then it must be mapped to ¢
adjacent to b' as shown. Proceeding in this fashion we deduce that ¢(a’) = a
and, further, that ¢?(z) = z for every point z of the STS(n). Since ¢ is
not the identity and has the form (a), we see that ¢ must be the product of
disjoint transpositions, contradicting the fact that n is odd.

Next, assume that ¢ has the form (b) and that it reverses the direction
around the large face. Again, ¢ is clearly not the identity. Suppose that ¢
fixes the point oo (and no other point). Arguing as before we see that ¢ fixes
oo and contains (n—1)/2 disjoint transpositions. Suppose that three of these
are (a; b1), (a2 be) and (as b3). Consider the edge aib;. Since this edge is
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Figure 5: The large face.

stabilized by ¢, it must appear midway between two successive occurrences
of co on the boundary of the large face. But the edge asb, must also appear
midway between the same two successive occurrences of co, and the same is
true of the edge asbs. Since there are only two midway positions, we have a
contradiction. We conclude that ¢ preserves the direction around the large
face.

Finally, consider the cycle length. If ¢ has the form (a), then the cycle
length is necessarily odd. If ¢ has the form (b) and the cycle length is &,
suppose that k is even. Then 1) = ¢*/2 is an automorphism which comprises
a fixed point and (n — 1)/2 transpositions. If (a; b1) is one of these trans-
positions, then v will reverse the direction of the edge a1, and so fails to
preserve the direction around the large face, a contradiction. Thus £ must
be odd. O

Theorem 3.2 If ¢ is an automorphism of an orientable upper embedding of
an STS(n), and if ¢ comprises a product of disjoint cycles of equal length k,
then either k = 1 (in which case ¢ is the identity permutation) or k = 3. In
the case k = 3 we must have n =3 (mod 6).

Proof: Suppose k > 1 so that ¢ is not the identity permutation. Then k|n
and ¢ preserves orientation since it preserves direction around the large face.
Let M denote the embedding in question. The group (¢) generated by ¢ is
the cyclic group of order k, Z, which acts on vertices of M semi-regularly
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as a group of orientation-preserving automorphisms. As ¢ preserves colours,
the group (¢) also acts semi-regularly on edges of M, and hence on arcs
(edges with direction) of M. The action of (¢) on M therefore defines a
quotient embedding M’ = M/(¢) in some orientable surface. The associated
natural projection 7 : M — M’ is known to be a k-fold regular covering,
with possible branch points in some face centres. Therefore the underlying
base graph of the quotient embedding M’ may contain parallel edges and
loops, but no semi-edges. Each vertex and each edge of the base graph have
exactly k pre-images under 7! in M; we also note that 7 preserves vertex
valencies.

Let F' be the large face of M; we recall that the boundary walk of F' con-
tains each edge of M exactly once. It follows from the covering properties
of the projection that the boundary walk of the face 7(F') in the quotient
map M’ must also contain every edge of the base graph exactly once. Con-
sequently, the quotient embedding M’ can also be properly 2-coloured (the
face m(F') white and the remaining faces black), and then 7 projects the 2-
colouring of M onto the 2-colouring of M'. Since the face lengths in M must
be multiples of face lengths in M’, we see that black faces of M’ have length
1 or 3. Let ¢ and [ be the number of black triangles and black loops (faces
of length 1), respectively. By the regularity of 7, each component of the pre-
image of a black loop is a black triangle of M (with a branch point of order
3 inside). It follows that if I > 0 then 3|k and each black loop of M’ has k/3
pre-images (black triangles) in M. On the other hand, each black triangle of
M’ has k pre-image black triangles in M. Consideration of the black faces
tells us that the parameters k, [, n must satisfy kt + kl/3 = n(n — 1)/6. As
regards the white faces F' and «n(F') that contain each edge of M and M’
(respectively) exactly once, from the k-fold covering property of m we see
that the boundary of 7(F") has length n(n — 1)/2k.

It follows from [5, proof of Theorem 2.2.2] that the embedding M (as a
regular covering space of M') may be re-constructed from the quotient M’
by a voltage lift, using a voltage assignment on arcs of the base graph of M’
in the group Zj. From the preceding considerations it then follows that the
voltages assigned to (directed) edges around each of the ¢ black triangles in
M’ must sum to 0 and those on any loops must be k/3 or 2k/3.

