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Abstract

An S(2, 4, v) design has a type B χ-colouring if it is possible to
assign one of χ colours to each point such that each block contains
three points of one colour and one point of a different colour, and all χ
colours are used. In this paper we describe the constructions of type B
χ-colourable S(2, 4, v)s for (v, χ) = (61, 3), (100, 2) and (109, 3), and
we give a new general construction.
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1 Introduction

A Steiner system, S(t, k, v), is a pair (V,B) where V is a set of cardinality
v of elements, or points, and B is a collection of k-subsets of V , also called
blocks, which has the property that every t-element subset of V occurs in
precisely one block. In this paper we are concerned only with the cases t = 2
and k = 3 or 4. An S(2, 3, v) is usually called a Steiner triple system of order
v, or STS(v) for short. An STS(v) exists if and only if v ≡ 1 or 3 (mod 6) [5],
and an S(2, 4, v) exists if and only if v ≡ 1 or 4 (mod 12) [4]. Note that v = 1
is admissible in both cases—the STS(1) and the S(2, 4, 1) each consists of a
single point and an empty set of blocks. A resolvable Steiner triple system is
an STS(v) whose blocks can be partitioned into (v − 1)/2 resolution classes
Bi, i = 1, 2, . . . , (v − 1)/2, where |Bi| = v/3 and Bi covers the entire point
set. A Kirkman triple system of order v, KTS(v), is a resolvable STS(v) with
a specified partition into resolution classes.

In this paper, we are interested in colourings of Steiner systems. A χ-
colouring of a Steiner system (V,B) is a surjection φ : V → Γ where Γ is a set
of cardinality χ whose elements are called colours. In the case of a Steiner
triple system, each block will have one of three colour patterns: {a, a, a}
(type A), {a, a, b} (type B), or {a, b, c} (type C). Let X ⊆ {A, B, C}. A
χ-colouring of type X is a colouring as defined above in which each block
is of type I for some I ∈ X. We will also require that every block type
of X must occur. Thus there are eight possible combinations of colourings
although some of these are trivial. There exists an extensive literature on
colourings of Steiner triple systems.

In [7], the authors extend the above ideas to colourings of Steiner systems
S(2, 4, v). Here there are five colour patterns: {a, a, a, a} (type A), {a, a, a, b}
(type B), {a, a, b, b} (type C), {a, a, b, c} (type D) and {a, b, c, d} (type E),
and consequently 32 possible combinations of colourings. Of these, perhaps
the most natural are those in which the set X consists of just one type. The
cases where X = {A} or X = {E} are trivial. Moreover, it was shown in [7]
that an S(2, 4, v) has a χ-colouring of type X = {C} if and only if v = 4 and
χ = 2. That leaves colourings where X = {B} or X = {D}. The former case
is of particular interest and we will refer to such colourings simply as type B
χ-colourings.

In the next section we review some properties of S(2, 4, v) systems and
their type B χ-colourings. If the colour set is Γ = {Γ1, Γ2, . . . Γχ}, we let
γi = |φ−1(Γi)|, i = 1, 2, . . . , χ, the colour class sizes. However, in describing
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constructions it is more convenient to use unsubscripted letters for the ele-
ments of Γ, in which case we would, for instance, refer to the members of
φ−1(X) as ‘X points’.

2 Type B χ-colourable S(2, 4, v) systems

The first lemma, which is inherent in [7] and is easy to prove, provides impor-
tant information on the structure of Steiner systems S(2, 4, v) with type B
χ-colourings.

Lemma 2.1 Suppose S = (V,B) is an S(2, 4, v) with a type B χ-colouring
φ : V → Γ = {Γ1, Γ2, . . . , Γχ}. For i = 1, 2, . . . , χ, let Vi = φ−1(Γi); then

(Vi, {{a, b, c} : {a, b, c, d} ∈ B, {a, b, c} ⊆ Vi}) (1)

is a Steiner triple system of order |Vi|.

Proof. If |Vi| > 1 and {a, b} ⊆ Vi, then a and b must both occur in a block
of S together with precisely one other point of the same colour. On the other
hand, if |Vi| = 1, then (Vi, ∅) forms an STS(1). �

The next two lemmas come directly from [7].

Lemma 2.2 Let S = (V,B) be an S(2, 4, v) with V = {q1, q2, . . . , qv}, and
let (K, C), K ∩ V = ∅, be a KTS(2v + 1) with resolution classes C1, C2, . . . ,
Cv. Let

Q =
v⋃

i=1

{{x, y, z, qi} : {x, y, z} ∈ Ci}.

Then S ′ = (V ∪K,B ∪Q) is an S(2, 4, 3v + 1). Furthermore, if S is type B
χ-colourable, then S ′ is type B (χ + 1)-colourable.

