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Abstract

A Hamiltonian embedding of Kn is an embedding of Kn in a surface,
which may be orientable or non-orientable, in such a way that the bound-
ary of each face is a Hamiltonian cycle. Ellingham and Stephens recently
established the existence of such embeddings in non-orientable surfaces for
n = 4 and n ≥ 6. Here we present an entirely new construction which
produces Hamiltonian embeddings of Kn from triangulations of Kn when
n ≡ 0 or 1 (mod 3). We then use this construction to obtain exponential
lower bounds for the numbers of nonisomorphic Hamiltonian embeddings of
Kn.
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1 Introduction

A Hamiltonian embedding of Kn, the complete graph of order n, is an embedding
of Kn in a surface, which may be orientable or non-orientable, in such a way that
the boundary of each face is a Hamiltonian cycle. The recent paper by Ellingham
and Stephens [5] established the existence of such embeddings in non-orientable
surfaces for n = 4 and n ≥ 6. In this paper we present an entirely new construction
which, by surgery on a surface triangulation of Kn, generates a Hamiltonian
embedding of Kn on a surface of higher genus. This novel construction may be
used to establish the existence of 2an−o(n) nonisomorphic Hamiltonian embeddings
of Kn for n ≡ 0 or 1 (mod 3), where a > 0 is a constant. For certain residue
classes of n this lower bound may be improved to 2an2−o(n2).

Ringel, Youngs and others established the existence of triangulations of Kn for
n ≡ 0 or 1 (mod 3) in the course of proving the Heawood map colouring conjecture
[11]. To elaborate briefly: if n ≡ 0, 3, 4 or 7 (mod 12) then there is a triangulation
of Kn in an orientable surface, while if n ≡ 0 or 1 (mod 3) and n 6= 3, 4 or 7, then
there is a triangulation of Kn in a non-orientable surface. In a triangulation, each
face is as small as possible. At the opposite extreme, for every n there exists an
embedding of Kn having a single face (see, for example, [9]). Around this single
face every vertex appears n− 1 times. The problem of constructing Hamiltonian
embeddings of Kn is intermediate between the two extremes - the face lengths
are as large as possible subject to the restriction that no vertex is repeated on the
boundary of any face.

In a Hamiltonian embedding of Kn, the number of faces is n− 1. In the non-
orientable case, Euler’s formula gives the genus as γ = (n − 2)(n − 3)/2. In the
orientable case, the genus is g = (n− 2)(n− 3)/4, which implies that n ≡ 2 or 3
(mod 4) is a necessary condition for the embedding.

We assume that the reader is familiar with the basic terminology and methods
of topological graph theory, such as may be found in [9, 11], in particular the
representation of embeddings by rotation schemes.

2 The construction

As remarked above, for n ≡ 0 or 1 (mod 3), there exists a triangulation of Kn

in a surface. Our construction starts with any such triangulation of Kn; whether
the triangulation is in an orientable or non-orientable surface is immaterial. To
avoid trivial cases we assume that n ≥ 4.

Construction 2.1
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Take a triangulation of Kn on the vertex set {∞, a1, a2, . . . , an−1} and, without
loss of generality, take the rotation scheme to have the following form.

∞ : a1 a2 a3 a4 . . . an−2 an−1

a1 : ∞ a2 b1,1 b1,2 . . . b1,n−4 an−1

a2 : ∞ a3 b2,1 b2,2 . . . b2,n−4 a1

...
...

...
ai : ∞ ai+1 bi,1 bi,2 . . . bi,n−4 ai−1

...
...

...
an−1 : ∞ a1 bn−1,1 bn−1,2 . . . bn−1,n−4 an−2

where, for each i = 1, 2, . . . , n − 1, (bi,1 bi,2 . . . bi,n−4) is some permutation of
{a1, a2, . . . , an−1} \ {ai−1, ai, ai+1}, with subscript arithmetic modulo n− 1.

From the n lines of the rotation scheme, create n − 1 Hamiltonian cycles by
discarding the first line and, for each i, replacing the line corresponding to ai by
the cycle Ai = (∞aiai+1bi,1bi,2 . . . bi,n−4ai−1). It is easy to see that these cycles
form a Hamiltonian decomposition of 2Kn. The Hamiltonian face corresponding
to Ai is formed from the triangular faces that comprise the rotation at ai in
the original triangulation, with the triangle (∞ ai ai+1) removed. It remains to
show that these Hamiltonian faces may be sewn together along common edges
to produce a Hamiltonian embedding of Kn. In order to prove this, it is only
necessary to prove that the resulting rotation about any vertex comprises a single
cycle of length n− 1, rather than a set of shorter cycles with total length n− 1.
Note that a section of a cycle boundary (. . . a b c . . .) gives rise to a part of the
rotation about b having the form b : . . . c a . . . (of course, the direction of the
rotation at b is not determined).

