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When a graph is embedded in a surface, the faces that result can be regarded
as the blocks of a combinatorial design. The resulling design may be thought
of as being embedded in the surface. This perspective leads naturally lo a
number of fascinating questions aboult embeddings, in particular aboul em-
beddings of Steiner triple systems and related designs. Can every Sleiner
triple system be embedded, can every pair of Steiner triple systems be biem-

bedded, and how many embeddings are there of a given type?

1 Introduction

In this section we define the terminology taken from combinatorial design
theory and summarize some of the basic results. Before doing this, we re-

mark that the study of the relationship between block designs and graph



embeddings dates back to Heffter, who in 1891 realized the connection be-
tween twofold triple systems and surface triangulations. Later work in this
field was done by Emch [27], Alpert [2], White [57], Anderson and White [6],
Anderson [4], [5], Jungerman, Stahl and White [40], Rahn [54], and more
recently White [58]. These authors considered various aspects of the above
relationship, including embeddings into closed surfaces, pseudosurfaces and
generalized pseudosurfaces, embeddings of balanced incomplete block de-
signs (BIBDs) with block size greater than 3, and the symmetry properties
of the resulting embeddings. However, the material we survey in this chapter
is mainly, although not exclusively, concerned with embeddings of Steiner
triple systems in both orientable and nonorientable surfaces. Embeddings
in pseudosurfaces and generalized pseudosurfaces will not be considered.

The reader is assumed to be familiar with embeddings of graphs in both
orientable and nonorientable surfaces, and the description of such embed-
dings by means of rotation schemes. Some familiarity with the use of cur-
rent and voltage graphs in the construction of embeddings is assumed (see
Chapters 1 and 2). When referring to the number of embeddings (or other
combinatorial objects), we mean the number of nonisomorphic embeddings
(or objects) of the specified type.

In order to reduce the number of references, particularly for results in
design theory, we give as secondary sources the books Triple Systems by
Colbourn and Rosa [21] and The CRC Handbook of Combinatorial Designs
edited by Colbourn and Dinitz [20].

The principal item required from design theory is the following definition.
A Steiner triple system of order n is a pair (V, B) where V' is an n-element
set (the points) and B is a collection of 3-element subsets (the blocks) of V'

such that each 2-element subset of V is contained in exactly one block of



B. 1t is well known that a Steiner triple system of order n (briefly STS(n))
exists if and only if n = 1 or 3 (mod 6). If, in the definition, the words
“exactly one block” are replaced by “exactly two blocks”, then we have a
twofold triple system of order n, TTS(n) for short. A twofold triple system
of order n exists if and only if n = 0 or 1 (mod 3). If a TTS(n) has no
repeated blocks, it is said to be simple. A (possibly non-simple) TTS(n)
may be obtained by combining the block sets of two STS(n)s which have a
common point set. An STS(n) can be considered as a decomposition of the
complete graph K, into triangles (copies of K3); likewise a TTS(n) can be
considered as a decomposition of the twofold complete graph 2K, (in which
there are two edges between each pair of vertices) into triangles.

Up to isomorphism, there is just one STS(n) for n = 3,7,9, while there
are two for n = 13, precisely one of which is cyclic (that is, has an auto-
morphism of order 13). There are 80 STS(15)s, of which two are cyclic, and
there are 11084 874 829 STS(19)s [41], of which four are cyclic. The number
of nonisomorphic STS(n)s is n? (1o a5 1 — oo [59] and, again speak-
ing asymptotically, almost all of these have only the trivial automorphism
group [7].

A transversal design of order n and block size 3 is a triple (V, G, B) where
V is a 3n-element set (the points), G is a partition of V into 3 parts (the
groups) each of size n, and B is a collection of 3-element subsets (the blocks)
of V such that each 2-element subset of V is either contained in exactly
one block of B or in exactly one group of G, but not both. A transversal
design of order n and block size 3 is denoted by TD(3,n); since we consider
only block size 3, we will simply speak of a transversal design of order n.
A TD(3,n) may be considered as a decomposition of a complete tripartite

graph K, ,, », into triangles, with the tripartition defining the groups of the



design. A TD(3,n) is equivalent to a Latin square of side n in which the
triples are given by (row, column, entry).

A Mendelsohn triple system of order n is defined in a similar fashion to
an STS(n) except that triples and pairs are taken to be ordered, so that the
cyclically ordered triple (a, b, ¢) “contains” the ordered pairs (a, b), (b, ¢) and
(¢,a). A Mendelsohn triple system of order n, MTS(n) for short, exists if
and only if n = 0 or 1 (mod 3) and n # 6. An MTS(n) may be considered
as a decomposition of a complete directed graph on n vertices into directed
3-cycles. If the directions are ignored, then an MTS(n) gives a TTS(n).

To see the connection between design theory and graph embeddings,
consider the case of an embedding of a complete graph K, in an orientable
surface in which all the faces are triangles. Taking these triangles with a
consistent orientation to form a set of blocks, the faces of the embedding
yield a Mendelsohn triple system of order n. Similarly, a triangulation of
K, in a nonorientable surface gives a twofold triple system of order n.