Proof. This is the well-known 3v + 1 construction. Also it is plain that as-
signing a (χ+1)-th colour to the points of the Kirkman triple system results
in a valid type B (χ + 1)-colouring of S ′. �

Remark. We will show in Theorem 2.1 that, by careful choice of the
KTS(2v + 1), it is generally possible to obtain an alternative type B (χ + 1)-
colouring pattern for the S(2, 4, 3v + 1).
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Lemma 2.3 For v = (3χ − 1)/2, χ = 2, 3, . . . , there exists a type B χ-
colourable S(2, 4, v).

Proof. Clearly, the S(2, 4, 4) system has a type B 2-colouring. Apply
Lemma 2.2 recursively to obtain systems with orders given as follows.

χ 2 3 4 5 6 7 . . . χ

v 4 13 40 121 364 1093 . . . 1
2
(3χ − 1)

For the Kirkman triple system, one can use the affine STS(3χ) and resolution
classes described in [1, pp 149–150]. �

Until recently, it seemed that Lemma 2.3 accounted for the only known
examples of type B χ-colourable S(2, 4, v) systems. All such systems, how-
ever, must satisfy the conditions in the next lemma.

Lemma 2.4 Let (V,B) be a type B χ-colourable S(2, 4, v) with colour class
sizes γ1, γ2, . . . , γχ. Then

(i) for i = 1, 2, . . . , χ, γi ≡ 1 or 3 (mod 6), with precisely one γi ≡
1 (mod 6);

(ii)
∑χ

i=1

(
γi

2

)
=

∑
1≤i<j≤χ γiγj = 1

4
v(v − 1);

(iii) for i = 1, 2, . . . , χ, γi ≤ 1
3
(2v + 1);

(iv) γi = 1
3
(2v + 1) for some i if and only if the S(2, 4, v) can be obtained

from an S(2, 4, v − γi) via Lemma 2.2;

(v) for 0 ≤ i < j ≤ χ, (γi − γj)
2 ≥ γi + γj.

Proof. For items (i)–(iii), see Lemma 3.7 of [7]; and (iv) follows easily from
the proof of Lemma 2.2, above. For (v), denote the i-th colour class by Γi

and observe that the γiγj {Γi, Γj} pairs , i 6= j, must come from blocks of
the form {Γi, Γi, Γi, Γj} or {Γj, Γj, Γj, Γi}. Hence

1

2
γi(γi − 1) +

1

2
γj(γj − 1) ≥ γiγj.

Note in particular that one cannot have two equal colour class sizes. �
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Table 1: Parameters of possible type B χ-colourable S(2, 4, v)s

v χ γ1, γ2, . . . , γχ v χ γ1, γ2, . . . , γχ

61 3 3, 19, 39 313 5 1, 3, 9, 105, 195
100 2 45, 55 328 4 1, 3, 135, 189
109 3 1, 45, 63 328 4 1, 45, 63, 219
184 4 1, 9, 57, 117 328 4 9, 15, 91, 213
184 4 3, 19, 39, 123 361 5 1, 9, 21, 93, 237
196 2 91, 105 361 5 3, 9, 15, 99, 235
232 4 3, 9, 73, 147 397 3 19, 129, 249
232 4 3, 19, 57, 153 424 4 9, 19, 123, 273
301 3 1, 135, 165 457 5 3, 15, 27, 109, 303
301 3 9, 109, 183 484 2 231, 253
301 3 33, 69, 199 505 5 3, 9, 21, 147, 325
301 3 45, 55, 201 505 5 9, 15, 21, 127, 333

For v ≤ 505, the only possible parameter sets satisfying Lemma 2.4, other
than those arising from Lemma 2.3, are given in Table 1.

The existence of a type B 2-colourable S(2, 4, 100) is a long-standing
problem. It was already raised by de Resmini [8] in a paper published in 1981.
It is the first non-trivial system of a potential infinite sequence of type B 2-
colourable Steiner systems S(2, 4, v) where v = (12s+2)2 or v = (12s+10)2,
s ≥ 0, and the two colour class sizes are (v ±

√
v)/2. In [7], the explicit

issue of finding a type B 3-colourable S(2, 4, v) for each of v = 61 and 109
was formulated. All of these problems were restated in [9]. The closely
related problem of embedding Steiner triple systems into S(2, 4, v) systems
is discussed at length in [6].

A type B 2-colourable S(2, 4, 100) was recently constructed by the authors
and appears in [3]. In the current paper we give constructions for other
systems listed in Table 1; specifically for v = 61 and 109. Also we briefly
describe the system for v = 100 from [3] for completeness. We make no claim
that any of the systems are unique up to isomorphism for their types. Indeed,
for v = 109, which we found to be the easiest to construct, we have several
systems and we list two examples. Further systems arise from repeated use
of Theorem 2.1.
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Theorem 2.1 may be regarded as an extension of Lemma 2.2, where the
KTS(2v + 1) is obtained from the S(2, 4, v) and the resulting S(2, 4, 3v + 1)
then generally has two alternative type B (χ + 1)-colouring patterns.

Theorem 2.1 Let S be a type B χ-colourable S(2, 4, v) system with colour
class sizes {γ1, γ2, . . . , γχ}. Then there exists a type B (χ + 1)-colourable
S(2, 4, 3v + 1) which may be coloured either with colour class sizes {γ1, γ2,
. . . , γχ, 2v + 1} or with colour class sizes {1, 3γ1, 3γ2, . . . , 3γχ}.

