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Abstract

An S(2,4,v) design has a type B x-colouring if it is possible to
assign one of x colours to each point such that each block contains
three points of one colour and one point of a different colour, and all x
colours are used. In this paper we describe the constructions of type B
x-colourable S(2,4,v)s for (v, x) = (61,3), (100,2) and (109, 3), and
we give a new general construction.
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1 Introduction

A Steiner system, S(t,k,v), is a pair (V,B) where V is a set of cardinality
v of elements, or points, and B is a collection of k-subsets of V', also called
blocks, which has the property that every t-element subset of V' occurs in
precisely one block. In this paper we are concerned only with the cases t = 2
and k = 3 or 4. An S(2,3,v) is usually called a Steiner triple system of order
v, or STS(v) for short. An STS(v) exists if and only if v = 1 or 3 (mod 6) [5],
and an S(2,4,v) exists if and only if v = 1 or 4 (mod 12) [4]. Note that v =1
is admissible in both cases—the STS(1) and the S(2,4, 1) each consists of a
single point and an empty set of blocks. A resolvable Steiner triple system is
an STS(v) whose blocks can be partitioned into (v — 1)/2 resolution classes
Bi,i=1,2,...,(v—1)/2, where |B;| = v/3 and B; covers the entire point
set. A Kirkman triple system of order v, KTS(v), is a resolvable STS(v) with
a specified partition into resolution classes.

In this paper, we are interested in colourings of Steiner systems. A y-
colouring of a Steiner system (V, B) is a surjection ¢ : V' — I" where I' is a set
of cardinality y whose elements are called colours. In the case of a Steiner
triple system, each block will have one of three colour patterns: {a,a,a}
(type A), {a,a,b} (type B), or {a,b,c} (type C). Let X C {A,B,C}. A
x-colouring of type X is a colouring as defined above in which each block
is of type I for some I € X. We will also require that every block type
of X must occur. Thus there are eight possible combinations of colourings
although some of these are trivial. There exists an extensive literature on
colourings of Steiner triple systems.

In [7], the authors extend the above ideas to colourings of Steiner systems
S(2,4,v). Here there are five colour patterns: {a,a,a,a} (type A), {a,a,a,b}
(type B), {a,a,b,b} (type C), {a,a,b,c} (type D) and {a,b,c,d} (type E),
and consequently 32 possible combinations of colourings. Of these, perhaps
the most natural are those in which the set X consists of just one type. The
cases where X = {A} or X = {E} are trivial. Moreover, it was shown in [7]
that an S(2,4,v) has a x-colouring of type X = {C} if and only if v = 4 and
X = 2. That leaves colourings where X = {B} or X = {D}. The former case
is of particular interest and we will refer to such colourings simply as type B
x-colourings.

In the next section we review some properties of S(2,4,v) systems and
their type B x-colourings. If the colour set is I' = {I'y,I'y,...T'y}, we let
v = ¢~ (Ty)], i = 1,2,...,x, the colour class sizes. However, in describing



constructions it is more convenient to use unsubscripted letters for the ele-
ments of I, in which case we would, for instance, refer to the members of
¢~ (X) as ‘X points’.

2 Type B x-colourable S(2,4,v) systems

The first lemma, which is inherent in [7] and is easy to prove, provides impor-
tant information on the structure of Steiner systems S(2,4,v) with type B
x-colourings.

Lemma 2.1 Suppose S = (V,B) is an S(2,4,v) with a type B x-colouring
¢: V=T ={Ty,Ty,...,I'\}. Fori=1,2,...,x, let V; = ¢~ 1(I;); then

Vi, {{a,b,c} : {a,b,c,d} € B,{a,b,c} S Vi}) (1)
is a Steiner triple system of order |V;|.

Proof. If |V;| > 1 and {a,b} C V;, then a and b must both occur in a block
of S together with precisely one other point of the same colour. On the other
hand, if |V;| = 1, then (V;,0) forms an STS(1). O

The next two lemmas come directly from [7].

Lemma 2.2 Let S = (V,B) be an S(2,4,v) with V = {q1,¢,...,¢}, and
let (K,C), KNV =0, be a KTS(2v + 1) with resolution classes C1, Ca, ...,
C,. Let

0= U{{x,y, z,q;} {x,y, 2} € Ci}

Then S"= (VUK,BUQ) is an S(2,4,3v + 1). Furthermore, if S is type B
x-colourable, then S’ is type B (x + 1)-colourable.

Proof. This is the well-known 3v + 1 construction. Also it is plain that as-
signing a (x + 1)-th colour to the points of the Kirkman triple system results
in a valid type B (x + 1)-colouring of S’. O

Remark. We will show in Theorem 2.1 that, by careful choice of the
KTS(2v + 1), it is generally possible to obtain an alternative type B (x + 1)-
colouring pattern for the S(2,4,3v + 1).
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Lemma 2.3 For v = (3X — 1)/2, x = 2,3,..., there exists a type B x-
colourable S(2,4,v).