The precise correspondence between such systems and triangulations is
given in [48] and involves pseudosurfaces. Our interest is in the questions:
which Mendelsohn (respectively, twofold) triple systems occur as triangu-
lations of K, in orientable (respectively, nonorientable) surfaces? The fol-
lowing answer is given in [24]. Let (V,B) be a TTS(n). For each z € V,
define a neighbourhood graph G: its vertex set is V' \ {«}, and two vertices
y and z are joined by an edge if {z,y, 2z} € B. Clearly, G, is a union of dis-
joint cycles. A T'T'S(n) occurs as a triangulation of a nonorientable surface
if and only if every neighbourhood graph consists of a single cycle. If the
blocks of the TTS(n) can be ordered to form an MTS(n), then the surface
is orientable. We now move on to the much more interesting relationship

between embeddings and Steiner triple systems.
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2 Steiner triple systems and triangulations

Let (V,B) be an STS(n) and let K,, be the complete graph with vertex set
V. By an embedding of (V,B) in a surface S (which may be orientable or
nonorientable) we mean any embedding ¢ : K,, — S with the property that
for each {u,v,w} € B, the 3-cycle (uvw) constitutes the boundary of some
face of ¢. For the sake of convenience, we abbreviate the above definition
by just saying that in the embedding ¢, every triple of B is facial. Since
each edge of K, belongs to precisely one facial triple, the faces of ¢ can be
properly 2-coloured. Usually we colour the facial triples of B black and the
remaining faces white.

Conversely, let ¥ : K, — S be an embedding whose faces can be
properly 2-coloured (black and white) with all black faces bounded by 3-
cycles. Then ¢ is an embedding of some STS(n). Indeed, let B be the
collection of the 3-subsets of V = V(K,,) that correspond to the boundary
triangles of black faces. Since our face colouring is proper, no edge is on the
boundary of just one face. Thus, each edge of K, is incident to precisely
one black face, and so each pair of elements of V' belongs to precisely one
3-subset of B. Hence (V, B) is an ST'S(n).

A particularly interesting case occurs when the family of all white faces
constitutes an STS as well. Let (V,B) and (V,B’) be two STSs on a com-
mon point set V with [V| = n. We say that the pair {B, B'} is biembeddable
(or that the two STSs are biembeddable) in some surface S if there is an
embedding ¢ of (V, B) whose white faces are 3-cycles constituting the blocks
of an STS isomorphic to (V,B’). In such circumstances, ¢ is called a biem-
bedding. Briefly, in a biembedding ¢ of the pair {B, B}, the facial triples

of B are black while those corresponding to B’ are white. Necessarily, the



biembedding ¢ is then a triangular embedding of a complete graph on n
vertices and the surface has minimum genus. Conversely, each triangular
embedding ¥ : K,, — S whose faces can be properly 2-coloured induces a
biembedding of a pair of STSs. In the orientable case we must then have
n=0,3,4 or 7 (mod 12) (see Chapter 1) and combining this with the exis-
tence condition for STSs, we see that a pair of STSs on n points can have
an orientable biembedding only if n = 3 or 7 (mod 12). A similar argument
in the nonorientable case shows that we must then have n =1 or 3 (mod 6).

We illustrate these concepts in Fig. 1, which depicts a biembedding of a
pair of isomorphic STS(7)s. Specifically, B = {013, 124, 235, 346, 450, 561, 602}
and B’ = {023,134, 245, 356, 460, 501, 612}.

Fig. 1. A biembedding of STS(7) in the torus.

Because of the connection between biembeddings of STSs and face 2-
colourable triangular embeddings of complete graphs, we recall a few facts
about the latter. Constructions of minimum genus embeddings (which in-
clude triangulations) of complete graphs in orientable and nonorientable
surfaces have a rich history. They form the essential part of the solution

of the famous Heawood problem of determining the chromatic number of a



surface, or, equivalently, determining the genus of a complete graph. Most
of the solution (which also gave birth to modern topological graph theory
as treated in [38]) is due to Ringel and Youngs; we recommend Chapter 1 or
Ringel’s book [56] for details. However, the majority of the known minimum
genus embeddings of complete graphs are not face 2-colourable.

In the case when n = 3 (mod 12), the orientable embeddings of K,
found in [56] are indeed face 2-colourable. The proof technique there uses
the theory of current graphs. However, no information is yielded concerning
the STS(n)s that have been biembedded. Below, in Theorem 2.1, we outline
a proof of this result using exclusively design-theoretic methods. To our
mind this is not only simpler and more transparent, but it also positively
identifies the STS(n)s so embedded. They are those obtained from the
well-known Bose construction based on a Latin square constructed as the

square-root Cayley table of an odd-order cyclic group [18].

Theorem 2.1 If n = 3 (mod 12), then there exists a pair of biembedded

Steiner triple systems of order n in some orientable surface.

Outline of Proof. Take the additive group Z 441 and define on it the opera-
tion o by i0j = (i+7j)/2 = (28+1)(i-+j). Use the classical Bose construction
[18] to build an STS (V,B) on the point set V = Z 541 x Z3. The block
set B consists of 4s -+ 1 triples of the form (4,0), (4, 1), (4,2), ¢ € Zys41, to-
gether with 3 x (4s+ 1)2s triples of the form (i, k), (4, k), (ioj, k + 1), where
i,J € Zys41,1# jand k € Z3.