Consider first the point ∞. The rotation about this point obtained from the
Hamiltonian cycles is

∞ : a1 a2 . . . an−1

which is a single cycle of length n− 1.
Consider next any of the remaining points, say ai. In the original triangulation,

the rotation

ai : ∞ ai+1 bi,1 bi,2 . . . bi,n−4 ai−1

implies that, in this triangulation, the rotations about ai+1, bi,1, bi,2, . . . , bi,n−5,
bi,n−4, ai−1 contain the following sequences.

ai+1 : . . . bi,1 ai ∞ . . .
bi,1 : . . . bi,2 ai ai+1 . . .
bi,2 : . . . bi,3 ai bi,1 . . .
...

...
bi,n−5 : . . . bi,n−4 ai bi,n−6 . . .
bi,n−4 : . . . ai−1 ai bi,n−5 . . .
ai−1 : . . . ∞ ai bi,n−4 . . .
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These sequences for ai+1, bi,1, bi,2, . . . , bi,n−4 appear in the corresponding Hamil-
tonian cycles, while for Ai−1 and Ai we have

Ai−1 = (. . . ai−1 ai bi−1,1 . . .) = (. . . ai−1 ai bi,n−4 . . .),
Ai = (. . . ∞ ai ai+1 . . .).

These sequences enable us to construct the rotation about ai in the embedding
of the Hamiltonian cycles. For n even it is

ai : ai+1 ∞ bi,1 bi,3 bi,5 . . . bi,n−5 ai−1 bi,n−4 bi,n−6 . . . bi,2,

while for n odd it is

ai : ai+1 ∞ bi,1 bi,3 bi,5 . . . bi,n−4 ai−1 bi,n−5 bi,n−7 . . . bi,2.

In either case, this is a cycle of length n − 1, and this completes the verification
of the construction.

To consider the question of orientability, delete the point ∞ and the edges
incident with ∞ from the embedding to obtain a single face embedding of Kn−1

with boundary

(a1a2b1,1b1,2 . . . b1,n−4an−1a1bn−1,1bn−1,2 . . . bn−1,n−4an−2an−1 . . . b2,n−4).

If, in the order given, any subsequence of the form ajaj+1 appears twice in this
boundary then the embedding of Kn−1, and hence that of Kn, must be non-
orientable. When the original triangulation of Kn is orientable this will happen
for every j = 1, 2, . . . , n − 1. This is because each directed edge ajaj+1 must
appear precisely once in one of the rotations ai : ∞ ai+1 bi,1 bi,2 . . . bi,n−4 ai−1.
Thus an orientable triangulation of Kn will, by this construction, produce a non-
orientable Hamiltonian embedding of Kn. Although it appears conceivable that a
non-orientable triangulation might produce an orientable Hamiltonian embedding
of Kn for n ≡ 3, 6, 7 or 10 (mod 12), we have no examples of this and such
situations seem likely to be rare.

3 Exponential lower bounds

In this section we establish lower bounds for the numbers of nonisomorphic Hamil-
tonian embeddings of Kn for n lying in certain residue classes. The supporting
surface may be either orientable or nonorientable. We start with a lemma.

Lemma 3.1 A Hamiltonian embedding of Kn, n ≡ 0 or 1 (mod 3), can be ob-
tained from at most 2n distinct triangulations of Kn by means of Construction
2.1.
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Proof. Given a Hamiltonian embedding of Kn on a fixed set of n points, we check
each point in turn to see if it can play the role of the point ∞ in the construction,
and we show that, for each point, this can happen in at most two ways. So, take
a point h∗ and suppose that the rotation at h∗ in the Hamiltonian embedding is

h∗ : h1 h2 . . . hn−1

Then the Hamiltonian cycles may be taken as

Hi = (h∗ hi ji,1 ji,2 . . . ji,n−3 hi−1)

where (ji,1 ji,2 . . . ji,n−3) is some permutation of {h1, h2, , . . . , hn−1}\{hi, hi−1}.
In order to be derived from the construction, we must either have ji,1 = hi+1

for every i = 1, 2, . . . , n− 1, or ji,n−3 = hi−2 for every i = 1, 2, . . . , n− 1. In the
former case, the rotations in the triangulation (assuming it exists) are determined
as

h∗ : h1 h2 . . . hn−1

hi : h∗ hi+1 ji,2 ji,3 . . . ji,n−3 hi−1 (i = 1, 2, . . . , n− 1).

In the latter case the rotations in the triangulation (assuming it exists) must be

h∗ : h1 h2 . . . hn−1

hi : h∗ hi−1 ji+1,n−4 ji+1,n−5 . . . ji+1,1 hi+1 (i = 1, 2, . . . , n− 1).

The result now follows.
We now prove a result from which lower bounds may easily be deduced.

Theorem 3.1 If there exist M nonisomorphic triangulations of Kn, n ≡ 0 or
1 (mod 3), then there exist at least M/4n2(n − 1) nonisomorphic Hamiltonian
embeddings of Kn.

Proof. From M nonisomorphic triangulations of Kn, it is possible to construct
at least Mn!/2n(n − 1) distinct triangulations of Kn on a common point set
by applying all possible n! permutations of the points and noting that the largest
possible order of an automorphism group of such a triangulation is 2n(n−1). From
each of these distinct triangulations we may construct a Hamiltonian embedding of
Kn using Construction 2.1. By Lemma 3.1, each such embedding can be obtained
from at most 2n distinct triangulations. Hence there are at least Mn!/4n2(n− 1)
distinct Hamiltonian embeddings on a common point set. The largest possible
size of an isomorphism class for such an embedding is n!. Hence there are at least
M/4n2(n− 1) nonisomorphic Hamiltonian embeddings of Kn.

