

New type B colourable $S(2, 4, v)$ designs

A.D. Forbes, M.J. Grannell and T.S. Griggs

Department of Mathematics

The Open University

Walton Hall

Milton Keynes MK7 6AA

UNITED KINGDOM

tonyforbes@ltkz.demon.co.uk

m.j.grannell@open.ac.uk

t.s.griggs@open.ac.uk

Abstract

An $S(2, 4, v)$ design has a type B χ -colouring if it is possible to assign one of χ colours to each point such that each block contains three points of one colour and one point of a different colour, and all χ colours are used. In this paper we describe the constructions of type B χ -colourable $S(2, 4, v)$ s for $(v, \chi) = (61, 3), (100, 2)$ and $(109, 3)$, and we give a new general construction.

AMS classification: 05B05

Keywords: Steiner system, Steiner triple system, colouring.

This is a preprint of an article accepted for publication in the Journal of Combinatorial Designs ©2007 (copyright owner as specified in the journal).

1 Introduction

A *Steiner system*, $S(t, k, v)$, is a pair (V, \mathcal{B}) where V is a set of cardinality v of *elements*, or *points*, and \mathcal{B} is a collection of k -subsets of V , also called *blocks*, which has the property that every t -element subset of V occurs in precisely one block. In this paper we are concerned only with the cases $t = 2$ and $k = 3$ or 4 . An $S(2, 3, v)$ is usually called a *Steiner triple system of order v* , or $\text{STS}(v)$ for short. An $\text{STS}(v)$ exists if and only if $v \equiv 1$ or $3 \pmod{6}$ [5], and an $S(2, 4, v)$ exists if and only if $v \equiv 1$ or $4 \pmod{12}$ [4]. Note that $v = 1$ is admissible in both cases—the $\text{STS}(1)$ and the $S(2, 4, 1)$ each consists of a single point and an empty set of blocks. A resolvable Steiner triple system is an $\text{STS}(v)$ whose blocks can be partitioned into $(v - 1)/2$ *resolution classes* \mathcal{B}_i , $i = 1, 2, \dots, (v - 1)/2$, where $|\mathcal{B}_i| = v/3$ and \mathcal{B}_i covers the entire point set. A *Kirkman triple system of order v* , $\text{KTS}(v)$, is a resolvable $\text{STS}(v)$ with a specified partition into resolution classes.

In this paper, we are interested in colourings of Steiner systems. A χ -colouring of a Steiner system (V, \mathcal{B}) is a surjection $\phi : V \rightarrow \Gamma$ where Γ is a set of cardinality χ whose elements are called *colours*. In the case of a Steiner triple system, each block will have one of three colour patterns: $\{a, a, a\}$ (type A), $\{a, a, b\}$ (type B), or $\{a, b, c\}$ (type C). Let $X \subseteq \{A, B, C\}$. A χ -colouring of type X is a colouring as defined above in which each block is of type I for some $I \in X$. We will also require that every block type of X must occur. Thus there are eight possible combinations of colourings although some of these are trivial. There exists an extensive literature on colourings of Steiner triple systems.

In [7], the authors extend the above ideas to colourings of Steiner systems $S(2, 4, v)$. Here there are five colour patterns: $\{a, a, a, a\}$ (type A), $\{a, a, a, b\}$ (type B), $\{a, a, b, b\}$ (type C), $\{a, a, b, c\}$ (type D) and $\{a, b, c, d\}$ (type E), and consequently 32 possible combinations of colourings. Of these, perhaps the most natural are those in which the set X consists of just one type. The cases where $X = \{A\}$ or $X = \{E\}$ are trivial. Moreover, it was shown in [7] that an $S(2, 4, v)$ has a χ -colouring of type $X = \{C\}$ if and only if $v = 4$ and $\chi = 2$. That leaves colourings where $X = \{B\}$ or $X = \{D\}$. The former case is of particular interest and we will refer to such colourings simply as type B χ -colourings.

In the next section we review some properties of $S(2, 4, v)$ systems and their type B χ -colourings. If the colour set is $\Gamma = \{\Gamma_1, \Gamma_2, \dots, \Gamma_\chi\}$, we let $\gamma_i = |\phi^{-1}(\Gamma_i)|$, $i = 1, 2, \dots, \chi$, the colour class sizes. However, in describing

constructions it is more convenient to use unsubscripted letters for the elements of Γ , in which case we would, for instance, refer to the members of $\phi^{-1}(X)$ as ‘ X points’.

2 Type B χ -colourable $S(2, 4, v)$ systems

The first lemma, which is inherent in [7] and is easy to prove, provides important information on the structure of Steiner systems $S(2, 4, v)$ with type B χ -colourings.

Lemma 2.1 *Suppose $S = (V, \mathcal{B})$ is an $S(2, 4, v)$ with a type B χ -colouring $\phi : V \rightarrow \Gamma = \{\Gamma_1, \Gamma_2, \dots, \Gamma_\chi\}$. For $i = 1, 2, \dots, \chi$, let $V_i = \phi^{-1}(\Gamma_i)$; then*

$$(V_i, \{\{a, b, c\} : \{a, b, c, d\} \in \mathcal{B}, \{a, b, c\} \subseteq V_i\}) \quad (1)$$

is a Steiner triple system of order $|V_i|$.

Proof. If $|V_i| > 1$ and $\{a, b\} \subseteq V_i$, then a and b must both occur in a block of S together with precisely one other point of the same colour. On the other hand, if $|V_i| = 1$, then (V_i, \emptyset) forms an STS(1). \square

The next two lemmas come directly from [7].

Lemma 2.2 *Let $S = (V, \mathcal{B})$ be an $S(2, 4, v)$ with $V = \{q_1, q_2, \dots, q_v\}$, and let (K, \mathcal{C}) , $K \cap V = \emptyset$, be a KTS($2v + 1$) with resolution classes $\mathcal{C}_1, \mathcal{C}_2, \dots, \mathcal{C}_v$. Let*

$$\mathcal{Q} = \bigcup_{i=1}^v \{\{x, y, z, q_i\} : \{x, y, z\} \in \mathcal{C}_i\}.$$

Then $S' = (V \cup K, \mathcal{B} \cup \mathcal{Q})$ is an $S(2, 4, 3v + 1)$. Furthermore, if S is type B χ -colourable, then S' is type B $(\chi + 1)$ -colourable.