Let n = 12¢ + 3. We define two STSs (Z,,,By) and (Z,,B;1), both
isomorphic to (V, B), using the bijections f,,, : V — Z,, m = 0,1, given by
fm(i k) = 3i+ (—1)™kt where t = 6s + 1; naturally, B,, = fn(B). On the
right side of the equation for f,,(i, k) we have i € {0,1,...,4s}, k € {0, 1,2},



and the addition is modulo n. It can easily be checked that the two STSs
are disjoint.

It remains only to check that the pair {By, B1} is biembeddable in an
orientable surface. This is routine but somewhat tedious, and we refer the

reader to the original paper [35]. [ |

We note here that a similar approach (that is, constructing triangular
embeddings of K,, using the Bose construction) can also be found in [23].
However, the proof given there, which applies to all n = 3 (mod 6), n > 9,
always produces an embedding in a nonorientable surface.

In the case n = 7 (mod 12), there are the toroidal embedding of K7 given
above and the face 2-colourable triangular embedding of Kig given in [57]
(see also [49]). Youngs [61] produced orientable triangular embeddings of K,
by means of current assignments on ladder graphs. Amongst the variety of
ladder graphs used in [61], it is possible to find, for each n = 7 (mod 12), one
which is bipartite [61, pp. 39-44]. Anderson [5] points out the significance of
a bipartition; for our purposes this ensures that the corresponding triangular
embedding is face 2-colourable. Thus it is known that there are orientable
biembeddings for all n = 7 (mod 12). But here also, no information is
produced about the STSs that have been embedded.

In Section 3 we describe a recursive construction, a topological analogue
of a well-known design-theoretic construction, which shows that such em-
beddings exist for half of the residue class n =7 (mod 12). This particular
method has the additional advantage that it produces a large number of new

embeddings, as will also be described in the next section.



3 Recursive constructions

The recursive construction that appears in Theorems 1 and 2 of [34] in
a topological form, and again in Theorems 2 and 3 of [35] in a design-
theoretical form, takes a biembedding of two STS(n)s and produces a biem-
bedding of two STS(3n — 2)s. Here we give an informal description of this
construction and then discuss extensions and related constructions.

The construction commences with a given biembedding of two STS(n)s,
which is equivalent to a face 2-colourable triangulation of K,,. We fix a
particular vertex z* of K, and, from the embedding, we delete z*, all edges
incident with 2* and all the triangular faces incident with z*. The result-
ing surface S now has a hole whose boundary is an oriented Hamiltonian
cycle in G = K, — z* ~ K, 1. We next take three disjoint copies of the
surface S, all with the same colouring and, in the orientable case, the same
orientation; we denote these by S°,S! and S$2, and use superscripts in a
similar way to identify corresponding points on the three surfaces. For each
white triangular face (uvw) of S, we “bridge” S°,S! and S? by gluing a
torus to the three triangles (u‘v*w?) in the following manner. We take a
face 2-colourable triangulation in a torus of the complete tripartite graph
K333 with the three vertex parts {u’}, {v*} and {w*} and with black faces
(uiw'v?), for i = 0,1,2 (see Fig. 2). In the orientable case, the orientation
of the torus must induce the opposite cyclic permutation of {uf,v¢, w'} to
that induced by the surfaces S%; this is important for the integrity of the
gluing operation where black faces (u‘w'v?) on the torus are glued to the

white faces (u‘v'w?) on S°, S, and S?, respectively.
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Fig. 2. Toroidal embedding of K3 3 3.

After all the white triangles have been bridged we are left with a new
connected triangulated surface with a boundary. We denote this surface
by 3. It has 3n — 3 vertices and the boundary comprises three disjoint
cycles, each of length n — 1. In order to complete the construction to obtain
a face 2-colourable triangulation of Kj3,_o (which gives a biembedding of
two STS(3n — 2)s), we must construct an auxiliary triangulated bordered
surface S and paste it to ¥ so that the three holes of ¥ are capped. To do
this, suppose that D = (ujus ... u,—1) is our oriented Hamiltonian cycle in
G = K, — z*. Since n is odd, each alternate edge of D is incident with a
white triangle in S; let these edges be usts, ugtis, . .., Up_1U1.

The surface S has, as vertices, the points u} for i = 0,1,2 and j =
1,2,...,n—1 together with one additional point which we call co. Suppose
initially that n = 3 (mod 12). We may then construct S from the oriented
triangles listed in Table 1. The reason for the clagsification of the triangles
into types 1 and 2 will become apparent shortly. Precisely how S is con-

structed is described in more detail in [34], where it is also proved that the
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final graph that triangulates the final surface is indeed Ks;,_o.

Type 1 oriented triangles (j = 1,3,5,...,n — 2)

White Black

o
N
—_

(U2U?+1“§+1) (U??@HOO) (ujusuq)

~
~
~

—_
o
[\

(U}?@HU?H) (U;Uiﬂoo) (ujus;uf4)

~
~
~

—_

(Wiudyujn)  (u5ugy00) | (ufujugy)

~

(“9“;“3) (“9+1“§+1“§+1)

Type 2 oriented triangles (j = 1,3,5,...,n — 2)

Black
(U5 41147200)

(u}+1u;+2 o0)

(U§+1“§+2 o0)

(All subscripts are modulo n — 1.)

