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Abstract

We give a necessary condition for the biembedding of two
Latin squares in an orientable surface. As a consequence, it is
shown that for n ≥ 2, there is no biembedding of two Latin
squares both lying in the same main class as the square ob-
tained from the Cayley table of the Abelian 2-group Cn

2 .

∗Lefevre and Donovan supported by grants LX0453416 and DP0664030

1



Keywords: Abelian 2-group, Biembedding, Latin square, Ori-
entable surface, Transversal design.
AMS Classification: 05B15, 05C10.

1 Introduction

Many recent papers have dealt with biembeddings of combinatorial
designs in orientable and nonorientable surfaces, that is to say closed
connected 2-manifolds. For a recent survey and comprehensive list
of references see [2]. The principal designs studied have been Steiner
triple systems and Latin squares. A fundamental question underlying
all these results has been that of existence of biembeddings for spec-
ified designs. In the current paper a necessary condition is obtained
relating to biembeddings of Latin squares. This constraint is the first
generally applicable result of its type. It enables us to prove that
for infinitely many orders n there are pairs of Latin squares of order
n which cannot be biembedded, even allowing any relabelling of the
squares.

To see the connection between topological embeddings and combi-
natorial designs, consider a face 2-colourable triangular embedding of
a complete graph Kn in a surface. Such an embedding gives rise to two
Steiner triple systems. The vertices of the graph form the points of
the systems and the triangular faces in each of the two colour classes
respectively form the triples of each system. We here recall that an
STS(n) may be formally defined as an ordered pair (V,B), where V

is an n-element set (the points) and B is a set of 3-element subsets
of V (the triples), such that every 2-element subset of V appears in
precisely one triple. Such systems are known to exist if and only if
n ≡ 1 or 3 (mod 6) [7]. We say that two STS(n)s are biembeddable in
a surface if there is a face 2-colourable triangular embedding of Kn in
which the face sets forming the two colour classes give copies of the
two systems.

Embeddings of complete regular tripartite graphs are discussed in
[5, 10] and form a useful tool in recursive constructions for biembed-
dings of Steiner triple systems, as well as being of considerable interest
in their own right. A face 2-colourable triangular embedding of the
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complete tripartite graph Kn,n,n may be considered as a biembedding
of a pair of transversal designs TD(3, n); such a design comprises an
ordered triple (V,G,B), where V is a 3n-element set (the points), G
is a partition of V into three disjoint sets (the groups) each of cardi-
nality n, and B is a set of 3-element subsets of V (the triples), such
that every unordered pair of elements from V is either contained in
precisely one triple or one group, but not both. As with Steiner triple
systems, the vertices of the embedded graph Kn,n,n form the points
of the designs, the tripartition determines the groups, and the faces
in each colour class form the triples of each design. The connection
with Latin squares is that a TD(3, n) determines a Latin square by
assigning the three groups of the design to label the rows, columns
and entries (in any one of the six possible orders) of the Latin square.
Thus a face 2-colourable triangulation of Kn,n,n may be considered as
a biembedding of two Latin squares and we say that two Latin squares
of order n are biembeddable in a surface if there is a face 2-colourable
triangular embedding of Kn,n,n in which the face sets forming the two
colour classes give copies of the two squares.

In this paper, a Latin square of order n, LS(n), will be taken
as an n × n array with entries from E = {e1, e2, . . . , en} and rows
and columns indexed by R = {r1, r2, . . . , rn} and C = {c1, c2, . . . , cn}
respectively. The defining property is that each ei ∈ E appears pre-
cisely once in each row and once in each column. We will identify the
Latin square L with its set of n2 {row, column, entry} triples so that,
for example writing {ri, cj, ek} ∈ L means that L has entry ek in row
ri, column cj. We refer to the three sets R, C, E as the row, column
and entry identifiers of the square and a transversal design may be
formed from L by assigning R, C, E as the three groups of the design.