Proof. This is the well-known $3v + 1$ construction. Also it is plain that assigning a $(\chi + 1)$ -th colour to the points of the Kirkman triple system results in a valid type B $(\chi + 1)$ -colouring of S' . \square

Remark. We will show in Theorem 2.1 that, by careful choice of the KTS($2v + 1$), it is generally possible to obtain an alternative type B $(\chi + 1)$ -colouring pattern for the $S(2, 4, 3v + 1)$.

Lemma 2.3 For $v = (3^\chi - 1)/2$, $\chi = 2, 3, \dots$, there exists a type B χ -colourable $S(2, 4, v)$.

Proof. Clearly, the $S(2, 4, 4)$ system has a type B 2-colouring. Apply Lemma 2.2 recursively to obtain systems with orders given as follows.

χ	2	3	4	5	6	7	\dots	χ
v	4	13	40	121	364	1093	\dots	$\frac{1}{2}(3^\chi - 1)$

For the Kirkman triple system, one can use the affine STS(3^χ) and resolution classes described in [1, pp 149–150]. \square

Until recently, it seemed that Lemma 2.3 accounted for the only known examples of type B χ -colourable $S(2, 4, v)$ systems. All such systems, however, must satisfy the conditions in the next lemma.

Lemma 2.4 Let (V, \mathcal{B}) be a type B χ -colourable $S(2, 4, v)$ with colour class sizes $\gamma_1, \gamma_2, \dots, \gamma_\chi$. Then

- (i) for $i = 1, 2, \dots, \chi$, $\gamma_i \equiv 1$ or $3 \pmod{6}$, with precisely one $\gamma_i \equiv 1 \pmod{6}$;
- (ii) $\sum_{i=1}^{\chi} \binom{\gamma_i}{2} = \sum_{1 \leq i < j \leq \chi} \gamma_i \gamma_j = \frac{1}{4}v(v-1)$;
- (iii) for $i = 1, 2, \dots, \chi$, $\gamma_i \leq \frac{1}{3}(2v+1)$;
- (iv) $\gamma_i = \frac{1}{3}(2v+1)$ for some i if and only if the $S(2, 4, v)$ can be obtained from an $S(2, 4, v - \gamma_i)$ via Lemma 2.2;
- (v) for $0 \leq i < j \leq \chi$, $(\gamma_i - \gamma_j)^2 \geq \gamma_i + \gamma_j$.

Proof. For items (i)–(iii), see Lemma 3.7 of [7]; and (iv) follows easily from the proof of Lemma 2.2, above. For (v), denote the i -th colour class by Γ_i and observe that the $\gamma_i \gamma_j$ $\{\Gamma_i, \Gamma_j\}$ pairs, $i \neq j$, must come from blocks of the form $\{\Gamma_i, \Gamma_i, \Gamma_i, \Gamma_j\}$ or $\{\Gamma_j, \Gamma_j, \Gamma_j, \Gamma_i\}$. Hence

$$\frac{1}{2} \gamma_i(\gamma_i - 1) + \frac{1}{2} \gamma_j(\gamma_j - 1) \geq \gamma_i \gamma_j.$$

Note in particular that one cannot have two equal colour class sizes. \square

Table 1: Parameters of possible type B χ -colourable $S(2, 4, v)$ s

v	χ	$\gamma_1, \gamma_2, \dots, \gamma_\chi$	v	χ	$\gamma_1, \gamma_2, \dots, \gamma_\chi$
61	3	3, 19, 39	313	5	1, 3, 9, 105, 195
100	2	45, 55	328	4	1, 3, 135, 189
109	3	1, 45, 63	328	4	1, 45, 63, 219
184	4	1, 9, 57, 117	328	4	9, 15, 91, 213
184	4	3, 19, 39, 123	361	5	1, 9, 21, 93, 237
196	2	91, 105	361	5	3, 9, 15, 99, 235
232	4	3, 9, 73, 147	397	3	19, 129, 249
232	4	3, 19, 57, 153	424	4	9, 19, 123, 273
301	3	1, 135, 165	457	5	3, 15, 27, 109, 303
301	3	9, 109, 183	484	2	231, 253
301	3	33, 69, 199	505	5	3, 9, 21, 147, 325
301	3	45, 55, 201	505	5	9, 15, 21, 127, 333

For $v \leq 505$, the only possible parameter sets satisfying Lemma 2.4, other than those arising from Lemma 2.3, are given in Table 1.

The existence of a type B 2-colourable $S(2, 4, 100)$ is a long-standing problem. It was already raised by de Resmini [8] in a paper published in 1981. It is the first non-trivial system of a potential infinite sequence of type B 2-colourable Steiner systems $S(2, 4, v)$ where $v = (12s+2)^2$ or $v = (12s+10)^2$, $s \geq 0$, and the two colour class sizes are $(v \pm \sqrt{v})/2$. In [7], the explicit issue of finding a type B 3-colourable $S(2, 4, v)$ for each of $v = 61$ and 109 was formulated. All of these problems were restated in [9]. The closely related problem of embedding Steiner triple systems into $S(2, 4, v)$ systems is discussed at length in [6].

A type B 2-colourable $S(2, 4, 100)$ was recently constructed by the authors and appears in [3]. In the current paper we give constructions for other systems listed in Table 1; specifically for $v = 61$ and 109 . Also we briefly describe the system for $v = 100$ from [3] for completeness. We make no claim that any of the systems are unique up to isomorphism for their types. Indeed, for $v = 109$, which we found to be the easiest to construct, we have several systems and we list two examples. Further systems arise from repeated use of Theorem 2.1.

Theorem 2.1 may be regarded as an extension of Lemma 2.2, where the KTS($2v + 1$) is obtained from the $S(2, 4, v)$ and the resulting $S(2, 4, 3v + 1)$ then generally has two alternative type B $(\chi + 1)$ -colouring patterns.

Theorem 2.1 *Let S be a type B χ -colourable $S(2, 4, v)$ system with colour class sizes $\{\gamma_1, \gamma_2, \dots, \gamma_\chi\}$. Then there exists a type B $(\chi + 1)$ -colourable $S(2, 4, 3v + 1)$ which may be coloured either with colour class sizes $\{\gamma_1, \gamma_2, \dots, \gamma_\chi, 2v + 1\}$ or with colour class sizes $\{1, 3\gamma_1, 3\gamma_2, \dots, 3\gamma_\chi\}$.*

Proof. The former colouring pattern is generated by Lemma 2.2 using any KTS($2v + 1$) in that construction.