Proof. The former colouring pattern is generated by Lemma 2.2 using any
KTS(2v + 1) in that construction.

To deal with the latter colouring pattern, let S = (V,B), where V = {i0 :
i = 1, 2, . . . , v}. For each block {x0, y0, z0, w0} ∈ B, take a fixed ordering of
the block, (x0, y0, z0, w0). From these ordered blocks we create a KTS(2v+1)
on the point set V ′ = {i1, i2 : i = 1, 2, . . . , v} ∪ {∞}. We list the blocks of
this design in v parallel classes each of which is associated with a single
point of V . The ordered block (x0, y0, z0, w0) obtained from B contributes
the following triples to these classes.

(i) {y1, z2, w1} and {y2, z1, w2} associated with x0,

(ii) {x2, z1, w1} and {x1, z2, w2} associated with y0,

(iii) {x1, y2, w1} and {x2, y1, w2} associated with z0,

(iv) {x1, y1, z1} and {x2, y2, z2} associated with w0.

In addition, the class associated with i0 contains the triple {∞, i1, i2}. Thus
each class contains 2(v − 1)/3 + 1 = (2v + 1)/3 disjoint blocks and so forms
a parallel class of triples on V ′. It is also easy to see that the complete set
of triples forms an STS(2v + 1) and hence, with the specified resolution, a
KTS(2v + 1). From the KTS(2v + 1) and the original S(2, 4, v) we form an
S(2, 4, 3v + 1) using the method of Lemma 2.2 and taking care to adjoin to
each parallel class the point of V with which it is associated. We now colour
the points i1, i2 with the same colour as i0 for each i = 1, 2, . . . , v and we
assign a new colour to the point ∞.

We note that the two colour patterns presented are identical if and only
if {γ1, γ2, . . . , γχ, 2v + 1} = {1, 3γ1, 3γ2, . . . , 3γχ} = {1, 3, 32, . . . , 3χ},
which is the case covered by Lemma 2.3. �
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3 A type B 3-colourable S(2, 4, 61)

Here we consider the first entry in Table 1. We construct an S(2, 4, 61)
together with a type B 3-colouring having colour class sizes 39, 19 and 3.
Denote the corresponding colours by A, B and C, respectively. For each of
the three STS(v)s identified by Lemma 2.1, let the points be the integers
0, 1, . . . , v − 1 indexed by the system’s colour. We denote a point by any of
the descriptions Xn, Xn and n, where X is the colour and n is the integer;
the second option appears only in Tables 2, 4, 5 and 6, and the third option
is used only if the colour is clear from the context. Arithmetic on points is
performed on the integer parts in an appropriate ring.

Let the A system be an STS(39) with the automorphism α defined by

α : Ai 7→ Ai+13 (mod 39).

For the B system, we choose the cyclic STS(19) with starter blocks {0, 1, 4},
{0, 7, 9} and {0, 11, 6}, and automorphism β : Bj 7→ B7j (mod 19). Note that
β leaves B0 fixed and partitions the other B points into six orbits of size 3.

We begin with the block

{C0, C1, C2, B0}

and we assign blocks of the B system to A and C points as in Table 2.
Observe that if {Bx, By, Bz} is assigned to point Ai, then β({Bx, By, Bz})
is assigned to point α(Ai) while if {Bx, By, Bz} is assigned to point Ci then
β({Bx, By, Bz}) is also assigned to the point Ci. This latter assignment is
also done in such a way that each Ci is paired with each Bj, j 6= 0. Thus we
have dealt with the 171 BB pairs, the 57 BC pairs, the three CC pairs, and,
so far, also 117 AB pairs.

For the STS(39), we first create the set of ten A blocks

U0 = {{Ai, A13+i, A26+i} : i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 11}.

and assign them to B0. These blocks are fixed under the action of α and
they account for the remaining AB0 pairs. For j = 1, 2, . . . 18, let Ωj denote
the set of A points that have so far been paired with Bj. Then from Table 2
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Table 2: STS(19) – the B system for the S(2, 4, 61)

0 1 4 A0 0 7 9 A13 0 11 6 A26
1 2 5 A1 1 8 10 A20 1 12 7 A30
2 3 6 A2 2 9 11 C0 2 13 8 A35
3 4 7 C0 3 10 12 A22 3 14 9 A28
4 5 8 C1 4 11 13 C2 4 15 10 A32
5 6 9 A3 5 12 14 C2 5 16 11 A37
6 7 10 C2 6 13 15 A19 6 17 12 C1
7 8 11 A4 7 14 16 A14 7 18 13 A33
8 9 12 A5 8 15 17 C0 8 0 14 A38
9 10 13 A6 9 16 18 C1 9 1 15 C2