Table 1.

The importance of the condition n = 3 (mod 12) is that it ensures that
the resulting surface is a closed surface and not a pseudosurface. Equiva-
lently, it ensures that the neighbourhood graph of the point co comprises a
single cycle of 3n — 3 points rather than a union of shorter cycles. As given
above, the construction does not work for n = 7 (mod 12); however we can
modify it by taking a single value of j € {1,3,5,...,n — 2} and applying a
“twist” to the type 1 triangles associated with this value of j. To do this,

we replace them by those shown in Table 2.
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Oriented triangles

White Black

—_

(Wgugyus ) (ujudi 00) | (ujujug,y)

~

—_
N
o

(U}?@HU?H) (U}u9+100) (wjuiug q)

~
~
~

(wiud g ) (ufugg00) | (ujujugy,)
(ujudu;) (U5 115 41U 41)
Table 2.

Again, for an explanation of why this works, see [34]. It is also there
remarked that we may apply any number k of such twists provided that
k=0or 1 (mod 3) if n =3 (mod 12), and k = 1 or 2 (mod 3) if n =7 (mod
12).

We now make two observations about the construction that enable us to
extend it. The proof of the original construction given in [34] continues to
hold good for the extended version with obvious minor modifications.

Firstly, the toroidal embedding of K3 3 3 given in Fig. 2 may be replaced
by one in which the cyclic order of the three superscripts is reversed. The
reversed embedding of K333 is isomorphic to the original but is labelled
differently (see Fig. 3). For each white triangular face (uvw) of S we may
carry out the bridging operation across SV, S' and S? using either the orig-
inal K333 embedding or the reversed embedding. The choice of which of

the two to use can be made independently for each white triangle.
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Fig. 3. Reversed toroidal embedding of K3 3 3.

Secondly, it is not necessary for S°, ST and S? to be three copies of the
same surface S. All that the construction requires is that the three surfaces
have the “same” white triangular faces and the “same” cycle of n — 1 points
around the border, all with the “same” orientations. To be more precise,
by the term “same” we mean that there are mappings from the vertices of
each surface onto the vertices of each of the other surfaces that preserve the
white triangular faces, the border and the orientation. The sceptical reader
may feel dubious that we can satisfy this requirement without in fact having
three identically labelled copies of a single surface S. However, we shall see
that not only is it possible to arrange this by other means, but it can often

be done in many ways.

The main result of [17] is the following:

Theorem 3.1 For n = 7 or 19 (mod 36), there are at least 2/54=0()
nontsomorphic face 2-colourable triangulations of the complele graph K,,

and hence biembeddings of STS(n)s, in an orientable surface.

13



The basic idea of the proof is to use the construction described above with
three fixed copies of the same embedding of K, and a fixed auxiliary surface
S, but varying the toroidal bridges. Since there are (n —1)(n —3)/6 bridges
and two choices for each bridge, we may construct 2(*=D(=3)/6 differently
labelled embeddings of K3,_o. From this it is possible to prove that, if S
is suitably chosen, these embeddings are actually nonisomorphic. Thus the
number of nonisomorphic embeddings of K3, o is at least on?/ 6_0("), and

replacing 3n — 2 by n gives the result cited above.

We now make an observation about the black triangles of the embeddings
generated as described in Theorem 3.1. In any two such embeddings, the
black triangles are identical and have the same orientations. To see this,
note that the black triangles come from three sources. Those lying on the
surfaces S°, 51 and S? are unaltered during the construction and therefore
are common to both embeddings. Those lying on the K3 33 bridges are the
same whether or not the bridges are reversed (see Figs. 2 and 3). Those
lying on the surface S are common to both embeddings. It follows that
the 2(n=1(?=3)/6 nonisomorphic embeddings of Ks,_o all contain identical
black triangles with the same orientations. In particular, the STS(3n — 2)
defined by the black triangles is identical for each of these nonisomorphic
embeddings.

We next show how, by reapplying the construction, we can improve the
exponent in Theorem 3.1 for some residue classes. In each of the embeddings
of K3,_2, reverse the colours. Also, from each, delete the point co together
with all its incident edges and triangular faces. This produces a plentiful
supply of nonisomorphic surfaces S* on which to base a reapplication of the

construction in order to produce embeddings of Kg,_g. All of these surfaces
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S¢ have the “same” white triangles and the “same” Hamiltonian cycle of
points forming the border, all with the “same” orientation. We can select
three different surfaces from this collection to form S°, ! and S? (in some
order) in (§) ways, where N = 2(=1)("=3)/6_ We again use a suitable fixed
auxiliary surface S. The K333 bridges may be selected in 2(3n=3)(3n—5)/6
different ways. Any two of the resulting embeddings of Kg,_g (obtained by
varying the surfaces 5%, St and S?, and the K3 33 bridges, but with a fixed

S) are nonisomorphic. These results lead to the next theorem.

Theorem 3.2 For n = 19 or 55 (mod 108), there are at least 227°/81-0(n)
nontsomorphic face 2-colourable triangulations of the complele graph K,,

and hence biembeddings of STS(n)s, in an orientable surface.