Proof. Clearly, the S(2,4,4) system has a type B 2-colouring. Apply
Lemma 2.2 recursively to obtain systems with orders given as follows.

x|2[3]4]5 6] 7 |.. X
v | 4|13 |40 | 121|364 1093 | ... | 1(3¥x = 1)

For the Kirkman triple system, one can use the affine STS(3X) and resolution
classes described in [1, pp 149-150]. O

Until recently, it seemed that Lemma 2.3 accounted for the only known
examples of type B y-colourable S(2,4,v) systems. All such systems, how-
ever, must satisfy the conditions in the next lemma.

Lemma 2.4 Let (V,B) be a type B x-colourable S(2,4,v) with colour class
812€8 Y1, Y2, --- 5 Vx- Then

(i) for i = 1,2,...,x, v = 1 or3 (mod 6), with precisely one ~; =
1 (mod 6);

(ii) Zz{:l (72) = Z1§i<j§x YiV; = }Lv(v —1);
(i) fori=1,2,...,x, v < 3(2v+1);

(iv) v = 3(2v + 1) for some i if and only if the S(2,4,v) can be obtained
from an S(2,4,v — ;) via Lemma 2.2;

(v) for 0 <i<j<x, (vi—7%)*>+7

Proof. For items (i)-(iii), see Lemma 3.7 of [7]; and (iv) follows easily from
the proof of Lemma 2.2, above. For (v), denote the i-th colour class by T;
and observe that the v;y; {I';,T';} pairs , ¢ # j, must come from blocks of
the form {qu FZ‘, Fi, F]} or {Fj, Fj, Fj, Fz} Hence

1 1
5%‘(%‘ - 1)+ 5%‘(%‘ - 1) = %7
Note in particular that one cannot have two equal colour class sizes. ([l



Table 1: Parameters of possible type B x-colourable S(2,4,v)s

Vo X | Y1725 Ux Vol X ] Y1725 Vx

61 | 313,19, 39 3131 51 1,3,9, 105, 195
100 | 2 | 45, 55 328 1 411, 3,135, 189

109 | 3 | 1, 45, 63 328 | 4 |1, 45, 63, 219

184 |4 1,9, 57, 117 328 | 419, 15,91, 213

184 | 4| 3,19,39,123 || 361 | 5 | 1,9, 21, 93, 237
196 | 2 | 91, 105 361 | 5 13,9, 15,99, 235
232 |41 3,9, 73, 147 397 | 3 | 19, 129, 249

232 | 41 3,19,57, 153 || 424 | 4 | 9, 19, 123, 273
301 | 3|1, 135, 165 457 | 5 | 3, 15, 27, 109, 303
301|319, 109, 183 484 | 2 | 231, 253

301 | 3 | 33, 69, 199 505 | 5 | 3,9, 21, 147, 325
301 | 3 | 45, 55, 201 505 | 519, 15, 21, 127, 333

For v < 505, the only possible parameter sets satisfying Lemma 2.4, other
than those arising from Lemma 2.3, are given in Table 1.

The existence of a type B 2-colourable S(2,4,100) is a long-standing
problem. It was already raised by de Resmini [8] in a paper published in 1981.
It is the first non-trivial system of a potential infinite sequence of type B 2-
colourable Steiner systems S(2,4,v) where v = (12s+2)? or v = (125 +10)?,
s > 0, and the two colour class sizes are (v £ /v)/2. In [7], the explicit
issue of finding a type B 3-colourable S(2,4,v) for each of v = 61 and 109
was formulated. All of these problems were restated in [9]. The closely
related problem of embedding Steiner triple systems into S(2,4,v) systems
is discussed at length in [6].

A type B 2-colourable S(2, 4, 100) was recently constructed by the authors
and appears in [3]. In the current paper we give constructions for other
systems listed in Table 1; specifically for v = 61 and 109. Also we briefly
describe the system for v = 100 from [3] for completeness. We make no claim
that any of the systems are unique up to isomorphism for their types. Indeed,
for v = 109, which we found to be the easiest to construct, we have several
systems and we list two examples. Further systems arise from repeated use
of Theorem 2.1.



Theorem 2.1 may be regarded as an extension of Lemma 2.2, where the
KTS(2v + 1) is obtained from the S(2,4,v) and the resulting S(2,4,3v + 1)
then generally has two alternative type B (x + 1)-colouring patterns.

Theorem 2.1 Let S be a type B x-colourable S(2,4,v) system with colour

class sizes {1, Y2, ..., Y }- Then there exists a type B (x + 1)-colourable

S(2,4,3v + 1) which may be coloured either with colour class sizes {71, 2,
< Yy 20+ 1} or with colour class sizes {1,371, 372, ..., 37y }-

Proof. The former colouring pattern is generated by Lemma 2.2 using any
KTS(2v + 1) in that construction.