10 11 14 C1 10 17 0 A23 10 2 16 A34
11 12 15 A7 11 18 1 A17 11 3 17 A27
12 13 16 C0 12 0 2 A25 12 4 18 A31
13 14 17 A8 13 1 3 C1 13 5 0 A36
14 15 18 A9 14 2 4 A15 14 6 1 C0
15 16 0 A10 15 3 5 A21 15 7 2 C1
16 17 1 A11 16 4 6 A16 16 8 3 C2
17 18 2 C2 17 5 7 A24 17 9 4 A29
18 0 3 A12 18 6 8 A18 18 10 5 C0

we have

Ω1 = {A0, A1, A11, A17, A20, A30},
Ω2 = {A1, A2, A15, A25, A34, A35},
Ω4 = {A0, A15, A16, A29, A31, A32},
Ω8 = {A4, A5, A18, A20, A35, A38},

Ω16 = {A10, A11, A14, A16, A34, A37},
Ω13 = {A6, A8, A19, A33, A35, A36},

and Ωβ(j) = α(Ωj).
Next we search for a set T of A blocks such that (i) the blocks of T form

a parallel class, (ii) no two blocks of T lie in the same orbit under the action
of α, and (iii) blocks which are fixed by α are not used in T . A computer
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search produces 1038 sets, of which we select one,

T0 = {{0, 1, 17}, {11, 20, 30}, {14, 15, 9}, {2, 12, 21}, {13, 28, 29},
{3, 5, 6}, {4, 18, 35}, {31, 7, 25}, {10, 16, 37}, {24, 27, 8},
{32, 34, 22}, {19, 33, 36}, {23, 26, 38}},

and we assign the blocks of T0 to C0. Together with T1 = α(T0) (assigned
to C1), T2 = α2(T0) (assigned to C2) and U0, we now have 49 A blocks and
have dealt with 117 AC pairs.

The A system is extended to an STS(39) by hill climbing [10] and these
A blocks are assigned to points Bj, j = 1, 2, 4, 8, 16, 13, under the following
conditions.

(i) During the hill-climbing process, blocks are added to the system or
removed from the system in triples: X, α(X) and α2(X). Blocks in
U0∪T0∪T1∪T2 are never removed. Blocks fixed by α are never added.

(ii) The blocks assigned to Bj form a partial parallel class Uj of size 11 that
does not contain any of the points in Ωj.

(iii) At most one block in each orbit under the action of α is assigned to Bj.

A solution is given by assigning the blocks of Uj to Bj, j = 1, 2, 4, 8, 16, 13,
where the Uj are defined by

U1 = {{2, 10, 33}, {3, 25, 32}, {4, 22, 37}, {5, 8, 23},
{6, 28, 31}, {7, 12, 16}, {9, 26, 36}, {13, 21, 24},
{14, 18, 38}, {15, 29, 35}, {19, 27, 34}},

U2 = {{0, 19, 31}, {3, 7, 27}, {4, 14, 36}, {5, 11, 33},
{6, 10, 30}, {8, 9, 13}, {12, 20, 22}, {16, 21, 28},
{17, 18, 23}, {24, 26, 32}, {29, 37, 38}},

U4 = {{1, 4, 6}, {2, 36, 38}, {3, 19, 20}, {5, 7, 14},
{8, 18, 22}, {9, 11, 25}, {10, 26, 35}, {12, 30, 34},
{13, 27, 37}, {17, 24, 28}, {21, 23, 33}},
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U8 = {{0, 2, 32}, {1, 24, 29}, {3, 10, 21}, {6, 9, 27},
{7, 11, 22}, {8, 12, 14}, {13, 16, 31}, {15, 17, 26},
{19, 25, 30}, {23, 36, 37}, {28, 33, 34}},

U16 = {{0, 25, 38}, {1, 7, 28}, {2, 9, 18}, {3, 30, 35},
{4, 21, 29}, {5, 27, 36}, {6, 22, 33}, {8, 26, 31},
{12, 23, 32}, {13, 17, 20}, {15, 19, 24}}

and

U13 = {{0, 27, 29}, {1, 9, 12}, {2, 24, 31}, {3, 22, 23},
{4, 20, 34}, {5, 16, 17}, {7, 13, 26}, {10, 14, 28},
{11, 21, 32}, {15, 30, 38}, {18, 25, 37}}.

To complete the construction we assign the blocks of α(Uj) to β(Bj) and the
blocks of α2(Uj) to β2(Bj), j = 1, 2, 4, 8, 16, 13. The entire S(2, 4, 61) is listed
in Table 4 at the end of the paper.

4 A type B 2-colourable S(2, 4, 100)

Using the same conventions as in Section 3, let the colours corresponding to
colour class sizes (55, 45) be (A, B) and let the S(2, 4, 100) have the auto-
morphism σ defined by

σ : Ai 7→ Ai+5 (mod 55), Bj 7→ Bj+4 (mod 44), j = 0, 1, . . . , 43, B44 7→ B44.

The A system is an STS(55) and the B system is an STS(45). Both systems
have automorphism σ. As an aside, we remark that the B system is an
example of a 4-rotational STS(v) and that such systems exist for all v ≡
1, 9, 13 or 21 (mod 24) [2].