Two Latin squares of the same order n are said to belong to the
same main class if the two corresponding transversal designs are iso-
morphic. In other words, there exist three bijections mapping the
row, column and entry identifiers of the first square to those of the
second (not necessarily in the same order) which also map the first
square to the second. If there are such bijections that map rows to
rows, columns to columns and entries to entries, then the squares are
said to be isotopic.
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We assume that the reader is familiar with the description of topo-
logical embeddings by means of rotation schemes as described in [6, 9].
Our embeddings will always be in surfaces rather than pseudosurfaces
(the latter result from surfaces by repeating a finite number of times
the operation of identifying a finite number of points on a surface).
Equivalently, in the description of an embedding by means of a rota-
tion scheme, the rotation about each vertex comprises a single cycle.
In fact our surfaces will always be orientable because we shall only
be considering biembeddings of Latin squares and it was shown in [3]
that such biembeddings are necessarily orientable, with the triangles
of one Latin square being oriented (row, column, entry) and those of
the other being oriented (column, row, entry).

The paper [3] contains a number of computational results of which
perhaps the most striking is that given in Table 5 of that paper. It is
shown that the 147 main classes of Latin squares of order 7 partition
into 16 subsets containing 1, 1, 1, 2, 3, 3, 3, 6, 6, 8, 8, 9, 18, 19,
26 and 33 classes such that the biembeddings of Latin squares exist
only when both squares belong to the same subset of the partition.
Moreover, within each of these 16 subsets, most pairs of classes admit
a biembedding.

In a more recent paper [4], attention was turned to Latin squares
of order 8, where there are 283 657 main classes [8]. It was compu-
tationally infeasible to determine all possible biembeddings of these
squares, so attention was restricted to seeking biembeddings that con-
tain at least one square that arises from the Cayley table of a group
of order 8. Another reason for considering these particular squares
is as follows. Latin squares which arise from the Cayley tables of
cyclic groups can always be biembedded. However, those from the
groups C2×C2 and D3, the only non-cyclic groups of orders less than
8, can not [3]. There are five groups of order 8, usually denoted by
C3

2 = C2×C2×C2, C4×C2, C8, D4 and Q. Here Cn denotes the cyclic
group of order n, Dn is the dihedral group of order 2n, and Q is the
quaternion group. Table 1 summarizes all the resulting biembeddings
where both squares are group-based. The entries give the numbers of
nonisomorphic biembeddings of squares from the corresponding main
classes.
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C3
2 C4 × C2 C8 D4 Q

C3
2 − − − 1 −

C4 × C2 − − − 4 5

C8 − − 13 − −

D4 1 4 − − −

Q − 5 − − −

Table 1. Numbers of mutual biembeddings of group-based squares.

It can be seen that there are, for example, no biembeddings of two
squares both derived from C3

2 .
In the subsequent section of the current paper we obtain an ex-

planation for these results by establishing a necessary condition for
the biembedding of two Latin squares. This condition also enables us
to show that for n ≥ 2 there is no biembedding of two Latin squares
both derived from the Abelian 2-group Cn

2 . This gives the first known
infinite class of pairs of Latin squares that admit no biembeddings.

2 Biembeddings of Latin squares

Suppose L is an arbitrary Latin square of order n. For any fixed
i ∈ N = {1, 2, . . . , n}, consider the subset of L consisting of the
n triples that contain ri. By the definition of a Latin square each
column and each entry occurs in exactly one of these triples; thus
we can regard row i of L as defining a bijection βL

r,i : C → E, with
βL

r,i(cj) = ek if and only if {ri, cj, ek} ∈ L.
Next let A and B be a pair of Latin squares of order n, with com-

mon row, column and entry identifiers. Then the composite mapping
βA

r,i(β
B
r,i)

−1 is a permutation on the entry identifier set E. Now sup-
pose that there exists a biembedding of A and B, with their current
labelling, in some orientable surface. In other words, if the squares
are represented by means of triples, and the triples are taken as tri-
angular faces and then sewn together along common edges, a surface
(rather than a pseudosurface) is obtained.