To deal with the latter colouring pattern, let S = (V, B), where V' = {ij :
i=1,2,...,v}. For each block {xg,yo, 20, wo} € B, take a fixed ordering of
the block, (2o, Yo, 20, wp). From these ordered blocks we create a KT'S(2v+1)
on the point set V' = {iy,iy : i = 1,2,...,v} U{oco}. We list the blocks of
this design in v parallel classes each of which is associated with a single
point of V. The ordered block (xg, 3o, 20, wp) obtained from B contributes
the following triples to these classes.

(i) {1, 22, w1} and {ya, 21, wo } associated with x,
(i) {wq, 21, w1} and {xy, 20, wo} associated with yo,
(iil) {x1,y2, w1} and {xs, y1,ws} associated with zg,
(iv) {x1,91, 21} and {x9, yo, 22} associated with wy.

In addition, the class associated with iy contains the triple {oco, i, i2}. Thus
each class contains 2(v — 1)/3 + 1 = (2v + 1)/3 disjoint blocks and so forms
a parallel class of triples on V’. It is also easy to see that the complete set
of triples forms an STS(2v + 1) and hence, with the specified resolution, a
KTS(2v + 1). From the KTS(2v + 1) and the original S(2,4,v) we form an
S(2,4,3v + 1) using the method of Lemma 2.2 and taking care to adjoin to
each parallel class the point of V' with which it is associated. We now colour
the points 71,4, with the same colour as 7y for each : = 1,2,...,v and we
assign a new colour to the point cc.

We note that the two colour patterns presented are identical if and only
if {71, Y2, -+, o 20+ 1} = {1, 371, 379, ..., 3} = {1, 3, 3% ..., 3x},
which is the case covered by Lemma 2.3. 0



3 A type B 3-colourable S(2,4,61)

Here we consider the first entry in Table 1. We construct an S(2,4,61)
together with a type B 3-colouring having colour class sizes 39, 19 and 3.
Denote the corresponding colours by A, B and C', respectively. For each of
the three STS(v)s identified by Lemma 2.1, let the points be the integers
0,1,...,v — 1 indexed by the system’s colour. We denote a point by any of
the descriptions X,,, Xn and n, where X is the colour and n is the integer;
the second option appears only in Tables 2, 4, 5 and 6, and the third option
is used only if the colour is clear from the context. Arithmetic on points is
performed on the integer parts in an appropriate ring.
Let the A system be an STS(39) with the automorphism « defined by

Ay A (mod 39)-

For the B system, we choose the cyclic STS(19) with starter blocks {0, 1,4},

{0,7,9} and {0, 11,6}, and automorphism 3 : B; +— Bz, (mod 19)- Note that

0 leaves By fixed and partitions the other B points into six orbits of size 3.
We begin with the block

{007 Cla 027 BO}

and we assign blocks of the B system to A and C points as in Table 2.
Observe that if {B,, By, B,} is assigned to point A;, then 5({B,, By, B.})
is assigned to point a(A;) while if {B,, By, B.} is assigned to point C; then
B({ By, By, B.}) is also assigned to the point C;. This latter assignment is
also done in such a way that each C; is paired with each B;, 7 # 0. Thus we
have dealt with the 171 BB pairs, the 57 BC pairs, the three C'C' pairs, and,
so far, also 117 AB pairs.
For the STS(39), we first create the set of ten A blocks

Z/{() - {{Ai,Alg_H,Agﬁ_H'} . Z = 1,2,3,4, 5,6, 7,8,9, 11}

and assign them to By. These blocks are fixed under the action of a and
they account for the remaining ABy pairs. For j =1,2,...18, let €; denote
the set of A points that have so far been paired with B;. Then from Table 2



Table 2: STS(19) — the B system for the S(2,4,61)

0 1 4 A0 0O 7 9 A13] 0 11 6 A26
1 2 5 Al 1 8 10 A20| 1 12 7 A30
2 3 6 A2 2 9 11 CO 2 13 8 A35
3 4 7 CO 3 10 12 A22| 3 14 9 A28
4 5 8 (1 4 11 13 C2 4 15 10 A32
5 6 9 A3 5 12 14 (C2 5 16 11 A37
6 7 10 C2 6 13 15 A19| 6 17 12 (1
7 8 11 A4 7 14 16 A4 | 7 18 13 A33
8 9 12 A5 8§ 15 17 CO0 8 0 14 A38
9 10 13 A6 9 16 18 (1 9 1 15 (2
10 11 14 C1 |10 17 0 A23]10 2 16 A34
1 12 15 Ar |11 18 1 A17 |11 3 17 A27
12 13 16 CO |12 0 2 A25|12 4 18 A3l
13 14 17 A8 |13 1 3 C1 |13 5 0 A36
14 15 18 A9 |14 2 4 Al5|14 6 1 CO
5 16 0 A10]15 3 5 A21|15 7 2 (C1
6 17 1 Al1]16 4 6 Al6|16 8 3 (2
17 18 2 C2 |17 5 7 A24 |17 9 4 A29
18 0 3 A12|18 6 8 Al8|18 10 5 (O

we have

Q1 = {A07A1>A117A177A207A30}7
QQ = {A1,A27A157A257A34a1435}7
Q4 = {A()aA157A167A29;A317A32}7
QS = {A4>A5aA187A207A357A38}7
QlG = {Alo, All, A14; A16> A347 A37}a
QIS = {A67A87A197A337A357A36}7

and Qg5 = a(€Y;).