Blocks in the B system are assigned to points Ai, i = 0, 1, . . . , 4, subject
to the conditions: (i) the B blocks assigned to Ai form a partial parallel class
of size 6, and (ii) no more than one block in an orbit under the action of
σ is assigned to Ai. Then we apply σ to assign the rest of the blocks: if
{Bx, By, Bz} is assigned to Ak, then σ({Bx, By, Bz}) is assigned to σ(Ak).

Eleven A blocks in a single orbit under the action of σ are assigned to
B44 such that the points in these A blocks together with the A points to
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which the B blocks containing B44 are already assigned cover a complete set
of residues modulo 55. Thus all AB44 pairs are accounted for.

Then blocks in the A system are assigned to Bx, x = 0, 1, 2, 3, subject
to the conditions: (i) the A blocks assigned to Bx form a partial parallel
class of size 11 which contains none of the 22 A points to which the B blocks
containing Bx have already been assigned, and (ii) no more than one block in
an orbit under the action of σ is assigned to Bx. We complete the assignment
by applying σ: if {Ai, Aj, Ak} is assigned to Bz, then σ({Ai, Aj, Ak}) is
assigned to σ(Bz).

Orbit representatives under σ of the blocks of the S(2, 4, 100) are listed
in Table 5.

5 Type B 3-colourable S(2, 4, 109)s

Let the colours corresponding to colour class sizes (63, 45, 1) be (A, B, C)
and let the S(2, 4, 109) have the automorphism τ defined by

τ :


Ai 7→ Ai+3 (mod 63), i = 0, 1, . . . , 62,
Bj 7→ Bj+2 (mod 42), j = 0, 1, . . . , 41,
B42 7→ B43 7→ B44 7→ B42,
C0 7→ C0.

The B system is an STS(45) containing the blocks

{{Bn, Bn+14, Bn+28} : n = 0, 1, . . . , 13} and {B42, B43, B44},

which we assign to the point C0. The remaining blocks are partitioned into
fifteen 21-block orbits by τ . We deal with these 315 blocks by assigning B
blocks to Ai, i = 0, 1, 2, such that (i) the B blocks assigned to Ai form a
partial parallel class of size 5, and (ii) no more than one block in an orbit
under the action of τ is assigned to Ai. The assignment is then completed
by applying the automorphism τ .

The A system is an STS(63) whose blocks are partitioned by τ into 31
orbits of size 21, at least one of which is a parallel class. We assign one of
these parallel classes to C0.

In the STS(45), the fifteen 21-block orbits under the action of τ collec-
tively contain each B point 21 times. The points B42, B43, B44 must each
occur precisely seven times in three of these orbits. Hence there are precisely
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three distinct A points, x1, x2, x3, paired with B42 such that 0 ≤ x1, x2, x3 <
9. In the A system we choose two blocks from different orbits, {x4, x5, x6}
and {x7, x8, x9}, such that {x1, x2, . . . , x9} covers a complete set of residues
modulo 9. We assign these blocks to B42 and extend the assignment in the
usual manner by applying τ .

For the remaining 588 blocks in the STS(63), we assign A blocks to Bx,
x = 0, 1, such that (i) the A blocks assigned to Bx form a partial parallel
class of size 14 which contains none of the 21 A points to which the B blocks
containing Bx have already been assigned, and (ii) no more than one block
in an orbit under the action of τ is assigned to Bx. Finally, the assignment
is completed by applying τ . Orbit representatives of two S(2, 4, 109)s are
presented as Table 6.

6 Summary

In the previous sections we have constructed three systems S(2, 4, v) with
type B χ-colourings, namely those for (v, χ) = (61, 3), (100, 2) and (109, 3).
By applying the constructions of Section 2 these generate infinite families of
systems with type B χ-colourings, which are given by v = 3nv0 + 1

2
(3n − 1)

for v0 = 61, 100 and 109, and n = 0, 1, 2, . . . . We note that in these new
families at each stage there is a choice of two colour patterns. With reference
to Table 1, we have now constructed systems with the parameters as shown
in Table 3.

Table 3: Parameters of some known type B χ-colourable S(2, 4, v)s

v χ γ1, γ2, . . . , γχ v χ γ1, γ2, . . . , γχ

61 3 3, 19, 39 301 3 1, 135, 165
100 2 45, 55 301 3 45, 55, 201
109 3 1, 45, 63 328 4 1, 3, 135, 189
184 4 1, 9, 57, 117 328 4 1, 45, 63, 219
184 4 3, 19, 39, 123

The results of this paper yield some improvements on bounds for mini-
mum embeddings of Steiner triple systems into S(2, 4, v) systems. The upper
bound on the quantity m(19) (see [6], Theorem 22(iii)) is improved from 85
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to 61, and the upper bound on q(19) (see Corollary 23 of the same paper) is
improved from 256 to 184. More generally, some improvements can be made
to the results of [6, Theorem 9]. By consistently selecting the second colour
class pattern from our Theorem 2.1 for the new families of S(2, 4, v) systems,
the following result is easily established.