To deal with the latter colouring pattern, let $S = (V, \mathcal{B})$, where $V = \{i_0 : i = 1, 2, \dots, v\}$. For each block $\{x_0, y_0, z_0, w_0\} \in \mathcal{B}$, take a fixed ordering of the block, (x_0, y_0, z_0, w_0) . From these ordered blocks we create a KTS($2v + 1$) on the point set $V' = \{i_1, i_2 : i = 1, 2, \dots, v\} \cup \{\infty\}$. We list the blocks of this design in v parallel classes each of which is associated with a single point of V . The ordered block (x_0, y_0, z_0, w_0) obtained from \mathcal{B} contributes the following triples to these classes.

- (i) $\{y_1, z_2, w_1\}$ and $\{y_2, z_1, w_2\}$ associated with x_0 ,
- (ii) $\{x_2, z_1, w_1\}$ and $\{x_1, z_2, w_2\}$ associated with y_0 ,
- (iii) $\{x_1, y_2, w_1\}$ and $\{x_2, y_1, w_2\}$ associated with z_0 ,
- (iv) $\{x_1, y_1, z_1\}$ and $\{x_2, y_2, z_2\}$ associated with w_0 .

In addition, the class associated with i_0 contains the triple $\{\infty, i_1, i_2\}$. Thus each class contains $2(v - 1)/3 + 1 = (2v + 1)/3$ disjoint blocks and so forms a parallel class of triples on V' . It is also easy to see that the complete set of triples forms an STS($2v + 1$) and hence, with the specified resolution, a KTS($2v + 1$). From the KTS($2v + 1$) and the original $S(2, 4, v)$ we form an $S(2, 4, 3v + 1)$ using the method of Lemma 2.2 and taking care to adjoin to each parallel class the point of V with which it is associated. We now colour the points i_1, i_2 with the same colour as i_0 for each $i = 1, 2, \dots, v$ and we assign a new colour to the point ∞ .

We note that the two colour patterns presented are identical if and only if $\{\gamma_1, \gamma_2, \dots, \gamma_\chi, 2v + 1\} = \{1, 3\gamma_1, 3\gamma_2, \dots, 3\gamma_\chi\} = \{1, 3, 3^2, \dots, 3^\chi\}$, which is the case covered by Lemma 2.3. \square

3 A type B 3-colourable $S(2, 4, 61)$

Here we consider the first entry in Table 1. We construct an $S(2, 4, 61)$ together with a type B 3-colouring having colour class sizes 39, 19 and 3. Denote the corresponding colours by A , B and C , respectively. For each of the three STS(v)s identified by Lemma 2.1, let the points be the integers $0, 1, \dots, v - 1$ indexed by the system's colour. We denote a point by any of the descriptions X_n , Xn and n , where X is the colour and n is the integer; the second option appears only in Tables 2, 4, 5 and 6, and the third option is used only if the colour is clear from the context. Arithmetic on points is performed on the integer parts in an appropriate ring.

Let the A system be an STS(39) with the automorphism α defined by

$$\alpha : A_i \mapsto A_{i+13} \pmod{39}.$$

For the B system, we choose the cyclic STS(19) with starter blocks $\{0, 1, 4\}$, $\{0, 7, 9\}$ and $\{0, 11, 6\}$, and automorphism $\beta : B_j \mapsto B_{7j} \pmod{19}$. Note that β leaves B_0 fixed and partitions the other B points into six orbits of size 3.

We begin with the block

$$\{C_0, C_1, C_2, B_0\}$$

and we assign blocks of the B system to A and C points as in Table 2. Observe that if $\{B_x, B_y, B_z\}$ is assigned to point A_i , then $\beta(\{B_x, B_y, B_z\})$ is assigned to point $\alpha(A_i)$ while if $\{B_x, B_y, B_z\}$ is assigned to point C_i then $\beta(\{B_x, B_y, B_z\})$ is also assigned to the point C_i . This latter assignment is also done in such a way that each C_i is paired with each $B_j, j \neq 0$. Thus we have dealt with the 171 BB pairs, the 57 BC pairs, the three CC pairs, and, so far, also 117 AB pairs.

For the STS(39), we first create the set of ten A blocks

$$\mathcal{U}_0 = \{\{A_i, A_{13+i}, A_{26+i}\} : i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 11\}.$$

and assign them to B_0 . These blocks are fixed under the action of α and they account for the remaining AB_0 pairs. For $j = 1, 2, \dots, 18$, let Ω_j denote the set of A points that have so far been paired with B_j . Then from Table 2

Table 2: STS(19) – the B system for the $S(2, 4, 61)$

0	1	4	A_0	0	7	9	A_{13}	0	11	6	A_{26}
1	2	5	A_1	1	8	10	A_{20}	1	12	7	A_{30}
2	3	6	A_2	2	9	11	C_0	2	13	8	A_{35}
3	4	7	C_0	3	10	12	A_{22}	3	14	9	A_{28}
4	5	8	C_1	4	11	13	C_2	4	15	10	A_{32}
5	6	9	A_3	5	12	14	C_2	5	16	11	A_{37}
6	7	10	C_2	6	13	15	A_{19}	6	17	12	C_1
7	8	11	A_4	7	14	16	A_{14}	7	18	13	A_{33}
8	9	12	A_5	8	15	17	C_0	8	0	14	A_{38}
9	10	13	A_6	9	16	18	C_1	9	1	15	C_2
10	11	14	C_1	10	17	0	A_{23}	10	2	16	A_{34}
11	12	15	A_7	11	18	1	A_{17}	11	3	17	A_{27}
12	13	16	C_0	12	0	2	A_{25}	12	4	18	A_{31}
13	14	17	A_8	13	1	3	C_1	13	5	0	A_{36}
14	15	18	A_9	14	2	4	A_{15}	14	6	1	C_0
15	16	0	A_{10}	15	3	5	A_{21}	15	7	2	C_1
16	17	1	A_{11}	16	4	6	A_{16}	16	8	3	C_2
17	18	2	C_2	17	5	7	A_{24}	17	9	4	A_{29}
18	0	3	A_{12}	18	6	8	A_{18}	18	10	5	C_0

we have

$$\begin{aligned}
 \Omega_1 &= \{A_0, A_1, A_{11}, A_{17}, A_{20}, A_{30}\}, \\
 \Omega_2 &= \{A_1, A_2, A_{15}, A_{25}, A_{34}, A_{35}\}, \\
 \Omega_4 &= \{A_0, A_{15}, A_{16}, A_{29}, A_{31}, A_{32}\}, \\
 \Omega_8 &= \{A_4, A_5, A_{18}, A_{20}, A_{35}, A_{38}\}, \\
 \Omega_{16} &= \{A_{10}, A_{11}, A_{14}, A_{16}, A_{34}, A_{37}\}, \\
 \Omega_{13} &= \{A_6, A_8, A_{19}, A_{33}, A_{35}, A_{36}\},
 \end{aligned}$$

and $\Omega_{\beta(j)} = \alpha(\Omega_j)$.