Next we search for a set 7 of A blocks such that (i) the blocks of 7" form
a parallel class, (ii) no two blocks of 7 lie in the same orbit under the action
of «, and (iii) blocks which are fixed by « are not used in 7 . A computer



search produces 1038 sets, of which we select one,

7o = {{0,1,17},{11,20,30}, {14,15,9}, {2, 12,21}, {13, 28, 29},
{3,5,6},{4,18,35}, {31, 7,25}, {10, 16, 37}, {24, 27, 8},
{32,34,22},{19,33,361}, {23, 26, 38} },

and we assign the blocks of 7y to Cy. Together with 77 = «(7) (assigned
to C1), T, = o*(7) (assigned to Cy) and Uy, we now have 49 A blocks and
have dealt with 117 AC pairs.

The A system is extended to an STS(39) by hill climbing [10] and these
A blocks are assigned to points Bj, j = 1,2,4, 8,16, 13, under the following
conditions.

(i) During the hill-climbing process, blocks are added to the system or
removed from the system in triples: X, a(X) and o?(X). Blocks in
Uy U Ty U T UT; are never removed. Blocks fixed by « are never added.

(ii) The blocks assigned to B; form a partial parallel class U; of size 11 that
does not contain any of the points in ;.

(ili) At most one block in each orbit under the action of « is assigned to B;.

A solution is given by assigning the blocks of U; to B;, j =1, 2, 4, 8, 16, 13,
where the U; are defined by

U, = {{2,10,33},{3,25,32},{4,22,37},{5,8,23},
{6,28,31},{7,12,16}, {9, 26,36}, {13, 21, 24},
{14, 18,38}, {15,29, 35}, {19,27, 34} },

U, = {{0,19,31},{3,7,27},{4,14,36}, {5, 11,33},
{6,10,30}, {8,9,13}, {12, 20, 22}, {16, 21, 28},
{17,18,23}, {24, 26,32}, {29, 37, 38} },

U, = {{1,4,6},{2,36,38},{3,19,20}, {5,714},
{8,18,22}, {9, 11,25}, {10, 26,35}, {12, 30, 34},
{13,27,37}, {17, 24,28}, {21,23, 33} },



Us = {{0,2,32},{1,24,29},{3,10,21},{6,9,27},
{7,11,22},{8,12,14},{13,16,31}, {15, 17, 26},
{19, 25,30}, {23, 36,37}, {28, 33,34} },

U = {{0,25,38},{1,7,28},{2,9,18},{3,30,35},
{4,21,29}, {5, 27,36}, {6,22,33}, {8,26,31},
{12,23,32}, {13,17,20}, {15, 19, 24}}

and

Us = {{0,27,29},{1,9,12},{2, 24,31}, {3,22, 23},
{4,20,34},{5,16,17},{7,13,26}, {10, 14, 28},
{11,21,32}, {15, 30, 38}, {18, 25,37} }.

To complete the construction we assign the blocks of a(U;) to §(B;) and the
blocks of a?(U;) to 3*(B;), j = 1,2,4,8,16,13. The entire S(2,4,61) is listed
in Table 4 at the end of the paper.

4 A type B 2-colourable S(2,4,100)

Using the same conventions as in Section 3, let the colours corresponding to
colour class sizes (55,45) be (A, B) and let the S(2,4,100) have the auto-
morphism ¢ defined by

o Ai = Aits (mod 55), Bj ¥ Bjta (mod 44),J = 0,1,...,43, Byy > Buyy.

The A system is an STS(55) and the B system is an STS(45). Both systems
have automorphism o. As an aside, we remark that the B system is an
example of a 4-rotational STS(v) and that such systems exist for all v =
1,9,13 or 21 (mod 24) [2].

Blocks in the B system are assigned to points A;, ¢ = 0,1,...,4, subject
to the conditions: (i) the B blocks assigned to A; form a partial parallel class
of size 6, and (ii) no more than one block in an orbit under the action of
o is assigned to A;. Then we apply o to assign the rest of the blocks: if
{B., By, B} is assigned to Ay, then o({B,, By, B.}) is assigned to o(Ay).

Eleven A blocks in a single orbit under the action of o are assigned to
B4y such that the points in these A blocks together with the A points to
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which the B blocks containing By, are already assigned cover a complete set
of residues modulo 55. Thus all AB4, pairs are accounted for.