Theorem 6.1 For n = 0, 1, . . . ,

m(v) ≤ 41v − 13

26
if v = 3n · 39,

m(v) ≤ 67v − 15

30
if v = 3n · 45,

m(v) ≤ 201v − 55

110
if v = 3n · 55,

m(v) ≤ 73v − 21

42
if v = 3n · 63.

Since q(v) ≤ 3m(v) + 1, this also leads to corresponding improvements to
Corollary 10 of [6].
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Table 4: S(2, 4, 61)

A1 A14 A27 B0 A2 A15 A28 B0 A3 A16 A29 B0 A4 A17 A30 B0 A5 A18 A31 B0 A6 A19 A32 B0
A7 A20 A33 B0 A8 A21 A34 B0 A9 A22 A35 B0 A11 A24 A37 B0
A0 A2 A32 B8 A13 A15 A6 B18 A26 A28 A19 B12 A0 A3 A18 B12 A13 A16 A31 B8 A26 A29 A5 B18
A0 A4 A7 B5 A13 A17 A20 B16 A26 A30 A33 B17 A0 A5 A21 B17 A13 A18 A34 B5 A26 A31 A8 B16
A0 A6 A37 B14 A13 A19 A11 B3 A26 A32 A24 B2 A0 A8 A11 B11 A13 A21 A24 B1 A26 A34 A37 B7
A0 A9 A23 B9 A13 A22 A36 B6 A26 A35 A10 B4 A0 A10 A22 B7 A13 A23 A35 B11 A26 A36 A9 B1
A0 A13 A33 B10 A13 A26 A7 B13 A26 A0 A20 B15 A0 A14 A24 B6 A13 A27 A37 B4 A26 A1 A11 B9
A0 A19 A31 B2 A13 A32 A5 B14 A26 A6 A18 B3 A0 A25 A38 B16 A13 A38 A12 B17 A26 A12 A25 B5
A0 A27 A29 B13 A13 A1 A3 B15 A26 A14 A16 B10 A0 A28 A30 B18 A13 A2 A4 B12 A26 A15 A17 B8
A0 A34 A35 B3 A13 A8 A9 B2 A26 A21 A22 B14 A1 A4 A6 B4 A14 A17 A19 B9 A27 A30 A32 B6
A1 A5 A25 B11 A14 A18 A38 B1 A27 A31 A12 B7 A1 A7 A28 B16 A14 A20 A2 B17 A27 A33 A15 B5
A1 A8 A32 B7 A14 A21 A6 B11 A27 A34 A19 B1 A1 A9 A12 B13 A14 A22 A25 B15 A27 A35 A38 B10
A1 A10 A18 B17 A14 A23 A31 B5 A27 A36 A5 B16 A1 A15 A36 B10 A14 A28 A10 B13 A27 A2 A23 B15
A1 A16 A20 B14 A14 A29 A33 B3 A27 A3 A7 B2 A1 A19 A22 B18 A14 A32 A35 B12 A27 A6 A9 B8
A1 A23 A30 B3 A14 A36 A4 B2 A27 A10 A17 B14 A1 A24 A29 B8 A14 A37 A3 B18 A27 A11 A16 B12
A1 A31 A33 B6 A14 A5 A7 B4 A27 A18 A20 B9 A1 A34 A38 B12 A14 A8 A12 B8 A27 A21 A25 B18
A2 A5 A19 B7 A15 A18 A32 B11 A28 A31 A6 B1 A2 A6 A11 B5 A15 A19 A24 B16 A28 A32 A37 B17
A2 A7 A8 B18 A15 A20 A21 B12 A28 A33 A34 B8 A2 A9 A18 B16 A15 A22 A31 B17 A28 A35 A5 B5
A2 A10 A33 B1 A15 A23 A7 B7 A28 A36 A20 B11 A2 A16 A22 B11 A15 A29 A35 B1 A28 A3 A9 B7
A2 A17 A25 B10 A15 A30 A38 B13 A28 A4 A12 B15 A2 A24 A31 B13 A15 A37 A5 B15 A28 A11 A18 B10
A2 A29 A34 B14 A15 A3 A8 B3 A28 A16 A21 B2 A2 A30 A37 B9 A15 A4 A11 B6 A28 A17 A24 B4
A2 A36 A38 B4 A15 A10 A12 B9 A28 A23 A25 B6 A3 A4 A31 B10 A16 A17 A5 B13 A29 A30 A18 B15
A3 A10 A21 B8 A16 A23 A34 B18 A29 A36 A8 B12 A3 A11 A12 B14 A16 A24 A25 B3 A29 A37 A38 B2
A3 A17 A34 B17 A16 A30 A8 B5 A29 A4 A21 B16 A3 A19 A20 B4 A16 A32 A33 B9 A29 A6 A7 B6