If n # 3 (mod 6) there can be no loops and the voltage sum around the
boundary of the face F' must then be zero modulo k since it is the sum of
the voltages on all the triangles. But then the face F lifts to £ faces having
boundary length n(n — 1)/2k rather than one face having boundary length
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n(n —1)/2. If n = 3 (mod 6) there may be some loops and the voltage sum
around the boundary of the face F' must be one of 0,%/3 or 2k/3 (mod k).
But F' can only lift to a face having boundary length n(n—1)/2 in the latter
two cases, and then only if £ = 3. 0

4 Automorphisms with no fixed point

We start with an existence result for orientable upper embeddings which links
with the case £ = 3 of Theorem 3.2.

Theorem 4.1 If n = 3 (mod 6) then there exists an orientable upper em-
bedding of an STS(n) having an automorphism that is a product of disjoint
cycles of length 3.

Proof: Suppose that n = 6s + 3 and assume initially that 3 J (2s + 1).
Working modulo 2s + 1, consider all ordered triples in Z3 _, of the form
(z,y, (x +y)/2) with z < y. (In “z < y” we intend that z and y are repre-
sented as integers in [0, 2s].) These triples will form the black triangular faces
of a face 2-coloured graph embedding. The initial step in constructing this is
to take those triangles of the form (z, —z,0) forz = 1,2, ..., s, and construct
from these a face 2-coloured planar embedding of a simple connected graph
H on 2s + 1 vertices having for its faces the s black triangles described and
one white face as illustrated in Figure 6(a).

Next add a black loop to each vertex including 0, to form the graph H’
and the planar embedding of H' illustrated in Figure 6(b). This has 2s + 1
vertices, s black triangles and 2s + 1 black loops. We now add the remaining
black triangular faces (z,y, (z + y)/2), one at a time, increasing the genus
by 1 at each step in the manner described in the proof of Theorem 2.1. The
result is a cellular face 2-coloured embedding of a multigraph H” having
2s + 1 vertices, (25;’ 1) black triangles, 2s + 1 black loops and one white face

which has all 3(252“) +(25+1) = (25 +1)(3s + 1) edges.
Now assign voltages in the group Z3 to the edges of H” as follows. On
each loop place the voltage 1 with a consistent orientation (e.g. all clockwise).

On the edges of a black triangle (z,vy, (z + y)/2) place the voltages 0 and 1
as shown in Figure 7.
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(a) (b)

Figure 6: Planar embeddings of H and H'.

(x+v)/2

Figure 7: Voltage assignment on H”.

This assignment is unambiguous because if (z + (z + y)/2)/2 = y in
Zasy1 then 3(x — y) = 0 (mod 2s + 1) and this cannot happen if z # y and
3V (2s +1). Having completed the voltage assignment on H”, the directed
voltage sum over all the black triangles is zero, while that over all the loops
is 2s + 1 or 4s 4+ 2, depending on the choice of direction, and this is non-zero
modulo 3. It follows that the total voltage sum around the white face in the
embedding of H” is non-zero modulo 3.
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Consequently, the lifted graph and embedding has 3(2s + 1) = 6s + 3
vertices and one white face having all (6s + 3)(6s + 2)/2 edges. The lift of
the black faces comprises:

(a) all triangles of the form (zg, 21, z2) from the loops of H”, and

(b) all triangles of the forms (xo, yo, (x +y)/2)1), (z1,y1, ((z+y)/2)2) and
(22, Y2, ((x + y)/2)o) from the triangles of H".

Altogether these black triangles form the triples of an STS(n), in fact that
produced by the well-known Bose construction (see, for example [4]) based on
the group Zss,,. It follows that the lifted embedding is an orientable upper
embedding of an STS(n). Since the embedding is obtained from a graph lift-
ing using Z3, it has an automorphism of order 3 given by [I,cz,, ., (zo 71 22).
This completes the proof in the case 3 )/ (2s + 1).

In the case 3|(2s+ 1) we modify the voltage assignment on H” as follows.
Put w = (2s +1)/3. For each z € {0,1,...,w — 1}, there will be three
black triangles in H” of the forms (z,z + w,z + 2w), (z,z + 2w,z + w) and
(z + w,z + 2w, x). These receive voltage assignments as shown in Figure 8.