It is also shown in [17] that each of these embeddings has only the trivial

automorphism.

Similar results may be obtained in the nonorientable case. We form
S0, 81 and S? from three face 2-colourable embeddings (having the “same”
white triangles and the “same” cycle of points around oo) of K, in a nonori-
entable surface. The white triangles are bridged using the toroidal embed-
dings given in Figs. 2 and 3. The construction is completed, to form a
face 2-coloured triangular embedding of K3,_2 in a nonorientable surface,
by forming a cap S with k twists, in the manner previously described. We
must select k =1 or 2 (mod 3) if n =1 (mod 6), and £k =0 or 1 (mod 3) if
n =3 (mod 6).

It was stated in [17] that there is a face 2-colourable triangular embed-
ding of K, in a nonorientable surface for each n = 1 or 3 (mod 6) with

n > 9. At the time that paper was published, this does not seem to have
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been proved. However, the error was made good in [37], where the result

was established. This enables us to state the following theorem from [17].

Theorem 3.3 If n =1 or 7 (mod 18) and n > 25, then there are at least
on?/54=0(n) nontsomorphic face 2-colourable triangulations of the complete

graph K, and hence biembeddings of STS(n)s, in a nonorientable surface.

Once again we can make a colour reversal and then reapply the con-
struction to form a face 2-colourable triangular embedding of Ky, g in a
nonorientable surface. Similar arguments to those given previously lead to

the following theorem, again an amended version of a result of [17].

Theorem 3.4 Ifn=1 or 19 (mod 54) and n > 73, then there are at least
22n? /81-0(n) pomisomorphic face 2-colourable triangulations of the complete

graph K, and hence biembeddings of STS(n)s, in a nonorientable surface.

Again, all of the embeddings of Theorem 3.4 are automorphism-free.

To conclude in this section we refer to some of the results given in
[36]. One result generalizes the construction given above, and two other
recursive constructions are presented. The generalization extends the ear-
lier construction in suitable circumstances to produce biembeddings of two
STS(m(n — 1) + 1)s from those of STS(n)s. Another construction parallels
a well-known product construction for Steiner triple systems to produce a
biembedding of STS(mn)s from one of STS(n)s, again subject to certain
conditions. The third construction deals with biembeddings of transver-
sal designs, defined in an analogous manner to biembeddings of Steiner
triple systems, so that suitable face 2-colourable triangulations of K, .,

and K, m,m yield face 2-colourable triangulations of Ky ymmmn. All three
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constructions can be employed to give estimates, of a similar form to those
above, of the numbers of nonisomorphic embeddings of K,, and of K, ,, ,, for
values of n in certain residue classes. It is worth noting that face 2-colourable
triangulations of K, , », equivalent to biembeddings of transversal designs
TD(3,n), are necessarily orientable as a consequence of the tripartition.
For face 2-colourable triangulations of K,,, the estimates apply to both the

orientable and the nonorientable cases.

4 Small systems

In this section we briefly summarize the current state of knowledge about
biembeddings of STS(n)s for n = 3,7,9,13, and 15. We re-emphasize that
when referring to the number of biembeddings, we mean the number of
nonisomorphic biembeddings of the specified type. When speaking of auto-
morphisms, we include those that exchange the colour classes and, in the
orientable case, those that reverse the orientation. The case n = 3 is trivial,
since there is only one biembedding: it is orientable and has the automor-
phism group Ss. The case n = 7 is less trivial, but well known. There is
again only one biembedding: it is orientable and its automorphism group
is the affine general linear group AGL(1,7) which has order 42. In the re-
alization shown in Fig. 1, this is (¢ — az + b, a,b € GF(7),a # 0). The
automorphisms of even order exchange the colour classes but preserve the
orientation.

For n = 9 and n = 13, all biembeddings are necessarily nonorientable.
The results for n = 9, n = 13, and some of those for n = 15 were obtained
by computer search. Two fixed systems are selected, one forming the black

system and permutations of the other giving potential white systems. Since
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the black and the white systems cannot have a common triple, permutations
giving rise to a common triple are discarded. This approach facilitated
exhaustive searches in the cases n = 9 and n = 13, and partial searches in
the case n = 15. The results cited below come from [28], [10], [11], [13] and
[14], and most also appear in [§8].

For n = 9, the biembedding is unique and has the automorphism group
C3x.S3 of order 18. A realization is obtained by taking one system with block
set {012, 345,678,036, 147, 258, 048, 156, 237, 057, 138,246} and the other ob-
tained from this by applying the permutation 7 = (0 1)(2 6)(4 7)(3)(5)(8).
In this realization, the permutations m and (0 6 7)(1 8 4 3 2 5) generate
the automorphism group. The automorphisms of even order exchange the
colour classes.