A3 A22 A23 B13 A16 A35 A36 B15 A29 A9 A10 B10 A3 A25 A32 B1 A16 A38 A6 B7 A29 A12 A19 B11
A3 A30 A35 B16 A16 A4 A9 B17 A29 A17 A22 B5 A3 A33 A38 B11 A16 A7 A12 B1 A29 A20 A25 B7
A4 A5 A10 B3 A17 A18 A23 B2 A30 A31 A36 B14 A4 A8 A25 B9 A17 A21 A38 B6 A30 A34 A12 B4
A4 A19 A23 B14 A17 A32 A36 B3 A30 A6 A10 B2 A4 A20 A34 B13 A17 A33 A8 B15 A30 A7 A21 B10
A4 A22 A37 B1 A17 A35 A11 B7 A30 A9 A24 B11 A4 A32 A38 B18 A17 A6 A12 B12 A30 A19 A25 B8
A5 A8 A23 B1 A18 A21 A36 B7 A31 A34 A10 B11 A5 A9 A34 B6 A18 A22 A8 B4 A31 A35 A21 B9
A5 A11 A33 B2 A18 A24 A7 B14 A31 A37 A20 B3 A5 A12 A24 B10 A18 A25 A37 B13 A31 A38 A11 B15
A6 A22 A33 B16 A19 A35 A7 B17 A32 A9 A20 B5 A6 A24 A34 B15 A19 A37 A8 B10 A32 A11 A21 B13
A6 A25 A36 B17 A19 A38 A10 B5 A32 A12 A23 B16 A7 A9 A38 B3 A20 A22 A12 B2 A33 A35 A25 B14
A7 A11 A22 B8 A20 A24 A35 B18 A33 A37 A9 B12 A7 A34 A36 B9 A20 A8 A10 B6 A33 A21 A23 B4
A9 A11 A25 B4 A22 A24 A38 B9 A35 A37 A12 B6 A10 A11 A36 B18 A23 A24 A10 B12 A36 A37 A23 B8
A0 A1 A17 C0 A11 A20 A30 C0 A14 A15 A9 C0 A2 A12 A21 C0 A13 A28 A29 C0 A3 A5 A6 C0
A4 A18 A35 C0 A31 A7 A25 C0 A10 A16 A37 C0 A24 A27 A8 C0 A32 A34 A22 C0 A19 A33 A36 C0
A23 A26 A38 C0
A13 A14 A30 C1 A24 A33 A4 C1 A27 A28 A22 C1 A15 A25 A34 C1 A26 A2 A3 C1 A16 A18 A19 C1
A17 A31 A9 C1 A5 A20 A38 C1 A23 A29 A11 C1 A37 A1 A21 C1 A6 A8 A35 C1 A32 A7 A10 C1
A0 A12 A36 C1
A26 A27 A4 C2 A37 A7 A17 C2 A1 A2 A35 C2 A28 A38 A8 C2 A0 A15 A16 C2 A29 A31 A32 C2
A30 A5 A22 C2 A18 A33 A12 C2 A36 A3 A24 C2 A11 A14 A34 C2 A19 A21 A9 C2 A6 A20 A23 C2
A10 A13 A25 C2 C0 C1 C2 B0
B0 B1 B4 A0 B0 B7 B9 A13 B0 B11 B6 A26 B1 B2 B5 A1 B1 B8 B10 A20 B1 B12 B7 A30
B2 B3 B6 A2 B2 B13 B8 A35 B3 B10 B12 A22 B3 B14 B9 A28 B4 B15 B10 A32 B5 B6 B9 A3
B5 B16 B11 A37 B6 B13 B15 A19 B7 B8 B11 A4 B7 B14 B16 A14 B7 B18 B13 A33 B8 B9 B12 A5
B8 B0 B14 A38 B9 B10 B13 A6 B10 B17 B0 A23 B10 B2 B16 A34 B11 B12 B15 A7 B11 B18 B1 A17
B11 B3 B17 A27 B12 B0 B2 A25 B12 B4 B18 A31 B13 B14 B17 A8 B13 B5 B0 A36 B14 B15 B18 A9
B14 B2 B4 A15 B15 B16 B0 A10 B15 B3 B5 A21 B16 B17 B1 A11 B16 B4 B6 A16 B17 B5 B7 A24
B17 B9 B4 A29 B18 B0 B3 A12 B18 B6 B8 A18
B2 B9 B11 C0 B3 B4 B7 C0 B8 B15 B17 C0 B12 B13 B16 C0 B14 B6 B1 C0 B18 B10 B5 C0
B4 B5 B8 C1 B6 B17 B12 C1 B9 B16 B18 C1 B10 B11 B14 C1 B13 B1 B3 C1 B15 B7 B2 C1
B4 B11 B13 C2 B5 B12 B14 C2 B6 B7 B10 C2 B9 B1 B15 C2 B16 B8 B3 C2 B17 B18 B2 C2
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Table 5: Orbit representatives of the S(2, 4, 100)