Next we search for a set \mathcal{T} of A blocks such that (i) the blocks of \mathcal{T} form a parallel class, (ii) no two blocks of \mathcal{T} lie in the same orbit under the action of α , and (iii) blocks which are fixed by α are not used in \mathcal{T} . A computer

search produces 1038 sets, of which we select one,

$$\begin{aligned}\mathcal{T}_0 = & \{\{0, 1, 17\}, \{11, 20, 30\}, \{14, 15, 9\}, \{2, 12, 21\}, \{13, 28, 29\}, \\ & \{3, 5, 6\}, \{4, 18, 35\}, \{31, 7, 25\}, \{10, 16, 37\}, \{24, 27, 8\}, \\ & \{32, 34, 22\}, \{19, 33, 36\}, \{23, 26, 38\}\},\end{aligned}$$

and we assign the blocks of \mathcal{T}_0 to C_0 . Together with $\mathcal{T}_1 = \alpha(\mathcal{T}_0)$ (assigned to C_1), $\mathcal{T}_2 = \alpha^2(\mathcal{T}_0)$ (assigned to C_2) and \mathcal{U}_0 , we now have 49 A blocks and have dealt with 117 AC pairs.

The A system is extended to an STS(39) by hill climbing [10] and these A blocks are assigned to points B_j , $j = 1, 2, 4, 8, 16, 13$, under the following conditions.

- (i) During the hill-climbing process, blocks are added to the system or removed from the system in triples: X , $\alpha(X)$ and $\alpha^2(X)$. Blocks in $\mathcal{U}_0 \cup \mathcal{T}_0 \cup \mathcal{T}_1 \cup \mathcal{T}_2$ are never removed. Blocks fixed by α are never added.
- (ii) The blocks assigned to B_j form a partial parallel class \mathcal{U}_j of size 11 that does not contain any of the points in Ω_j .
- (iii) At most one block in each orbit under the action of α is assigned to B_j .

A solution is given by assigning the blocks of \mathcal{U}_j to B_j , $j = 1, 2, 4, 8, 16, 13$, where the \mathcal{U}_j are defined by

$$\begin{aligned}\mathcal{U}_1 = & \{\{2, 10, 33\}, \{3, 25, 32\}, \{4, 22, 37\}, \{5, 8, 23\}, \\ & \{6, 28, 31\}, \{7, 12, 16\}, \{9, 26, 36\}, \{13, 21, 24\}, \\ & \{14, 18, 38\}, \{15, 29, 35\}, \{19, 27, 34\}\},\end{aligned}$$

$$\begin{aligned}\mathcal{U}_2 = & \{\{0, 19, 31\}, \{3, 7, 27\}, \{4, 14, 36\}, \{5, 11, 33\}, \\ & \{6, 10, 30\}, \{8, 9, 13\}, \{12, 20, 22\}, \{16, 21, 28\}, \\ & \{17, 18, 23\}, \{24, 26, 32\}, \{29, 37, 38\}\},\end{aligned}$$

$$\begin{aligned}\mathcal{U}_4 = & \{\{1, 4, 6\}, \{2, 36, 38\}, \{3, 19, 20\}, \{5, 7, 14\}, \\ & \{8, 18, 22\}, \{9, 11, 25\}, \{10, 26, 35\}, \{12, 30, 34\}, \\ & \{13, 27, 37\}, \{17, 24, 28\}, \{21, 23, 33\}\},\end{aligned}$$

$$\mathcal{U}_8 = \{\{0, 2, 32\}, \{1, 24, 29\}, \{3, 10, 21\}, \{6, 9, 27\}, \{7, 11, 22\}, \{8, 12, 14\}, \{13, 16, 31\}, \{15, 17, 26\},$$

$$\{19, 25, 30\}, \{23, 36, 37\}, \{28, 33, 34\}\},$$

$$\mathcal{U}_{16} = \{\{0, 25, 38\}, \{1, 7, 28\}, \{2, 9, 18\}, \{3, 30, 35\}, \{4, 21, 29\}, \{5, 27, 36\}, \{6, 22, 33\}, \{8, 26, 31\}, \{12, 23, 32\}, \{13, 17, 20\}, \{15, 19, 24\}\}$$

and

$$\mathcal{U}_{13} = \{\{0, 27, 29\}, \{1, 9, 12\}, \{2, 24, 31\}, \{3, 22, 23\}, \{4, 20, 34\}, \{5, 16, 17\}, \{7, 13, 26\}, \{10, 14, 28\}, \{11, 21, 32\}, \{15, 30, 38\}, \{18, 25, 37\}\}.$$

To complete the construction we assign the blocks of $\alpha(\mathcal{U}_j)$ to $\beta(B_j)$ and the blocks of $\alpha^2(\mathcal{U}_j)$ to $\beta^2(B_j)$, $j = 1, 2, 4, 8, 16, 13$. The entire $S(2, 4, 61)$ is listed in Table 4 at the end of the paper.

4 A type B 2-colourable $S(2, 4, 100)$

Using the same conventions as in Section 3, let the colours corresponding to colour class sizes (55, 45) be (A, B) and let the $S(2, 4, 100)$ have the automorphism σ defined by

$$\sigma : A_i \mapsto A_{i+5} \pmod{55}, B_j \mapsto B_{j+4} \pmod{44}, j = 0, 1, \dots, 43, B_{44} \mapsto B_{44}.$$

The A system is an STS(55) and the B system is an STS(45). Both systems have automorphism σ . As an aside, we remark that the B system is an example of a *4-rotational* STS(v) and that such systems exist for all $v \equiv 1, 9, 13$ or $21 \pmod{24}$ [2].