Then blocks in the A system are assigned to B,, x = 0,1,2,3, subject
to the conditions: (i) the A blocks assigned to B, form a partial parallel
class of size 11 which contains none of the 22 A points to which the B blocks
containing B, have already been assigned, and (ii) no more than one block in
an orbit under the action of ¢ is assigned to B,. We complete the assignment
by applying o: if {A;, A;, Ay} is assigned to B,, then o({A;, A;, Ay}) is
assigned to o(B,).

Orbit representatives under o of the blocks of the S(2,4,100) are listed
in Table 5.

5 Type B 3-colourable S(2,4,109)s

Let the colours corresponding to colour class sizes (63,45,1) be (A, B,C)
and let the S(2,4,109) have the automorphism 7 defined by

AiHAi—f—?) (mod 63)5 i:0717"‘7627
Bj HB]'-{-Q (mod 42), j:Oa]-)"'74]-)
By — Byz v By — B,

C() = Co.
The B system is an STS(45) containing the blocks
{{Bn, Bn+14, Bn+28} n = O, 1, ey 13} and {B42, B43, B44}7

which we assign to the point Cjy. The remaining blocks are partitioned into
fifteen 21-block orbits by 7. We deal with these 315 blocks by assigning B
blocks to A;, i = 0,1,2, such that (i) the B blocks assigned to A; form a
partial parallel class of size 5, and (ii) no more than one block in an orbit
under the action of 7 is assigned to A;. The assignment is then completed
by applying the automorphism 7.

The A system is an STS(63) whose blocks are partitioned by 7 into 31
orbits of size 21, at least one of which is a parallel class. We assign one of
these parallel classes to C).

In the STS(45), the fifteen 21-block orbits under the action of 7 collec-
tively contain each B point 21 times. The points Bys, By3, By must each
occur precisely seven times in three of these orbits. Hence there are precisely
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three distinct A points, x1, zo, 3, paired with Bys such that 0 < x1, x5, 23 <
9. In the A system we choose two blocks from different orbits, {x4, x5, 26}
and {x7,xs,T9}, such that {xy, s, ..., 29} covers a complete set of residues
modulo 9. We assign these blocks to By, and extend the assignment in the
usual manner by applying 7.

For the remaining 588 blocks in the STS(63), we assign A blocks to B,,
x = 0,1, such that (i) the A blocks assigned to B, form a partial parallel
class of size 14 which contains none of the 21 A points to which the B blocks
containing B, have already been assigned, and (ii) no more than one block
in an orbit under the action of 7 is assigned to B,. Finally, the assignment
is completed by applying 7. Orbit representatives of two S(2,4,109)s are
presented as Table 6.

6 Summary

In the previous sections we have constructed three systems S(2,4,v) with
type B x-colourings, namely those for (v, x) = (61,3), (100,2) and (109, 3).
By applying the constructions of Section 2 these generate infinite families of
systems with type B x-colourings, which are given by v = 3"vy + %(3” - 1)
for vg = 61, 100 and 109, and n = 0,1,2,.... We note that in these new
families at each stage there is a choice of two colour patterns. With reference

to Table 1, we have now constructed systems with the parameters as shown
in Table 3.

Table 3: Parameters of some known type B x-colourable S(2,4,v)s

Vol X | Y72 X Vol X | Y72 X
61 | 3| 3,19, 39 301 | 3 |1, 135, 165
100 | 2 | 45, 55 301 | 3 | 45, 55, 201
109 | 3 | 1, 45, 63 328 | 4 |1, 3, 135, 189
184 | 4| 1,9, 57, 117 328 | 4 | 1, 45, 63, 219
184 | 4 | 3, 19, 39, 123

The results of this paper yield some improvements on bounds for mini-
mum embeddings of Steiner triple systems into S(2, 4, v) systems. The upper
bound on the quantity m(19) (see [6], Theorem 22(iii)) is improved from 85
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to 61, and the upper bound on ¢(19) (see Corollary 23 of the same paper) is
improved from 256 to 184. More generally, some improvements can be made
to the results of [6, Theorem 9]. By consistently selecting the second colour
class pattern from our Theorem 2.1 for the new families of S(2,4, v) systems,
the following result is easily established.

Theorem 6.1 Forn=0,1,...

)

41v — 13

mv) < —— if v=3"309,
m(v) < 67@3—815 if v=3"-45,
m(v) < % if v=23"-55,
m(v) < % if v=23"63.