Consider the rotation at ri as shown in Figure 1. This will be a
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cycle of length 2n of the form

(cρ(1), eτ(1), cρ(2), eτ(2), . . . , cρ(n), eτ(n))

for some permutations ρ and τ of N , where {ri, cρ(j), eτ(j)} ∈ A and
{ri, cρ(j+1), eτ(j)} ∈ B for each j ∈ N . Here and elsewhere, for j = n

we take j + 1 to be 1. This implies that the permutation βA
r,i(β

B
r,i)

−1

maps eτ(j) to eτ(j+1) for j = 1, 2, . . . , n, and hence consists of a single
permutation cycle of length n.

u
ri

ucρ(n)

u
eτ(n)

u

cρ(1)

u
eτ(1)

u cρ(2)

u eτ(2)

A
B A

B

A

βA
r,iβB

r,i

Figure 1. The rotation at ri.

In a similar way, for any Latin square L of order n and for each
i ∈ N we can define bijections βL

c,i : E → R and βL
e,i : R → C

by βL
c,i(ej) = rk if and only if {rk, ci, ej} ∈ L and βL

e,i(rj) = ck if
and only if {rj , ck, ei} ∈ L. Reasoning as above, we see that if Latin
squares A and B can be biembedded with their current labelling, then
the permutation βA

α,i(β
B
α,i)

−1 must consist of a single n-cycle for each
α ∈ {r, c, e} and i ∈ N . In fact (although it is not necessary for our
main result), the converse also holds; if each of these permutations
consists of a single cycle then A and B with their current labelling
can be biembedded in some orientable surface. Thus we have the
following result.
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Lemma 2.1 Let A and B be Latin squares of order n. Then A and B

can be biembedded with their current labelling in an orientable surface

if and only if the permutation βA
α,i(β

B
α,i)

−1 consists of a single n-cycle

for each α ∈ {r, c, e} and i ∈ N .

This condition is easily checked for a given pair of Latin squares.
However, the fundamental question is whether there is any relabelling
of either Latin square which allows them to be biembedded. We now
address this question.

Plainly, if n is odd (respectively, even) then we require βA
α,i(β

B
α,i)

−1

to be an even (respectively, odd) permutation. Since βA
α,i and βB

α,i

are not themselves permutations, there is a technical difficulty about
assigning them individual parities. However, they can be replaced by
equivalent permutations in the following manner.

Take arbitrary but fixed orderings of R, C and E; we will use
(r1 r2 · · · rn), (c1 c2 · · · cn) and (e1 e2 · · · en). For L = A or B, if
βL

r,i(ck) = ejk
for k ∈ N , then writing this in ‘two-line’ form we have

βL
r,i =

(

c1 c2 · · · cn

ej1 ej2 · · · ejn

)

.

Replace the first line by the chosen fixed ordering of E and so obtain
a permutation γL

r,i of E:

γL
r,i =

(

e1 e2 · · · en

ej1 ej2 · · · ejn

)

.

In other words, γL
r,i(ek) = βL

r,i(ck).
In the same way define the permutations γL

c,i of R and γL
e,i of C

for L = A and L = B. Then note that for α ∈ {r, c, e} we have
βA

α,i(β
B
α,i)

−1 = γA
α,i(γ

B
α,i)

−1. Thus, if this product is an even permuta-
tion then the permutations γA

α,i and γB
α,i must have the same parities,

and if the product is an odd permutation then γA
α,i and γB

α,i must have
opposite parities.

We can now state the following key result.
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Theorem 2.1 Suppose that A and B are Latin squares of order n

which can be biembedded with their current labelling in an orientable

surface. Then for each α ∈ {r, c, e} and i ∈ N , γA
α,i and γB

α,i have:

• the same parity if n is odd;

• different parity if n is even.

Prior to discussing the issue of relabelling the rows, columns and
entries of Latin squares, we make the following definition.

Definition 2.1 For a Latin square L of order n, let

xL = |{i ∈ N | γL
r,i has odd parity}|,

yL = |{j ∈ N | γL
c,j has odd parity}|,

zL = |{k ∈ N | γL
e,k has odd parity}|.