Blocks in the B system are assigned to points A_i , $i = 0, 1, \dots, 4$, subject to the conditions: (i) the B blocks assigned to A_i form a partial parallel class of size 6, and (ii) no more than one block in an orbit under the action of σ is assigned to A_i . Then we apply σ to assign the rest of the blocks: if $\{B_x, B_y, B_z\}$ is assigned to A_k , then $\sigma(\{B_x, B_y, B_z\})$ is assigned to $\sigma(A_k)$.

Eleven A blocks in a single orbit under the action of σ are assigned to B_{44} such that the points in these A blocks together with the A points to

which the B blocks containing B_{44} are already assigned cover a complete set of residues modulo 55. Thus all AB_{44} pairs are accounted for.

Then blocks in the A system are assigned to B_x , $x = 0, 1, 2, 3$, subject to the conditions: (i) the A blocks assigned to B_x form a partial parallel class of size 11 which contains none of the 22 A points to which the B blocks containing B_x have already been assigned, and (ii) no more than one block in an orbit under the action of σ is assigned to B_x . We complete the assignment by applying σ : if $\{A_i, A_j, A_k\}$ is assigned to B_z , then $\sigma(\{A_i, A_j, A_k\})$ is assigned to $\sigma(B_z)$.

Orbit representatives under σ of the blocks of the $S(2, 4, 100)$ are listed in Table 5.

5 Type B 3-colourable $S(2, 4, 109)$ s

Let the colours corresponding to colour class sizes $(63, 45, 1)$ be (A, B, C) and let the $S(2, 4, 109)$ have the automorphism τ defined by

$$\tau : \begin{cases} A_i \mapsto A_{i+3} \pmod{63}, & i = 0, 1, \dots, 62, \\ B_j \mapsto B_{j+2} \pmod{42}, & j = 0, 1, \dots, 41, \\ B_{42} \mapsto B_{43} \mapsto B_{44} \mapsto B_{42}, \\ C_0 \mapsto C_0. \end{cases}$$

The B system is an STS(45) containing the blocks

$$\{\{B_n, B_{n+14}, B_{n+28}\} : n = 0, 1, \dots, 13\} \text{ and } \{B_{42}, B_{43}, B_{44}\},$$

which we assign to the point C_0 . The remaining blocks are partitioned into fifteen 21-block orbits by τ . We deal with these 315 blocks by assigning B blocks to A_i , $i = 0, 1, 2$, such that (i) the B blocks assigned to A_i form a partial parallel class of size 5, and (ii) no more than one block in an orbit under the action of τ is assigned to A_i . The assignment is then completed by applying the automorphism τ .

The A system is an STS(63) whose blocks are partitioned by τ into 31 orbits of size 21, at least one of which is a parallel class. We assign one of these parallel classes to C_0 .

In the STS(45), the fifteen 21-block orbits under the action of τ collectively contain each B point 21 times. The points B_{42}, B_{43}, B_{44} must each occur precisely seven times in three of these orbits. Hence there are precisely

three distinct A points, x_1, x_2, x_3 , paired with B_{42} such that $0 \leq x_1, x_2, x_3 < 9$. In the A system we choose two blocks from different orbits, $\{x_4, x_5, x_6\}$ and $\{x_7, x_8, x_9\}$, such that $\{x_1, x_2, \dots, x_9\}$ covers a complete set of residues modulo 9. We assign these blocks to B_{42} and extend the assignment in the usual manner by applying τ .

For the remaining 588 blocks in the STS(63), we assign A blocks to B_x , $x = 0, 1$, such that (i) the A blocks assigned to B_x form a partial parallel class of size 14 which contains none of the 21 A points to which the B blocks containing B_x have already been assigned, and (ii) no more than one block in an orbit under the action of τ is assigned to B_x . Finally, the assignment is completed by applying τ . Orbit representatives of two $S(2, 4, 109)$ s are presented as Table 6.

6 Summary

In the previous sections we have constructed three systems $S(2, 4, v)$ with type B χ -colourings, namely those for $(v, \chi) = (61, 3), (100, 2)$ and $(109, 3)$. By applying the constructions of Section 2 these generate infinite families of systems with type B χ -colourings, which are given by $v = 3^n v_0 + \frac{1}{2}(3^n - 1)$ for $v_0 = 61, 100$ and 109 , and $n = 0, 1, 2, \dots$. We note that in these new families at each stage there is a choice of two colour patterns. With reference to Table 1, we have now constructed systems with the parameters as shown in Table 3.

Table 3: Parameters of some known type B χ -colourable $S(2, 4, v)$ s

v	χ	$\gamma_1, \gamma_2, \dots, \gamma_\chi$	v	χ	$\gamma_1, \gamma_2, \dots, \gamma_\chi$
61	3	3, 19, 39	301	3	1, 135, 165
100	2	45, 55	301	3	45, 55, 201
109	3	1, 45, 63	328	4	1, 3, 135, 189
184	4	1, 9, 57, 117	328	4	1, 45, 63, 219
184	4	3, 19, 39, 123			

The results of this paper yield some improvements on bounds for minimum embeddings of Steiner triple systems into $S(2, 4, v)$ systems. The upper bound on the quantity $m(19)$ (see [6], Theorem 22(iii)) is improved from 85

to 61, and the upper bound on $q(19)$ (see Corollary 23 of the same paper) is improved from 256 to 184. More generally, some improvements can be made to the results of [6, Theorem 9]. By consistently selecting the second colour class pattern from our Theorem 2.1 for the new families of $S(2, 4, v)$ systems, the following result is easily established.

Theorem 6.1 *For $n = 0, 1, \dots$,*

$$\begin{aligned} m(v) &\leq \frac{41v - 13}{26} & \text{if } v = 3^n \cdot 39, \\ m(v) &\leq \frac{67v - 15}{30} & \text{if } v = 3^n \cdot 45, \\ m(v) &\leq \frac{201v - 55}{110} & \text{if } v = 3^n \cdot 55, \\ m(v) &\leq \frac{73v - 21}{42} & \text{if } v = 3^n \cdot 63. \end{aligned}$$

Since $q(v) \leq 3m(v) + 1$, this also leads to corresponding improvements to Corollary 10 of [6].