B0 B1 B9 A0 B4 B6 B23 A0 B8 B11 B13 A0
B12 B20 B10 A0 B36 B5 B7 A0 B2 B3 B38 A0
B0 B4 B33 A1 B40 B3 B6 A1 B8 B24 B5 A1
B16 B7 B11 A1 B1 B2 B21 A1 B9 B13 B42 A1
B0 B6 B24 A2 B8 B19 B40 A2 B4 B31 B3 A2
B9 B14 B43 A2 B1 B7 B29 A2 B5 B26 B2 A2
B0 B14 B21 A3 B4 B35 B41 A3 B1 B10 B31 A3
B5 B23 B44 A3 B2 B7 B18 A3 B22 B34 B3 A3
B28 B1 B14 A4 B4 B22 B26 A4 B0 B38 B44 A4
B29 B39 B2 A4 B37 B5 B19 A4 B3 B11 B35 A4
A25 A29 A19 B0 A20 A32 A5 B0 A35 A48 A18 B0
A15 A39 A11 B0 A41 A43 A8 B0 A21 A42 A13 B0
A31 A14 A28 B0 A16 A9 A12 B0 A17 A23 A49 B0
A37 A44 A33 B0 A22 A34 A38 B0
A35 A36 A13 B1 A10 A17 A18 B1 A25 A44 A11 B1
A20 A43 A19 B1 A5 A37 A39 B1 A15 A6 A12 B1
A30 A23 A28 B1 A26 A29 A34 B1 A21 A38 A48 B1
A27 A42 A9 B1 A32 A49 A7 B1
A5 A7 A21 B2 A20 A25 A46 B2 A35 A41 A11 B2
A40 A54 A15 B2 A30 A47 A19 B2 A36 A37 A23 B2
A26 A39 A24 B2 A16 A32 A53 B2 A31 A12 A22 B2
A17 A8 A9 B2 A13 A28 A49 B2
A40 A43 A32 B3 A35 A44 A15 B3 A10 A20 A38 B3
A5 A27 A47 B3 A25 A6 A13 B3 A21 A26 A36 B3
A31 A42 A11 B3 A16 A28 A34 B3 A41 A9 A29 B3
A12 A17 A48 B3 A8 A24 A54 B3
A0 A11 A37 B44
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Table 6: Orbit representatives of two S(2, 4, 109)s

B0 B1 B33 A0 B6 B8 B37 A0 B2 B5 B29 A0 B4 B20 B3 A0
B14 B7 B9 A0
B0 B4 B13 A1 B2 B7 B42 A1 B8 B14 B31 A1 B30 B3 B6 A1
B1 B5 B35 A1
B4 B11 B42 A2 B26 B34 B3 A2 B0 B10 B30 A2 B2 B23 B43 A2
B37 B1 B17 A2
A6 A12 A44 B0 A24 A32 A35 B0 A30 A39 A23 B0 A9 A22 A27 B0
A15 A29 A11 B0 A21 A37 A41 B0 A48 A8 A47 B0 A18 A46 A10 B0
A45 A13 A31 B0 A36 A7 A16 B0 A3 A49 A56 B0 A4 A5 A38 B0
A28 A34 A53 B0 A25 A40 A17 B0
A6 A7 A48 B1 A24 A26 A53 B1 A36 A39 A17 B1 A30 A40 A28 B1
A33 A45 A18 B1 A27 A44 A16 B1 A12 A31 A52 B1 A42 A3 A29 B1
A22 A25 A8 B1 A37 A47 A35 B1 A10 A23 A49 B1 A43 A59 A38 B1
A34 A56 A4 B1 A14 A20 A5 B1
A0 A5 A25 B42 A6 A13 A39 B42
B0 B14 B28 C0 B1 B15 B29 C0 B42 B43 B44 C0 A0 A4 A35 C0

B0 B1 B27 A0 B2 B4 B17 A0 B6 B9 B13 A0 B40 B7 B15 A0
B10 B3 B5 A0
B0 B4 B25 A1 B2 B21 B1 A1 B6 B35 B3 A1 B14 B5 B44 A1
B7 B13 B37 A1
B38 B1 B32 A2 B36 B2 B18 A2 B0 B10 B30 A2 B4 B27 B44 A2
B14 B3 B42 A2
A24 A26 A23 B0 A21 A25 A47 B0 A27 A32 A42 B0 A39 A49 A18 B0
A6 A19 A30 B0 A51 A4 A46 B0 A36 A53 A22 B0 A9 A28 A31 B0
A15 A35 A52 B0 A45 A5 A16 B0 A12 A40 A56 B0 A33 A10 A29 B0
A13 A14 A37 B0 A34 A41 A7 B0
A15 A21 A56 B1 A36 A44 A19 B1 A3 A12 A50 B1 A18 A30 A48 B1
A9 A23 A59 B1 A6 A31 A33 B1 A27 A7 A20 B1 A43 A47 A52 B1
A16 A22 A8 B1 A37 A49 A4 B1 A25 A53 A5 B1 A40 A14 A38 B1
A29 A35 A17 B1 A32 A41 A11 B1
A3 A6 A35 B42 A0 A7 A55 B42
B0 B14 B28 C0 B1 B15 B29 C0 B42 B43 B44 C0 A0 A1 A11 C0
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