There are two STS(13)s, one is cyclic and the other is not. We refer
to these here as C' and N, respectively. There are 615 biembeddings of C
with C, of which 36 have an automorphism group of order 2 and four have
an automorphism group of order 3; the rest have only the trivial automor-
phism. There are 8539 biembeddings of € with N, of which ten have an
automorphism group of order 3 and the rest have only the trivial automor-
phism. Finally, there are 29454 biembeddings of N with N, of which 238
have an automorphism group of order 2 and the rest have only the trivial
automorphism. In each case, automorphisms of order 2 exchange the colour
clagses. We also note a paper of Ellingham and Stephens [25] in which they
determine all nonorientable triangulations of K12 and K3, the latter includ-
ing all face 2-colourable triangulations, that is, biembeddings of STS(13)s.
The numbers are 182200 for Ko and 243088286 for Ki3. For Kjg there
are, in addition, 59 orientable triangulations, [3].

There are 80 nonisomorphic STS(15)s; a standard numbering and some
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of their structural features are given in [51]. A computer search has shown
that each pair may be biembedded nonorientably [14], so there are at least
3240 nonorientable biembeddings (actually, far more). Almost all of those
found have only the trivial automorphism group.

Turning to orientable biembeddings of the STS(15)s, we firstly observe
that there are precisely three systems with an automorphism of order 5.
Fach of these systems has an embedding with itself having an automor-
phism group of order 10. One of these was originally given by Ringel [56]
and can also be obtained from Theorem 2.1. The other two may be obtained
by Ringel’s method from current graphs [11]. In each case the automorphism
of order 2 has a single fixed point, exchanges the colour classes, but preserves
the orientation. In [15] a computer search for biembeddings of the 80 sys-
tems, each with itself, was based on examining all possible automorphisms
of order 2 with a single fixed point and exchanging the colour classes. As a
result, it was shown that 78 of the 80 systems have orientable biembeddings
of this type. The exceptions are the systems numbered #2 and #79 in the
standard listing. In the case of #2, it was further shown in [15] not to have
an orientable biembedding with itself, and in [13] it was also shown that #1
cannot be orientably biembedded with #2. Again in [15], it was shown that
if #79 biembeds with itself, then the biembedding can only have the triv-
ial automorphism group. However more recent and, at the time of writing,
unpublished work by the present authors and Martin Knor has disposed of

this possibility. Hence we can state the following theorem.

Theorem 4.1 Of the 80 nonisomorphic STS(15)s, 78 have a biembedding
with themselves in an ortentable surface. The two exceplions which have no

such biembedding are #2 and #79 in the standard listing.
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An orientable biembedding of system #79 with system #77 having an
automorphism of order 3 is also given in [15] and is the first known example
of a biembedding of a pair of nonisomorphic STS(15)s, though as described
in Section 5, there are already many known biembeddings of pairs of noniso-
morphic STS(n)s for n = 19 and n = 31. Again, with Martin Knor, we have
established a programme to find further such biembeddings. Of particular
interest is whether there exists a biembedding of system #2 with some other
system. In fact we have discovered such a biembedding and hence can state

another theorem.

Theorem 4.2 Fach of the 80 nonisomorphic STS(15)s has a biembedding

with some STS(15) in an orientable surface.

5 Cyclic embeddings

A triangular embedding of a graph in a surface may be described by means
of a rotation scheme (see Chapter 1). Given a vertex x of the graph, the
rotation about # comprises the cyclically ordered list of the vertices adjacent
to x, taken in the order in which they appear around x in the embedding.
The rotation scheme for the embedding is the set of all the vertices together
with their rotations. In the orientable case, the rotations may be taken with
a consistent orientation, that is, all clockwise or all anticlockwise. A rotation
scheme is cyclic or of index 1 if we can denote the vertices by 0,1,...,n—1
in such a way that the rotation about 2 is obtained by adding x (mod n)
to the rotation about 0. As we observed earlier, an orientable biembedding
of two STS(n)s corresponds to a face 2-colourable triangular embedding of

the complete graph K, in an orientable surface, and it requires that n = 3
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or 7 (mod 12). In the case where n = 3 (mod 12), a cyclic STS(n) contains
a unique short orbit and consequently there can be no cyclic biembeddings.

In [61], Youngs gives a cyclic orientable biembedding for all n = 7 (mod
12), and it is this case that we consider here. We take as our starting point
the result of [56] that every cyclic orientable embedding of Kj2s17 can be
derived from an appropriate current graph with 4s 4+ 2 vertices. In our con-
text, a current graph is a graph with directions (clockwise or anticlockwise)
assigned at each vertex and whose edges are assigned both a direction (in
the ordinary sense of the word) and a current, the current being a non-zero

element of the group Zj2s47. An example for s = 2 is shown in Fig. 4.

Fig. 4. A current graph for s = 2.
The rotation about 0 in the resulting embedding of K3; is obtained
by traversing the graph, recording the (directed) currents encountered on
each edge, and taking the clockwise or anticlockwise exit from each edge as

indicated at that vertex. Thus we obtain the permutation
171529281022262082425527 1416231221 184919116 30217 13 3.

The rotation about the vertex x is then obtained by adding z (mod 31)

to each entry in this permutation. (A full explanation of current graphs is

given in [38].) In the case where we are seeking an orientable biembedding

of two STS(12s + 7)s the current graph must have the following properties.
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(i) Each vertex has degree 3. (The graph is cubic.)

(ii) At each vertex, the sum of the directed currents is 0 (mod 12s + 7)

(Kirchoff’s current law).

(iii) Each of the elements 1,2,...,6s+ 3 of Z12517 appears exactly once as
a current on one of the edges and each edge has exactly one of these

currents.