Since ¢(v) < 3m(v) + 1, this also leads to corresponding improvements to
Corollary 10 of [6].
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Table 4: S(2,4,61)

Al
AT
A0
A0
A0
A0
A0
A0
A0
A0
Al
Al
Al
Al
Al
Al
A2
A2
A2
A2
A2
A2
A3
A3
A3
A3
A4
A4
A4
A5
A5
A6
A6
AT
A9
A0
A4
A23
A13
Al1T
A0
A26
A30
A10
BO
B2

Al4 A27
A20 A33
A2 A32
A4 AT

A6 A37
A9 A23
Al13 A33
Al19 A31
A27 A29
A34 A35
A5 A25
A8 A32
Al10 A18
Al6 A20
A23 A30
A31 A33
A5 A19
A7 A8

A10 A33
Al17T A25
A29 A34
A36 A38
Al10 A21
Al17 A34
A22 A23
A30 A35
A5 A10
Al19 A23
A22 A37
A8 A23
All A33
A22 A33
A25 A36
All A22
All A25
Al A17
Al18 A35
A26 A38
Al4 A30
A31 A9

Al2 A36
A27 A4

A5 A22
Al13 A25
Bl1 B4

B3 B6 A2

B5 B16 B11 A37
B8 B0 Bl14 A38
B11 B3 B17 A27
B14 B2 B4 Al5
B17 B9 B4 A29
B2 B9 B11CO0

B4 B5 B8 C1

B4 B11 B13 C2

BO
BO
B8
B5
Bl4
B9
B10
B2
B13
B3
B11
B7
B17
B14
B3
B6
B7
B18
B1
B10
Bl14
B4
B8
B17
B13
B16
B3
B1l4
B1
B1
B2
B16
B17
B8
B4
co
Cco
co
C1
C1
C1
C2
C2
C2
A0

A2 Al5 A28
A8 A21 A34
Al3 Al5 A6
Al13 A17 A20
Al3 A19 All
Al13 A22 A36
Al13 A26 A7
Al13 A32 A5
Al13 A1 A3
Al13 A8 A9
Al4 A18 A38
Al4 A21 A6
Al4 A23 A31
Al4 A29 A33
Al4 A36 A4
Al4 A5 A7
Al5 A18 A32
Al5 A20 A21
Al5 A23 A7
Al5 A30 A38
Al5 A3 A8
Al5 A10 Al12
Al6 A23 A34
Al16 A30 A8
Al6 A35 A36
Al6 A4 A9
Al17 A18 A23
Al17 A32 A36
Al17 A35 All
Al18 A21 A36
Al18 A24 A7
A19 A35 A7
Al19 A38 A10
A20 A24 A35
A22 A24 A38
All A20 A30
A31 AT A25

BO
BO
B18
B16
B3
B6
B13
B14
B15
B2
B1
B11
B5
B3
B2
B4
B11
B12
B7
B13
B3
B9
B18
B5
B15
B17
B2
B3
B7
B7
B14
B17
B5
B18
B9
co
co

A24 A33 A4
A5 A20 A38

C1
C1

A37 AT A17 C2
Al18 A33 A12 C2

BO
B2

B7 B9 A13
B13 B8 A35
B6 B13 B15 A19
B9 B10 B13 A6
B12 BO B2 A25
B15 B16 BO A1l0
B18 BO B3 Al2
B3 B4 B7 CO
B6 B17 B12 C1
B5 B12 B14 C2

A3 Al6 A29
A9 A22 A35
A26 A28 A19
A26 A30 A33
A26 A32 A24
A26 A35 A10
A26 A0 A20
A26 A6 A18
A26 Al4 Al6
A26 A21 A22
A27 A31 A12
A27 A34 A19
A27 A36 A5

A27 A3 AT

A27 A10 A17
A27 A18 A20
A28 A31 A6

A28 A33 A34
A28 A36 A20
A28 A4 Al12
A28 Al16 A21
A28 A23 A25
A29 A36 A8

A29 A4 A21
A29 A9 A10
A29 A17 A22
A30 A31 A36
A30 A6 A10
A30 A9 A24
A31 A34 A10
A31 A37 A20
A32 A9 A20
A32 A12 A23
A33 A37 A9 B12
A35 A37 Al2 B6

Al4 A15 A9 CO

A10 Al16 A37 CO

BO
BO
B12
B17
B2
B4
B15
B3
B10
B14
B7
B1
B16
B2
Bl14
B9
B1
B8
B11
B15
B2
B6
B12
B16
B10
B5
B14
B2
B11
B11
B3
B5
B16

A27 A28 A22 C1
A23 A29 A1l C1

Al A2 A35C2
A36 A3 A24 C2

BO Bl11 B6 A26
B3 B10 B12 A22
B7 B8 Bl11 A4
B10 B17 BO A23
B12 B4 B18 A31
B15 B3 B5 A21
B18 B6 B8 A18
B8 B15 B17 C0
B9 B16 B18 C1
B6 B7 B10 C2

A4
All
A0
A0
A0
A0
A0
A0
A0
Al
Al
Al
Al
Al
Al
Al
A2
A2
A2
A2
A2
A3
A3
A3
A3
A3
A4
A4
A4
A5
A5
A6
AT
AT
Al0
A2
A24