Acknowledgement

We thank one of the referees for drawing to our attention references [6, 9] and for particularly helpful comments.

References

- [1] I. Anderson, Combinatorial Designs and Tournaments, Oxford University Press, Oxford 1997, ISBN 0-19-850029-7.
- [2] C. J. Cho, Rotational Steiner triple systems, Discrete Math. 42 (1982), 153–159.
- [3] A. D. Forbes, M. J. Grannell and T. S. Griggs, The design of the century, Math. Slovaca, to appear.
- [4] H. Hanani, The existence and construction of balanced incomplete block designs, Ann. Math. Statist. 32 (1961), 361–386.
- [5] T. P. Kirkman, On a problem in combinations, Cambridge and Dublin Math. J. 2 (1847), 191–204.

- [6] M. Meszka and A. Rosa, Embedding Steiner triple systems into Steiner systems $S(2, 4, v)$, *Discrete Math.* 274 (2004), 199–212.
- [7] S. Milici, A. Rosa and V. Voloshin, Colouring Steiner systems with specified block colour patterns, *Discrete Math.* 240 (2001), 145–160.
- [8] M. J. de Resmini, On k -sets of type (m, n) in a Steiner system $S(2, l, v)$, *London Math. Soc. Lecture Note Series* 49 (1981), 104–113.
- [9] A. Rosa, Blocking sets and colourings in Steiner systems $S(2, 4, v)$, *Le Matematiche* 59 (2004), 341–348.
- [10] D. R. Stinson, Hill-climbing algorithms for the construction of combinatorial designs, *Ann. Discrete Math.* 26 (1985), 311–334.

Table 4: $S(2, 4, 61)$

A1	A14	A27	B0	A2	A15	A28	B0	A3	A16	A29	B0	A4	A17	A30	B0	A5	A18	A31	B0	A6	A19	A32	B0
A7	A20	A33	B0	A8	A21	A34	B0	A9	A22	A35	B0	A11	A24	A37	B0	A13	A16	A31	B8	A26	A29	A5	B18
A0	A2	A32	B8	A13	A15	A6	B18	A26	A28	A19	B12	A0	A3	A18	B12	A13	A18	A34	B5	A26	A31	A8	B16
A0	A4	A7	B5	A13	A17	A20	B16	A26	A30	A33	B17	A0	A5	A21	B17	A13	A21	A24	B1	A26	A34	A37	B7
A0	A6	A37	B14	A13	A19	A11	B3	A26	A32	A24	B2	A0	A8	A11	B11	A13	A21	A24	B1	A26	A34	A37	B7
A0	A9	A23	B9	A13	A22	A36	B6	A26	A35	A10	B4	A0	A10	A22	B7	A13	A23	A35	B11	A26	A36	A9	B1
A0	A13	A33	B10	A13	A26	A7	B13	A26	A0	A20	B15	A0	A14	A24	B6	A13	A27	A37	B4	A26	A1	A11	B9
A0	A19	A31	B2	A13	A32	A5	B14	A26	A6	A18	B3	A0	A25	A38	B16	A13	A38	A12	B17	A26	A12	A25	B5
A0	A27	A29	B13	A13	A1	A3	B15	A26	A14	A16	B10	A0	A28	A30	B18	A13	A2	A4	B12	A26	A15	A17	B8
A0	A34	A35	B3	A13	A8	A9	B2	A26	A21	A22	B14	A1	A4	A6	B4	A14	A17	A19	B9	A27	A30	A32	B6
A1	A5	A25	B11	A14	A18	A38	B1	A27	A31	A12	B7	A1	A7	A28	B16	A14	A20	A2	B17	A27	A33	A15	B5
A1	A8	A32	B7	A14	A21	A6	B11	A27	A34	A19	B1	A1	A9	A12	B13	A14	A22	A25	B15	A27	A35	A38	B10
A1	A10	A18	B17	A14	A23	A31	B5	A27	A36	A5	B16	A1	A15	A36	B10	A14	A28	A10	B13	A27	A2	A23	B15
A1	A16	A20	B14	A14	A29	A33	B3	A27	A3	A7	B2	A1	A19	A22	B18	A14	A32	A35	B12	A27	A6	A9	B8
A1	A23	A30	B3	A14	A36	A4	B2	A27	A10	A17	B14	A1	A24	A29	B8	A14	A37	A3	B18	A27	A11	A16	B12
A1	A31	A33	B6	A14	A5	A7	B4	A27	A18	A20	B9	A1	A34	A38	B12	A14	A8	A12	B8	A27	A21	A25	B18
A2	A5	A19	B7	A15	A18	A32	B11	A28	A31	A6	B1	A2	A6	A11	B5	A15	A19	A24	B16	A28	A32	A37	B17
A2	A7	A8	B18	A15	A20	A21	B12	A28	A33	A34	B8	A2	A9	A18	B16	A15	A22	A31	B17	A28	A35	A5	B5
A2	A10	A33	B1	A15	A23	A7	B7	A28	A36	A20	B11	A2	A16	A22	B11	A15	A29	A35	B1	A28	A3	A9	B7
A2	A17	A25	B10	A15	A30	A38	B13	A28	A4	A12	B15	A2	A24	A31	B13	A15	A37	A5	B15	A28	A11	A18	B10
A2	A29	A34	B14	A15	A3	A8	B3	A28	A16	A21	B2	A2	A30	A37	B9	A15	A4	A11	B6	A28	A17	A24	B4
A2	A36	A38	B4	A15	A10	A12	B9	A28	A23	A25	B6	A3	A4	A31	B10	A16	A17	A5	B13	A29	A30	A18	B15
A3	A10	A21	B8	A16	A23	A34	B18	A29	A36	A8	B12	A3	A11	A12	B14	A16	A24	A25	B3	A29	A37	A38	B2
A3	A17	A34	B17	A16	A30	A8	B5	A29	A4	A21	B16	A3	A19	A20	B4	A16	A32	A33	B9	A29	A6	A7	B6
A3	A22	A23	B13	A16	A35	A36	B15	A29	A9	A10	B10	A3	A25	A32	B1	A16	A38	A6	B7	A29	A12	A19	B11
A3	A30	A35	B16	A16	A4	A9	B17	A29	A17	A22	B5	A3	A33	A38	B11	A16	A7	A12	B1	A29	A20	A25	B7
A4	A5	A10	B3	A17	A18	A23	B2	A30	A31	A36	B14	A4	A8	A25	B9	A17	A21	A38	B6	A30	A34	A12	B4
A4	A19	A23	B14	A17	A32	A36	B3	A30	A6	A10	B2	A4	A20	A34	B13	A17	A33	A8	B15	A30	A7	A21	B10
A4	A22	A37	B1	A17	A35	A11	B7	A30	A9	A24	B11	A4	A32	A38	B18	A17	A6	A12	B12	A30	A19	A25	B8
A5	A8	A23	B1	A18	A21	A36	B7	A31	A34	A10	B11	A5	A9	A34	B6	A18	A22	A8	B4	A31	A35	A21	B9
A5	A11	A33	B2	A18	A24	A7	B14	A31	A37	A20	B3	A5	A12	A24	B10	A18	A25	A37	B13	A31	A38	A11	B15
A6	A22	A33	B16	A19	A35	A7	B17	A32	A9	A20	B5	A6	A24	A34	B15	A19	A37	A8	B10	A32	A11	A21	B13
A6	A25	A36	B17	A19	A38	A10	B5	A32	A12	A23	B16	A7	A9	A38	B3	A20	A22	A12	B2	A33	A35	A25	B14
A7	A11	A22	B8	A20	A24	A35	B18	A33	A37	A9	B12	A7	A34	A36	B9	A20	A8	A10	B6	A33	A21	A23	B4
A9	A11	A25	B4	A22	A24	A38	B9	A35	A37	A12	B6	A10	A11	A36	B18	A23	A24	A10	B12	A36	A37	A23	B8
A0	A1	A17	C0	A11	A20	A30	C0	A14	A15	A9	C0	A2	A12	A21	C0	A13	A28	A29	C0	A3	A5	A6	C0
A4	A18	A35	C0	A31	A7	A25	C0	A10	A16	A37	C0	A24	A27	A8	C0	A32	A34	A22	C0	A19	A33	A36	C0
A23	A26	A38	C0	A13	A14	A30	C1	A24	A33	A4	C1	A27	A28	A22	C1	A15	A25	A34	C1	A30	A7	A10	C1
A17	A31	A9	C1	A5	A20	A38	C1	A23	A29	A11	C1	A37	A1	A21	C1	A6	A8	A35	C1	A32	A7	A10	C1
A0	A12	A36	C1	A26	A27	A4	C2	A37	A7	A17	C2	A1	A2	A35	C2	A28	A38	A8	C2	A0	A15	A32	C2
A30	A5	A22	C2	A18	A33	A12	C2	A36	A3	A24	C2	A11	A14	A34	C2	A19	A21	A9	C2	A6	A20	A23	C2
A10	A13	A25	C2	B0	B1	B4	A0	B0	B7	B9	A13	B0	B11	B6	A26	B1	B2	B5	A1	B1	B12	B7	A30
B2	B3	B6	A2	B2	B13	B8	A35	B3	B10	B12	A22	B3	B14	B9	A28	B4	B15	B10	A32	B5	B6	B9	A3
B5	B16	B11	A37	B6	B13	B15	A19	B7	B8	B11	A4	B7	B14	B16	A14	B7	B18	B13	A33	B8	B9	B12	A5
B8	B0	B14	A38	B9	B10	B13	A6	B10	B17	B0	A23	B10	B2	B16	A34	B11	B12	B15	A7	B11	B18	B1	A17
B11	B3	B17	A27	B12	B0	B2	A25	B12	B4	B18	A31	B13	B14	B17	A8	B13	B5	B0	A36	B17	B15	B18	A9
B14	B2	B4	A15	B15	B16	B0	A10	B15	B3	B5	A21	B16	B17	B1	A11	B16	B4	B6	A16	B17	B5	B7	A24
B17	B9	B4	A29	B18	B0	B3	A12	B18	B6	B8	A18	B1	B12	B17	A8	B1	B12	B17	A7	B17	B5	B7	A24
B2	B9	B11	C0	B3	B4	B7	C0	B8	B15	B17	C0	B12	B13	B16	C0	B14	B6	B1	C0	B18	B10	B5	C0
B4	B5	B8	C1	B6	B17	B12	C1	B9	B16	B18	C1	B10	B11	B14	C1	B13	B1	B3	C1	B15	B7	B2	C1
B4	B11	B13	C2	B5	B12	B14	C2	B6	B7	B10	C2	B9	B1	B15	C2	B16	B8	B3	C2	B17	B18	B2	C2