(iv) The directions (clockwise or anticlockwise) assigned to each vertex are
such that a complele circuil is formed, that is, one in which every edge

of the graph is traversed in each direction exactly once.
(v) The graph is bipartite.

Properties (i) and (ii) ensure that the embedding is a triangulation, while
properties (iii) and (iv) ensure that it is cyclic (see [56] and [38] for further
details). Property (v) ensures that the embedding is face 2-colourable and
therefore represents a biembedding of two STS(12s + 7)s. Consideration of
the degree and the currents shows that these current graphs have 4s + 2
vertices. Furthermore, there can be no loops and (save for the exceptional
case $ = 0) no multiple edges. This last fact follows from consideration of

the configuration shown in Fig. 5.

Fig 5. A possible multiple edge.

22



If this forms part of a current graph then w = 2 and so the whole current
graph comprises two vertices with a triply repeated edge.

There is a close connection between current graphs and solutions of
Heffter’s first difference problem (HDP). In 1897 Heffter [39] asked whether
the integers 1,2,...,3k can be partitioned into k triples (a, b, ¢) such that,
for each triple, a + b+ ¢ = 0 (mod 6k + 1). Examination of the triples
formed by the directed currents at each vertex in either of the two vertex
sets of a bipartite current graph shows that they form a solution to HDP
for k=2s+1.

In view of the above observations, the problem of constructing cyclic
orientable biembeddings of STS(12s + 7)s, s > 0, may be reduced to three

steps.
e Identify cubic bipartite simple connected graphs having 4s+2 vertices.

e Assign directions (clockwise or anticlockwise) at each of the vertices

which then give rise to a complete circuit.

e Take two solutions of HDP and label the edges of the graph in such a
way that the triples arising from each of the vertex sets of the bipar-

tition correspond to these two solutions.

These three steps have a large measure of independence from one an-
other. However, we cannot exclude the possibility that for a particular
graph it may be impossible to assign vertex directions to give a complete
circuit, and, even if this is possible, it may not be possible to assign the
HDP solutions to the edges. A test for the existence of a complete circuit
in a graph G was given by Xuong [60]. It asserts the existence of such a

circuit (equivalent to a one-face orientable embedding of G) if and only if G
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has a spanning tree whose co-tree has no component with an odd number
of edges.

Before proceeding further, we recall how Steiner triple systems arise from
solutions to HDP. Given a difference triple (a, b, ¢} with a +b+ ¢ =0 (mod
6k -+ 1), we can form a cyclic orbit by developing the starter {0, a,a + b} or
the starter {0, b, a1 b}. By taking all the difference triples from a solution of
HDP and forming a cyclic orbit from each, a cyclic STS(6k + 1) is obtained.
The converse is also true: given a cyclic STS(6k + 1), we can obtain a
solution to HDP by taking from each orbit a block {0, «, 5} and forming the

difference triple (&, ﬁ/—\a, B), where

x it 1<z <3k,

I
l

6k+1—2z if 3k+1<ax<6k.

Each solution to HDP produces 2% different STS(6k +1)s; however, there
may be isomorphisms between these systems. In addition, for a given value
of k, there will generally be many distinct solutions to HDP. For example,
in [19] it is shown that for k£ = 3 there are four solutions to HDP, and these
produce 4 x 22 distinct STS(19)s which lie in four isomorphism classes.

For n = 19, all the computations may be done by hand. The only cubic
bipartite graph on six vertices is K3 3. Fixing the rotation about one vertex
of K33, there are twelve ways of assigning vertex directions to produce a
complete circuit. It is also easy to show that from the four solutions to
HDP, it is only possible to obtain (up to isomorphism), one pair of solutions
with which to label the edges of K33 as described above. The resulting
cyclic orientable biembeddings of STS(19)s are then found to lie in just eight
isomorphism classes. The four cyclic STS(19)s are cyclically biembeddable,
but none is cyclically biembeddable with itself. These embeddings were first
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given in [35] and further details of the argument sketched here appear in
[12].

For n = 31, the computations require a computer. There are two cubic
bipartite graphs on 10 vertices and they may be obtained from Kjs5 by
either removing a single 10-cycle, or a 6-cycle and a 4-cycle. Fixing the
direction at one vertex gives a total of 160 sets of vertex directions in the
former case and 128 sets of vertex directions in the latter case which result
in complete circuits. Using the list of all solutions of HDP for k£ = 5 given in
[19], we find 2408 isomorphism classes for cyclic orientable biembeddings of
STS(31)s. There are 80 cyclic STS(31)s (see [22]), of which 76 are cyclically
biembeddable. Of the 2408 isomorphism classes, 64 represent biembeddings
of a system with itself and these involve 44 distinct systems. These were
first given in [9] and further details of the argument again appear in [12].

For n = 43, there are 13 cubic bipartite graphs on 14 vertices to consider
[55]. Of these, two have edge-connectivity 2, and so cannot have currents
assigned along their edges that are different as required by property (iii)
above. This is because the current in one of the two edges of the cutset
would have to be equal (but opposite in direction) to that in the other.
The 11 remaining graphs admit direction and current assignments. Further
details are given in [12].