A17 A30 BO
A24 A37 BO
A3 Al18 B12
A5 A21 B17
A8 All B11
Al10 A22 B7
Al4 A24 B6
A25 A38 B16
A28 A30 B18
A4 A6 B4
AT A28 B16
A9 Al12 B13
Al5 A36 B10
Al19 A22 B18
A24 A29 B8
A34 A38 B12
A6 All B5
A9 A18 B16
Al6 A22 B11
A24 A31 B13
A30 A37 B9
A4 A31 B10
All Al12 B14
A19 A20 B4
A25 A32 B1
A33 A38 Bl11
A8 A25 B9
A20 A34 B13
A32 A38 B18
A9 A34 B6
Al2 A24 B10
A24 A34 B15
A9 A38 B3
A34 A36 B9
All A36 B18
Al2 A21 CO
A27 A8 CO

Al5
A37

A25 A34 C1
Al A21C1

A28
All

A38 A8 C2
Al4 A34 C2
Bl1 B2 B5 Al

B3 Bl14 B9 A28
BT7 Bl4 B16 Al4
B10 B2 B16 A34
B13 B14 B17 A8

B16 B17 B1 All

B12 B13 B16 C0
B10 B11 B14 C1
B9 Bl B15 C2

A5 A18 A31 BO
Al3 Al6
Al3 A18
Al3 A21 A24
Al13 A23 A35
A13 A27 A37
Al13 A38 Al12
Al13 A2 A4

Al4 A17 A19
Al4 A20 A2

Al4 A22 A25
Al4 A28 A10
Al4 A32 A35
Al4 A37 A3

Al4 A8 Al12
Al5 A19 A24
Al5 A22 A31
Al5 A29 A35
Al5 A37 A5

Al5 A4 A1l
Al6 A17 A5

Al6 A24 A25
Al6 A32 A33
Al16 A38 A6

Al6 AT Al12
A17 A21 A38
A17 A33 A8

Al17 A6 Al2
Al18 A22 A8

Al18 A25 A37
Al19 A37 A8

A20 A22 A12
A20 A8 A10
A23 A24 A10
Al13 A28 A29
A32 A34 A22

A31
A34

B8
B5
B1
B11
B4
B17
B12
B9
B17
B15
B13
B12
B18
B8
B16
B17
B1
B15
B6
B13
B3
B9
B7
B1
B6
B15
B12
B4
B13
B10
B2
B6
B12
co
co

A26 A2 A3 C1
A6 A8 A35C1

A0 Al5 Al16 C2
Al19 A21 A9 C2
B1 B8 B10 A20
B4 B15 B10 A32
B7 B18 B13 A33
B11 B12 B15 A7
B13 B5 B0 A36
B16 B4 B6 Al6

B14 B6
B13 B1
B16 B8

B1
B3
B3

co
C1
C2

A6

Al19 A32

A26 A29 A5

A26 A31 A8

A26 A34 A37
A26 A36 A9

A26 A1 All
A26 Al12 A25
A26 Al15 A17
A27 A30 A32
A27 A33 Al5
A27 A35 A38
A27 A2 A23
A27 A6 A9

A27 A1l Al6
A27 A21 A25
A28 A32 A37
A28 A35 A5

A28 A3 A9

A28 Al11 A18
A28 A17 A24
A29 A30 A18
A29 A37 A38
A29 A6 AT

A29 Al12 A19
A29 A20 A25
A30 A34 A12
A30 AT A21
A30 A19 A25
A31 A35 A21
A31 A38 All
A32 A11 A21
A33 A35 A25
A33 A21 A23
A36 A37 A23

A3

A5 A6

Al19 A33 A36

Al6 A18 A19
A32 AT A10

A29 A31 A32

A6
co
B1
B5
B8

A20 A23
c1 C2
B12 B7
B6 B9
B9 B12

B11 B18 B1
B14 B15 B18 A9
B17 B5 BT

B18 B10 B5
B15 B7 B2
B17 B18 B2

BO

B18
B16
BT
B1
B9
B5
B8
B6
B5
B10
B15
B8
B12
B18
B17
B5
B7
B10
B4
B15
B2
B6
B11
B7
B4
B10
B8
B9
B15
B13
B14
B4
B8
co
co

C1
C1

C2
C2
BO
A30
A3
A5
A17

A24
co

C1
C2
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Table 5: Orbit representatives of the S(2,4,100)

B0 Bl B9 A0
B12 B20 B10 A0
B0 B4 B33 Al
B16 B7 B11 Al
B0 B6 B24 A2
B9 Bl14 B43 A2
B0 Bl14 B21 A3
B5 B23 B44 A3
B28 B1 B14 A4
B29 B39 B2 A4
A25 A29 A19 BO
Al15 A39 A1l BO
A31 A14 A28 B0
A37 A44 A33 BO
A35 A36 A13 B1
A20 A43 A19 B1
A30 A23 A28 B1
A27 A42 A9 Bl
A5 AT A21 B2
A40 Ab4 Al5 B2
A26 A39 A24 B2
Al7 A8 A9 B2
A40 A43 A32 B3
A5 A27 A4AT B3
A31 A42 All B3
Al12 A17 A48 B3
A0 All A37 B44