Then the vector (xL, yL, zL) will be called the parity vector of L.

The following is an immediate consequence of Theorem 2.1.

Corollary 2.1.1 Suppose that A and B are Latin squares of order

n with parity vectors (xA, yA, zA) and (xB, yB, zB) respectively. If A

and B can be biembedded with their current labelling in an orientable

surface then

• (xA, yA, zA) = (xB , yB, zB) if n is odd;

• (xA, yA, zA) = (n − xB , n − yB, n − zB) if n is even.

We now consider the effect on the parity vector of relabelling the
rows, columns and entries of a Latin square or, equivalently, the effect
of applying permutations to R, C and E.

Suppose that σ is a permutation of R, which we apply to the rows
of a Latin square L to obtain L′. Let the parity vectors of L and L′

be (x, y, z) and (x′, y′, z′) respectively. For each i, the bijection βL
r,i

maps C to E and is thus unaffected except for a change in the row
identifier. That is, βL

r,i = βL′

r,σ(i) and so γL
r,i = γL′

r,σ(i). Hence x′ = x.
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However the bijections βL
c,i and βL

e,i are effectively composed with σ;

βL′

c,i = σβL
c,i and βL′

e,i = βL
e,iσ

−1. This will not change the parity of γL
c,i

and γL
e,i if σ is even, but if σ is odd then their parities will be reversed.

Hence in the former case y′ = y and z′ = z, and in the latter case
y′ = n − y and z′ = n − z.

Similar results apply to permutations of C and R. It follows that
every Latin square which is isotopic to L has parity vector (x, y, z),
(x, n − y, n − z), (n − x, y, n − z), or (n − x, n − y, z).

This result is readily extended to main classes. In addition to
isotopisms we allow the sets R, C and E to be swapped. This corre-
sponds to a reordering of the parity vectors. Of the 24 parity vectors
formed from (x, y, z), there are at most four distinct ones that have a
common minimal first entry. Of these, there is precisely one distinct
vector that has a minimal second entry. We call this vector the main

class parity vector and denote it by [p, q, r], using square brackets to
distinguish it from the original parity vectors. If [p, q, r] is a main class
parity vector, then p ≤ q ≤ min{r, n − r}. The following theorem is
now an immediate consequence of Corollary 2.1.1.

Theorem 2.2 Let A and B be two Latin squares of order n, with

main class partity vectors [xA, yA, zA] and [xB, yB, zB] respectively. If

there exist Latin squares A′ and B′ which are in the same main class

as A and B respectively and which can be biembedded, then

• [xA, yA, zA] = [xB, yB, zB] if n is odd;

• [xA, yA, zA] = [xB, yB, n − zB] if n is even.

3 Consequences of Theorem 2.2

Throughout this section, the main classes of Latin squares of order n

for n = 4, 5, 6 and 7 are numbered as in [1].
We start by giving an example of two main classes of Latin squares

of order 6 that admit no biembedding of two squares, one from each
class. The classes involved are those numbered 1 and 3 and the
squares, represented on E = {1, 2, 3, 4, 5, 6} (so that ei = i), are
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as shown in Table 2.

1 2 3 4 5 6
2 1 4 3 6 5
3 4 5 6 1 2
4 3 6 5 2 1
5 6 1 2 3 4
6 5 2 1 4 3

A

1 2 3 4 5 6
2 1 4 5 6 3
3 4 1 6 2 5
4 5 6 1 3 2
5 6 2 3 1 4
6 3 5 2 4 1

B

Table 2. Squares of order 6 from main classes 1 and 3.

As examples of the row, column and entry permutations we give

γA
r,2 =

(

1 2 3 4 5 6
2 1 4 3 6 5

)

: odd

γA
c,3 =

(

r1 r2 r3 r4 r5 r6

r5 r6 r1 r2 r3 r4

)

: even

γA
e,4 =

(

c1 c2 c3 c4 c5 c6

c4 c3 c2 c1 c6 c5

)

: odd

We find that A has main class parity vector [3, 3, 3] and B has [0,0,5].
So, by Theorem 2.2 there is no biembedding of any representative
from main class 1 with any from main class 3. This is in agreement
with the computational results of [3].