0 _X+w x 0 _Xx+2w xtw 0 _X+2w

x+2w x+w X

Figure 8: Voltage assignments in H".

We also reverse the voltage assignment on any one loop. As a consequence
of these modifications, the resulting voltage assignment is unambiguously
specified and the voltage sum around the white face in the embedding of H"
is again non-zero modulo 3. The remainder of the argument is as previously
given. 0

The following Theorem contrasts results for the nonorientable case with
corresponding results for the orientable case given in Theorem 3.2.
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Theorem 4.2 If n =1 or 3 (mod 6) and n > 3 then every cyclic STS(n)
has a nonorientable upper embedding with a cyclic automorphism.

Proof: Suppose initially that n = 1 (mod 6) and that S is a cyclic STS(n).
Let {{0,04,6;} :i=1,2,...,(n —1)/6} be a set of orbit starters for S. We
may assume that 0 < o; < B; < n for each 7. Put a; = o;,0; = 3, —
and ¢; = f; so that a; + b; = ¢; (mod n) and {a;, b, ¢c;,n — az,n — by,n —¢; :
i=12,....,(n—-1)/6} = {1,2,...,n — 1}. In effect, {(a;,bi,c;) : i =
1,2,...,(n—1)/6} is a set of difference triples for S.

Given one of these triples (a;, b;, ¢;), we define two directed graphs G} and
G? each having a single vertex labelled z; and whose edges are labelled with
ai, b; and ¢;. The graph G| has an orientable embedding of genus 1 and the
graph G? has a nonorientable embedding of genus 2. These graphs and their
embeddings are illustrated in Figure 9.

b:

!

Figure 9: Embeddings of G} and G?.

Each of G} and G? has three edges and their embeddings each have two
faces, here coloured black and white. The directed sums of the edge labels of
the black faces of G} and G? are both +(a; + b; — ¢;) = 0 (mod n). For the
white face of G} the same is true, but for the white face of G7 the directed
sum of the edge labels is +(a; + b; + ¢;).
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We now form a graph G with an associated cellular face 2-coloured em-
bedding by attaching for each i = 1,2,...,(n — 1)/6 a copy of G¥, where
ki =1 or 2, to a common root vertex z. That is, we identify the vertices z;
with x for each i; we carry out this operation so that the embedding which
results has a single cellular white face. The graph G and its embedding are
shown schematically in Figure 10.

Figure 10: Schematic representation of G.

We choose the values of k; = 1 or 2 in such a way that the directed sum
of the boundary labels on the single white face of G is coprime with n. For
example, if we suppose that (without loss of generality) 51 = n — 1, so that
c1 =n — 1, then we can select &y =2 and k; =1 for i =2,3,...,(n—1)/6.
This gives the directed sum of the boundary labels on the single white face of
G as £(a; +b1+c¢;) = £2¢; = +2 (mod n). However the choice is made, it is
necessary to use at least one value of k; which equals 2, and so the embedding
of G is nonorientable.

We now lift the graph GG using the edge labels to form a voltage assignment
in the group Z,,. The resulting black faces are all triangular with vertex sets
of the form {zg, Tr1a;, Thta;+6: ) = {Tk> Thrays Thipy for K =0,1,...,n—1
and 1 = 1,2,...,(n — 1)/6, and so form an isomorphic copy of the Steiner
triple system S. The single white face of G lifts to a single white face having
all n(n — 1)/2 edges of the lifted graph for its boundary. The lifted graph
and embedding have a cyclic automorphism and Theorem 3.2 ensures that
the corresponding surface is nonorientable. It follows that the lifted graph
and embedding give a nonorientable upper embedding of S. This completes
the proof in the case n =1 (mod 6).

If n = 3 (mod 6), we modify the construction of G as follows. One of the
orbit starters may be taken as {0,7/3,2n/3}. Corresponding to this starter
we do not use a copy of G} or G? but instead a black loop G* with a single
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vertex z* and its edge labelled n/3. The remainder of the argument is similar
to that previously given, with obvious modifications. O

Corollary 4.2.1 If n =1 or 3 (mod 6), n > 3 and k|n, then every cyclic
STS(n) has a nonorientable upper embedding having an automorphism which
15 the product of disjoint cycles of length k.