B4 B6
B36 B5
B40 B3 B6 Al
B1 B2 B21 Al
B8 B19 B40 A2
B1 BT B29 A2
B4 B35 B41 A3
B2 B7 BI18 A3
B4 B22 B26 A4
B37 B5 B19 A4
A20 A32 A5 BO
A4l A43 A8 BO
Al6 A9 A12 BO
A22 A34 A38 B0
A10 A17 A18 B1
A5 A37 A39 B1
A26 A29 A34 B1
A32 A49 AT Bl
A20 A25 A46 B2
A30 A47 A19 B2
Al16 A32 A53 B2
Al13 A28 A49 B2
A35 A44 A15 B3
A25 A6 Al13 B3
Al6 A28 A34 B3
A8 A24 Ab4 B3

B23 A0
B7 A0

B8
B2
B8
B9
B4

B11 B13 A0
B3 B38 A0
B24 B5 Al
B13 B42 Al
B31 B3 A2
B5 B26 B2 A2
B1 B10 B31 A3
B22 B34 B3 A3
B0 B38 B44 A4
B3 B11 B35 A4
A35 A48 A18 B0
A21 A42 A13 BO
Al17 A23 A49 BO

A25 A44 A1l B1
Al5 A6 Al2 B1
A21 A38 A48 B1

A35 A41 A1l B2
A36 A37 A23 B2
A31 Al12 A22 B2

A10 A20 A38 B3
A21 A26 A36 B3
A41 A9 A29 B3
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Table 6: Orbit representatives of two S(2,4,109)s

B0 Bl
B14 B7
B0 B4 B13 Al
B1 B5 B35 Al
B4 B11 B42 A2
B37 B1 BI17 A2
A6 Al2 A44 BO
Al15 A29 A1l BO
A45 Al13 A31 BO
A28 A34 Ab3 BO
A6 A7 A48 Bl
A33 A45 A18 B1
A22 A25 A8 Bl
A34 A56 A4 B1
A0 A5 A25 B42
B0 B14 B28 C0

B33 A0
B9 A0

B6 B8 B37 A0

B2 BT B42 Al

B26 B34 B3 A2

A24 A32 A35 B0
A21 A37 A41 BO
A36 A7 Al16 BO
A25 A40 A17 BO
A24 A26 A53 B1
A27 A44 A16 B1
A37 A47 A35 Bl
Al4 A20 A5 B1
A6 Al13 A39 B42
B1 B15 B29 C0

B2 B5 B29 A0

B8 Bl14 B31 Al
B0 B10 B30 A2
A30 A39 A23 BO
A48 A8 A47 BO
A3 A49 A56 BO
A36 A39 Al17 B1

Al12 A31 A52 B1
A10 A23 A49 B1

B42 B43 B44 C0

B4 B20 B3 A0
B30 B3 B6 Al
B2 B23 B43 A2
A9 A22 A27 BO
Al18 A46 A10 BO
A4 A5 A38 BO
A30 A40 A28 B1

A42 A3 A29 B1
A43 A59 A38 Bl

A0 A4 A35 CO

B0 Bl B27 A0
B10 B3 B5 A0
B0 B4 B25 Al
B7 B13 B37 Al
B38 Bl B32 A2
B14 B3 B42 A2
A24 A26 A23 BO
A6 Al19 A30 BO
Al15 A35 A52 BO
Al3 Al4 A37 BO
Al15 A21 A56 Bl
A9 A23 A59 Bl
Al16 A22 A8 Bl
A29 A35 Al17 B1
A3 A6 A35 B42
B0 B14 B28 C0

B2 B4 B17 A0

B2 B21 B1 Al

B36 B2 BI18 A2
A21 A25 A47 BO
Ab1 A4 A46 BO
A45 A5 Al16 BO
A34 A41 AT B0
A36 A44 A19 B1
A6 A31 A33 B1
A37 A49 A4 B1
A32 A41 A1l B1
A0 A7 A55 B42
B1 B15 B29 C0

B6 B9 B13 A0
B6 B35 B3 Al
B0 B10 B30 A2
A27 A32 A42 BO
A36 A53 A22 B0
Al12 A40 A56 BO
A3 Al2 A50 B1

A27 AT A20 B1
A25 A53 A5 Bl

B42 B43 B44 C0

B40 B7 B15 A0
B14 B5 B44 Al
B4 B27 B44 A2
A39 A49 A18 BO
A9 A28 A31 BO
A33 A10 A29 BO
Al18 A30 A48 B1

A43 A47T A52 Bl
A40 A14 A38 B1

A0 Al All1 CO
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