Table 5: Orbit representatives of the $S(2, 4, 100)$

$B0\ B1\ B9\ A0$	$B4\ B6\ B23\ A0$	$B8\ B11\ B13\ A0$
$B12\ B20\ B10\ A0$	$B36\ B5\ B7\ A0$	$B2\ B3\ B38\ A0$
$B0\ B4\ B33\ A1$	$B40\ B3\ B6\ A1$	$B8\ B24\ B5\ A1$
$B16\ B7\ B11\ A1$	$B1\ B2\ B21\ A1$	$B9\ B13\ B42\ A1$
$B0\ B6\ B24\ A2$	$B8\ B19\ B40\ A2$	$B4\ B31\ B3\ A2$
$B9\ B14\ B43\ A2$	$B1\ B7\ B29\ A2$	$B5\ B26\ B2\ A2$
$B0\ B14\ B21\ A3$	$B4\ B35\ B41\ A3$	$B1\ B10\ B31\ A3$
$B5\ B23\ B44\ A3$	$B2\ B7\ B18\ A3$	$B22\ B34\ B3\ A3$
$B28\ B1\ B14\ A4$	$B4\ B22\ B26\ A4$	$B0\ B38\ B44\ A4$
$B29\ B39\ B2\ A4$	$B37\ B5\ B19\ A4$	$B3\ B11\ B35\ A4$
$A25\ A29\ A19\ B0$	$A20\ A32\ A5\ B0$	$A35\ A48\ A18\ B0$
$A15\ A39\ A11\ B0$	$A41\ A43\ A8\ B0$	$A21\ A42\ A13\ B0$
$A31\ A14\ A28\ B0$	$A16\ A9\ A12\ B0$	$A17\ A23\ A49\ B0$
$A37\ A44\ A33\ B0$	$A22\ A34\ A38\ B0$	
$A35\ A36\ A13\ B1$	$A10\ A17\ A18\ B1$	$A25\ A44\ A11\ B1$
$A20\ A43\ A19\ B1$	$A5\ A37\ A39\ B1$	$A15\ A6\ A12\ B1$
$A30\ A23\ A28\ B1$	$A26\ A29\ A34\ B1$	$A21\ A38\ A48\ B1$
$A27\ A42\ A9\ B1$	$A32\ A49\ A7\ B1$	
$A5\ A7\ A21\ B2$	$A20\ A25\ A46\ B2$	$A35\ A41\ A11\ B2$
$A40\ A54\ A15\ B2$	$A30\ A47\ A19\ B2$	$A36\ A37\ A23\ B2$
$A26\ A39\ A24\ B2$	$A16\ A32\ A53\ B2$	$A31\ A12\ A22\ B2$
$A17\ A8\ A9\ B2$	$A13\ A28\ A49\ B2$	
$A40\ A43\ A32\ B3$	$A35\ A44\ A15\ B3$	$A10\ A20\ A38\ B3$
$A5\ A27\ A47\ B3$	$A25\ A6\ A13\ B3$	$A21\ A26\ A36\ B3$
$A31\ A42\ A11\ B3$	$A16\ A28\ A34\ B3$	$A41\ A9\ A29\ B3$
$A12\ A17\ A48\ B3$	$A8\ A24\ A54\ B3$	
$A0\ A11\ A37\ B44$		