Before leaving this section we remark that [12] gives theoretical reasons,
based on the above analysis, why certain pairs of cyclic STS(n)s cannot be
cyclically biembedded together in an orientable surface. These are sufficient
to give a complete explanation of cyclic biembeddability for n = 19 and 31,

but not in general.
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6 Concluding remarks

In this final section, we note a variety of results related to our main theme
of embedding Steiner triple systems. We also review some open problems.

A particular interest of design theorists is the concept of a trade. In-
formally, this is a set T} of blocks of an STS(n) for which it is possible to
find a disjoint set T of blocks (not lying in the system) which cover exactly
the same pairs of points. The original ST'S(n) may then be transformed to
a different, but possibly isomorphic, STS(n) by replacing 77 by T5. In [33]
and [16], the authors investigate the analogous topological equivalent, where
one set of triangles is replaced by a different set covering the same edges. In
the recursive construction of Section 2, the replacement of a toroidal bridge
(Fig. 2) by the reversed bridge (Fig. 3) is an example of such a topological
trade. Indeed, Theorem 3.1 may be considered as a result about topological
trades. Minimal trades between two orientable, between two nonorientable,
and between orientable and nonorientable triangulations of K, are deter-
mined in [33]. All topological trades involving m triangular faces for m < 6
are described in [16]; there are none for m = 1,2, 3 and 5, one for m = 4 and
four for m = 6, each of which must lie in a limited number of geometrical
patterns.

For n lying in certain residue classes, Theorem 3.1 gives a lower bound
of the form 297" for the number of face 2-colourable triangulations of K,
in both orientable and nonorientable surfaces. Can this bound be extended
to all possible residue classes? Is this the true order of growth? In a series
of papers Korzhik and Voss ([45], [46], [47] and [43]) prove that for suffi-
ciently large n, the number of orientable and nonorientable minimum genus

embeddings of K, is at least ¢2°", where ¢ > 0 and 3 > % are constants.
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Minimum genus embeddings of K, are triangulations when n = 0 or 1 (mod
3) in the nonorientable case, and when n = 0,3,4 or 7 (mod 12) in the
orientable case. In the remaining cases, minimum genus embeddings of K,
are near-triangulations, having a small number of non-triangular faces. The
basic technique employed in these papers relies on the use of appropriate cur-
rent graphs. Although these results cover all residue classes, the bound is a
long way from 2¢7* In a more recent development, Korzhik and Kwak [44]
combined the current graph approach with the cut-and-paste technique of
Theorem 3.1 to prove that if 12547 is prime and if n = (125+7)(6s+7), then
the number of nonorientable triangulations of K, is at least 9?2 (V2/T2+0(1))

Mao, Liu and Tian [50] give formulas for the numbers of embeddings of
K, in an orientable and in a nonorientable surface. However, no informa-
tion is obtained about facial properties of the embeddings. We can obtain
an upper estimate of the number of face 2-colourable triangulations by using
the known upper bound for the number of labelled Steiner triple systems
of order n, namely (e~1/2n)""/6, [59]. Each labelled face 2-colourable ori-
entable triangulation of K, gives rise to a pair of labelled STS(n)s, “white”
and “black”. There are 27{"=1/6 poggible choices for the orientations of the
white triangles (that is, the blocks of the white system). Each such choice
determines the orientation of the corresponding black triangles, so the num-
ber of labelled face 2-colourable orientable triangulations of K, is at most
(6_1/2n)"2/6(6_1/2n)"2/62"("_1)/6 < n™'/3. Consequently, the number of
nonisomorphic face 2-colourable orientable triangulations of K, is less than
n™*/3. A similar argument may be applied in the nonorientable case. Unfor-
tunately, there seems to be no simple way of using this type of argument to
establish a lower bound, since an arbitrary pair of labelled STS(n)s is not, in

general, biembeddable as the black and white systems of a face 2-colourable
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orientable triangulation of K, no matter what orientations are chosen for
the blocks (for example, the systems may have a common triple). If the rate
of growth of the number of nonisomorphic face 2-colourable triangulations
of K,, were of the order 29" then this would imply that almost all STS(n)s
are not biembeddable either orientably or nonorientably. Evidence culled
from investigations of the 80 STS(15)s emboldens us to conjecture that, for
n > 9, each pair of STS(n)s is biembeddable in a nonorientable surface.
However, it seems that the same may not be true in the orientable case,
even with a finite number of exceptions; indeed, it is unclear whether, for
each n = 3 or 7 (mod 12), each STS(n) has an orientable biembedding with
some other STS(n).

Lastly, one might reasonably consider variants of the above problems.
For instance, embeddings of K, could be sought in which the faces are all
m-gons for some m > 3. In the case m = n, the faces are Hamiltonian
cycles, and Ellingham and Stephens [26] have shown that such Hamiltonian
embeddings exist in a nonorientable surface for n > 4,n £ 5, and that for n
odd the embeddings may be taken to be face 2-colourable. For graphs other
than K, a variety of results have been obtained. In particular, triangulations
of K, »n and related Hamiltonian embeddings of K, ,, are given in [1], [29],
[30], [32] and [42], while triangulations related to biembeddings of symmetric
configurations of triples (see [20| for terminology) appear in [52], [53] and
[31].
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