Proof: If ¢ is the cyclic automorphism guaranteed by Theorem 4.2, and if
kl = n, then ¢! is a product of disjoint cycles of length k. O

5 Automorphisms with one fixed point

Our first Theorem in this Section deals with the orientable case and shows
that the situation regarding automorphisms with a single fixed point is quite
different to that described in Theorem 3.2 for automorphisms without a fixed
point.

Theorem 5.1 Suppose that S is an STS(n) with an automorphism ¢ having
a single fized point and | cycles each of length k, where k is odd and n =
kl+1. Then there exists an orientable upper embedding of S having ¢ as an
automorphism.

Proof: Suppose that the points of S are 00, o, (1<a <, 0<p<k-1),
and that

é=(00)(To 11 oo Lo-)(20 20 -r 2ct) oon (o by -v. Loo).

The set of points {ayp, a1, ..., az_1} will be described as the o group. Since
n = kl+1 and k, n are odd, ! must be even. There can be no triple {oo, ¢, oy }
in S because such a triple would imply the existence of a triple {oo, ag, ctog—p}
also in S, giving 2¢ — p = p (mod k), a contradiction. Thus all triples in S
containing co must contain points from two distinct groups. Without loss of
generality, we may assume that a set of starters for such triples is

{{OO, 10, 20}, {OO, 30, 40}, faey {OO, (l — 1)0, lo}}

Corresponding to these starters, we construct a planar embedding of a graph
G having vertices 00,1,2,...,[ as shown in Figure 11. We label the edges of
G which are not incident with oo with the value 0.
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Figure 11: Planar embedding of G.

Now add the remaining starters for .S, one at a time, to this embedding in
the following manner. Suppose firstly that {c,, 84,7} is a starter for a full
orbit (i.e. an orbit of length £). If @, 3,y are distinct then we add the triangle
(o, B,7) (or (e, 7, B) in the manner described in the proof of Theorem 2.1.
If « = 8 # 7, the insertion method described in Theorem 2.1 is adjusted by
identifying o and 8 as shown in Figure 12.

a=p

14

Figure 12: Inserting a black triangle with o = S.
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We proceed in a similar fashion if « = v # Sorif 8 = v # o If
o = 3 = v, the insertion method is further adjusted by identifying all three
vertices a, 8 and 7 (see the embedding of G} in Figure 9). In each of these
cases the (orientable) genus of the embedding is increased by 1 and we label
the directed edges of the black triangle with elements of the group Z; as
shown in Figure 13.

Figure 13: Edge labels on the triangle (o, 8, 7).

Secondly consider a starter for a one-third orbit (i.e. an orbit of length
k/3) - this is only possible if 3|k. If such a starter is present, it may be
assumed to have the form {a, /3, cvar/3}. Corresponding to this we insert
a black loop rooted at « into the white face and label the edge of this loop
with the value k£/3. The addition of such a loop leaves the genus of the
embedding unaltered.

After all the starters have been added to G, we obtain a multigraph H
having a cellular face 2-coloured embedding whose faces are black triangles,
(possibly) black loops, and one large white face incident with all the edges of
H. Apart from those edges incident with oo, all the edges of H are labelled
with elements of Z;.

Consider the rotation at co as shown in Figure 11 above. Insert additional
edges 23,45, ...,11, thereby forming [/2 white triangles and shortening the
boundary of the large white face. Then delete the point oo, all (open) edges
incident with oo and all (open) triangles, both black and white, incident
with oo, from the embedding. In effect these operations remove a cap from
the surface embedding of H, leaving a hole whose boundary is the l-cycle
(123---1). It is convenient to consider this hole as being filled by an [-gon in
a third colour, say grey. Choose any one unlabelled directed edge of this I-gon
and give this edge the label +1; the choice of sign is determined below. For
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the sake of definiteness in subsequent diagrams we will assume that this edge
is [1 and is labelled +1. Label all the remaining unlabelled edges with 0. If H’
denotes the resulting graph, then Figure 14 shows part of the corresponding
embedding of H' which has been constructed.

Figure 14: The embedding of H'.