We list in Table 3 the main class parity vectors for squares of
orders n = 4, 5, 6 and 7, all obtained by computer.

For n = 4, Theorem 2.2 establishes that there is no biembedding
involving the first main class which corresponds to the Cayley table of
C2

2 . For n = 5 it establishes that there is no biembedding of a square
from class 1 with a square from class 2. For n = 6 we see that there
can be no biembedding involving the main classes numbered 3, 4 or
10. All of these results are consistent with the computational results
of [3]. For n = 7 the partitioning of the main classes by their parity
vectors into the 16 subsets shown in Table 3 is identical with that of
[3] to which we referred in the Introduction.
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Order Vector Main Class numbers
4 [0, 0, 0] 1

[2, 2, 2] 2
5 [0, 0, 0] 1

[1, 1, 4] 2
6 [0, 0, 3] 6

[0, 0, 5] 3
[1, 1, 1] 10
[1, 2, 4] 4
[1, 3, 3] 9
[2, 2, 3] 5
[3, 3, 3] 1, 2, 7, 8, 11, 12

7 [0, 0, 7] 1, 3, 7
[0, 1, 4] 87
[0, 1, 6] 6
[0, 2, 3] 90, 124, 125
[0, 2, 5] 105, 136
[0, 3, 4] 2, 4, 5
[1, 1, 1] 52, 76, 112, 141, 143, 147
[1, 1, 3] 71, 81, 108, 109, 121, 140

Order Vector Main Class numbers
7 [1, 1, 5] 78

[1, 2, 2] 12, 15, 51, 65, 68, 79, 97, 130
[1, 2, 4] 57, 63, 66, 82, 86, 92, 119, 120,

122
[1, 3, 3] 29, 36, 38, 43, 45, 50, 55, 60, 91,

93, 103, 104, 107, 113, 116,

123, 126, 142
[2, 2, 3] 16, 17, 32, 41, 42, 48, 49, 56, 83,

85, 89, 94, 101, 106, 117, 118,

127, 131, 133
[2, 2, 5] 8, 10, 46, 77, 84, 129, 135, 146
[2, 3, 4] 9, 14, 19, 20, 26, 27, 31, 34, 35,

37, 40, 47, 54, 61, 62, 67, 70, 72,

80, 88, 95, 99, 100, 128, 132, 134
[3, 3, 3] 11, 13, 18, 21, 22, 23, 24, 25, 28,

30, 33, 39, 44, 53, 58, 59, 64, 69,

73, 74, 75, 96, 98, 102, 110, 111,

114, 115, 137, 138, 139, 144, 145

Table 3. Main classes and their parity vectors.
For Latin squares of order 8 obtained from the group tables, the

main class parity vectors are shown in Table 4.

Vector Main Classes

[0, 0, 0] C3
2 , C4 × C2

[0, 0, 8] D4, Q

[4, 4, 4] C8

Table 4. Group squares of order 8 and their parity vectors

These parity vectors and Theorem 2.2 explain all but one of the
blank entries in Table 1; the exception being the non-existence of a
biembedding involving C3

2 and Q.

Our final result is the following theorem.

Theorem 3.1 For n ≥ 2 there is no biembedding of two Latin squares

both lying in the same main class as the square obtained from the

Cayley table of the Abelian 2-group Cn
2 .

Proof. If x, y ∈ Cn
2 then (x ∗ y) ∗ y = x. It follows that for α ∈

{r, c, e}, the permutation γ
Cn

2

α,i is either the identity or it consists of
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2n−1 transpositions. In either case it is an even permutation. Hence
the main class parity vector is [0, 0, 0], and the result follows.

Theorem 3.1 proves that for infinitely many orders n there are
pairs of Latin squares of order n which cannot be biembedded, even
allowing any relabelling of the squares.
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