Corollary 3.1.1 For n ≡ 0 or 1 (mod 3) there are at least 2n/6−o(n) nonisomor-
phic Hamiltonian embeddings of Kn.

Proof. For n ≡ 0 or 1 (mod 3), Korzhik and Voss [10] established that there
are at least 2n/6−o(n) nonisomorphic triangulations of Kn. The result follows
immediately from this and the Theorem.
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Corollary 3.1.2 For n ≡ 1, 7 or 9 (mod 18) there are at least 2n2/54−o(n2) non-
isomorphic Hamiltonian embeddings of Kn.

Proof. Firstly we note that for each n ≡ 3 (mod 6) there is a face 2-colourable
triangulation of Kn having a parallel class of faces (that is, a set of faces covering
all n vertices, each precisely once) in each colour class.

The orientable triangulations of Kn, n ≡ 3 (mod 12), given by Ringel [11] are
face 2-colourable because the current graphs employed to construct these embed-
dings are bipartite. The Steiner triple systems involved in these embeddings are
those produced by the Bose construction (see, for example, [3]) from the group
(Zn/3,+), and indeed a direct construction of the embeddings from these Steiner
systems is given in [6]. The Bose construction produces Steiner triple systems
having a parallel class, and so these orientable triangulations each contain a par-
allel class of faces in each colour class. Similarly, the nonorientable triangulations
of Kn, n ≡ 9 (mod 12), also given by Ringel [11] are face 2-colourable since the
cascades used to construct them are bipartite. As shown in [1], the Steiner triple
systems involved here are also copies of Bose systems and hence the embeddings
again have a parallel class of faces in each colour class. In fact, Ducrocq and Ster-
boul [4] also give a direct construction producing face 2-colourable triangulations
of Kn in nonorientable surfaces for all n ≡ 3 (mod 6), n ≥ 9, with the Steiner
triple systems involved being copies of Bose systems.

Secondly we note that for n ≡ 1 (mod 6), Grannell and Korzhik [8] proved
that there is a face 2-colourable triangulation of Kn in a nonorientable surface.
And we also remark that for all n ≡ 7 (mod 12), Youngs [12] gives a variety of
embeddings, including face 2-colourable triangulations.

Having made these prelimnary observations, we can now use two recursive
constructions to produce our lower bounds.

Applying the n → 3n− 2 construction for triangular embeddings given in [2]
establishes that for n ≡ 1 or 7 (mod 18) there are at least 2n2/54−o(n2) noniso-
morphic triangulations of Kn.

The paper [7] gives an n → mn construction for orientable triangulations but,
as remarked in that paper, the method is easily extended to the nonorientable
case. In the case m = 3 it requires a face 2-colourable triangulation of K9 and a
parallel class of faces in one of the colour classes of the original Kn triangulation.
This construction then establishes the same lower bound (2n2/54−o(n2)) on the
number of triangulations of Kn for n ≡ 9 (mod 18).

Again the result follows immediately from these estimates and the Theorem.

Corollary 3.1.3 The constant 1/54 that appears in the exponent in Corollary
3.1.2 may be improved to 2/81 for n ≡ 1, 19, 25 or 27 (mod 54)

Proof. This follows by reapplying the n → 3n − 2 and n → 3n recursive con-
structions for triangulations as indicated in [2] and [7].
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Remarks.
A new recursive construction for triangulations by two of the present authors,

as yet unpublished, takes a face 2-colourable triangulation of Kn and produces a
face 2-colourable triangulation of K3n without the need for the original triangu-
lation to have a parallel class. This enables us to extend the result of Corollary
3.1.2 to include n ≡ 3 (mod 18) and, by reapplication, to extend the result of
Corollary 3.1.3 to include n ≡ 3, 7, 9 and 21 (mod 54).

It is also possible to use some of the other constructions given in [7] to obtain
lower bounds of the form 2an2−o(n2) for the number of Hamiltonian embeddings
of Kn for certain values of n within the remaining residue classes.
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gulations, J. Graph Theory 39 (2002), no. 2, 87-107.

[8] M. J. Grannell and V. P. Korzhik, Nonorientable biembeddings of Steiner
triple systems, Discrete Math. 285 (2004), 121-126.

[9] J. L. Gross and T. W. Tucker, “Topological Graph Theory”, John Wiley,
New York, 1987.

[10] V. P. Korzhik and H-J. Voss, Exponential families of nonisomorphic nonori-
entable genus embeddings of complete graphs, J. Combin. Theory Ser. B, 91
(2004), 253-287.

9



[11] G. Ringel, “Map color theorem”, Springer-Verlag, New York and Berlin,
1974.

[12] J. W. T. Youngs, The mystery of the Heawood conjecture, in: “Graph Theory
and its Applications” (B. Harris, Ed.), Acad. Press, 1970, 17-50.

10