Table 6: Orbit representatives of two $S(2, 4, 109)$ s

$B_0 B_1 B_{33} A_0$	$B_6 B_8 B_{37} A_0$	$B_2 B_5 B_{29} A_0$	$B_4 B_{20} B_3 A_0$
$B_{14} B_7 B_9 A_0$	$B_2 B_7 B_{42} A_1$	$B_8 B_{14} B_{31} A_1$	$B_{30} B_3 B_6 A_1$
$B_0 B_4 B_{13} A_1$	$B_{26} B_{34} B_3 A_2$	$B_0 B_{10} B_{30} A_2$	$B_2 B_{23} B_{43} A_2$
$B_1 B_5 B_{35} A_1$	$A_{24} A_{32} A_{35} B_0$	$A_{30} A_{39} A_{23} B_0$	$A_9 A_{22} A_{27} B_0$
$B_4 B_{11} B_{42} A_2$	$A_{21} A_{37} A_{41} B_0$	$A_{48} A_8 A_{47} B_0$	$A_{18} A_{46} A_{10} B_0$
$B_{37} B_1 B_{17} A_2$	$A_{36} A_7 A_{16} B_0$	$A_3 A_{49} A_{56} B_0$	$A_4 A_5 A_{38} B_0$
$A_6 A_{12} A_{44} B_0$	$A_{25} A_{40} A_{17} B_0$		
$A_{15} A_{29} A_{11} B_0$	$A_{24} A_{26} A_{53} B_1$	$A_{36} A_{39} A_{17} B_1$	$A_{30} A_{40} A_{28} B_1$
$A_{45} A_{13} A_{31} B_0$	$A_{27} A_{44} A_{16} B_1$	$A_{12} A_{31} A_{52} B_1$	$A_{42} A_3 A_{29} B_1$
$A_{28} A_{34} A_{53} B_0$	$A_{37} A_{47} A_{35} B_1$	$A_{10} A_{23} A_{49} B_1$	$A_{43} A_{59} A_{38} B_1$
$A_6 A_7 A_{48} B_1$	$A_{14} A_{20} A_5 B_1$		
$A_{33} A_{45} A_{18} B_1$	$A_6 A_{13} A_{39} B_{42}$		
$A_{22} A_{25} A_8 B_1$	$B_1 B_{15} B_{29} C_0$	$B_{42} B_{43} B_{44} C_0$	$A_0 A_4 A_{35} C_0$
$B_0 B_{14} B_{28} C_0$			

$B_0 B_1 B_{27} A_0$	$B_2 B_4 B_{17} A_0$	$B_6 B_9 B_{13} A_0$	$B_{40} B_7 B_{15} A_0$
$B_{10} B_3 B_5 A_0$	$B_2 B_{21} B_1 A_1$	$B_6 B_{35} B_3 A_1$	$B_{14} B_5 B_{44} A_1$
$B_0 B_4 B_{25} A_1$	$B_{36} B_2 B_{18} A_2$	$B_0 B_{10} B_{30} A_2$	$B_4 B_{27} B_{44} A_2$
$B_7 B_{13} B_{37} A_1$	$A_{21} A_{25} A_{47} B_0$	$A_{27} A_{32} A_{42} B_0$	$A_{39} A_{49} A_{18} B_0$
$B_{38} B_1 B_{32} A_2$	$A_6 A_{19} A_{30} B_0$	$A_{36} A_{53} A_{22} B_0$	$A_9 A_{28} A_{31} B_0$
$B_{14} B_3 B_{42} A_2$	$A_{45} A_5 A_{16} B_0$	$A_{12} A_{40} A_{56} B_0$	$A_{33} A_{10} A_{29} B_0$
$A_{24} A_{26} A_{23} B_0$	$A_{34} A_{41} A_7 B_0$		
$A_6 A_{19} A_{30} B_0$	$A_{36} A_{44} A_{19} B_1$	$A_3 A_{12} A_{50} B_1$	$A_{18} A_{30} A_{48} B_1$
$A_{15} A_{35} A_{52} B_0$	$A_6 A_{31} A_{33} B_1$	$A_{27} A_7 A_{20} B_1$	$A_{43} A_{47} A_{52} B_1$
$A_{13} A_{14} A_{37} B_0$	$A_{37} A_{49} A_4 B_1$	$A_{25} A_{53} A_5 B_1$	$A_{40} A_{14} A_{38} B_1$
$A_{15} A_{21} A_{56} B_1$	$A_{32} A_{41} A_{11} B_1$		
$A_9 A_{23} A_{59} B_1$	$A_0 A_7 A_{55} B_{42}$		
$A_{16} A_{22} A_8 B_1$	$B_1 B_{15} B_{29} C_0$	$B_{42} B_{43} B_{44} C_0$	$A_0 A_1 A_{11} C_0$
$A_{29} A_{35} A_{17} B_1$			
$A_3 A_6 A_{35} B_{42}$			
$B_0 B_{14} B_{28} C_0$			