The vertices of H' are the points 1,2,...,I. The number of edges of
H', |E(H')|, is given by the number of pure and mixed differences on the
set {{10, 11, C ey 1k—1}7 {20, 21, “as 72k—1}7 Caey {lo, ll, C ey lk—l}}, phlS l/2 This
gives

(k=11  ki(l-1) 1 kP

EH)| = = .
|E(H)] 5 T Ty T

With appropriate directions, the sum modulo k£ of the edge labels around
each black triangle is 0, around any black loop is k/3, around the grey face
is 1, and around the white face is +1 + km/3 where the integer m depends
on the number of loops. The =+ sign is determined by the requirement that 3
should not be a divisor of the sum of the edge labels around the white face,
so that this sum is coprime with k.

We now lift the graph H' and its embedding using the edge labels to
form a voltage assignment in the group Z;. The resulting black faces are all
triangles and correspond to those triples of s which do not contain the point
oo. The white face lifts to a white face incident with all k2I?/2 edges of the
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lifted graph and the grey face lifts to a grey kl-gon as illustrated in Figure
15.

Figure 15: The grey kl-gon.

We next insert a vertex oo into the interior of this face and join it by
kl new edges to all the boundary vertices. We then remove the kl/2 al-
ternate edges 2039, 4090, --.,lk—11p to form a graph K with an associated
embedding. Figure 16 shows part of the embedding of K. The triangles
(00, 19, 20), (00, 30,40), - - -, (00, (I = 1)g_1,lx_1) are coloured black and that
part of the surface previously lying in the triangles (oo, 24, 3p), (00, 49, 50),
..oy (00,1;_1, 1p) is re-coloured white.

It is easy to see that K is a complete graph on kl + 1 = n vertices and
that the black triangular faces of the embedding correspond precisely to the
triples of S. The boundary of the white face contains every edge of K exactly
once and the face itself is cellular. Thus K and the associated embedding
form an orientable upper embedding of S.

We claim that ¢ is an automorphism of this embedding. In all cases,
a cellular face 2-coloured embedding in an orientable surface is completely
determined by the oriented faces of that embedding. From the construction
given above it is clear that ¢ preserves the black faces of the embedding,
including their orientations. To prove that ¢ is an automorphism of the em-
bedding, it is therefore sufficient to establish that ¢ preserves the white face
and its orientation. It is certainly the case that in the lift of the embedding
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Figure 16: The embedding of K.

of H', ¢ preserves the white face of that embedding, including its orientation.
It is then easy to see that the modified white face in the embedding of K,
obtained by deletion of the edges 2430, 4050, - - -, lx—11¢ and their replacement
by the edges 2¢00, 003y, 4900, 00Dy, . . ., lx_100, 001y as illustrated in Figure
16, is still invariant under ¢. O

The second Theorem in this Section extends the previous result to the
nonorientable case.

Theorem 5.2 Suppose that S is an STS(n) with an automorphism ¢ having
a single fized point and | cycles each of length k, where k is odd and n =
kl + 1. Then there exists a nonorientable upper embedding of S having ¢ as
an automorphism.

Proof: The proof follows closely that of Theorem 5.1. The significant change
is that one of the full orbit starters is selected for special treatment. Without
loss of generality we may take this full orbit starter to be {1¢,21,7,} and
corresponding to this starter we add the triangle (1,2,v) or (2,1,7) using
two crosscaps rather than one handle. If v # 1, 2, we do this using the method
illustrated in Figure 4, replacing u,v,w by 1,2, or 2,1, as appropriate.
If v =1 or 2, then identify the corresponding point u or v in Figure 4 with
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the point w. The directed edges of this special triangle are still labelled with
elements of the group Zj; as in Figure 13.

The special triangle contributes +2 (mod k) to the sum of the edge labels
around the white face. With other edge labels assigned as before and with an
appropriate choice of direction around each face, the directed sum modulo &
of the edge labels around each black triangle is 0, around any black loop is
k/3, around the grey face is 1, and around the white face is +1 + 2 + km/3
where the integer m depends on the number of black loops. The + sign on
the £1 term is again selected so that 3 is not a divisor of the sum of the edge
labels around the white face, so that this sum is coprime with .

The remaining changes to the proof of Theorem 5.1 necessary to establish
Theorem 5.2 are straightforward and mainly consist of modifying references
to orientability. 0
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