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Abstract

In a t-(v, k, λ) directed design the blocks are ordered k-tuples and every ordered
t-tuple of distinct points occurs in exactly λ blocks (as a subsequence). We study
t-(v, 5, 1) directed designs with t = 3 and t = 4. In particular, we construct the
first known examples, and an infinite class, of 3-(v, 5, 1) directed designs, and the first
known infinite class of 4-(v, 5, 1) directed designs.

1 Introduction

A t-(v, k, λ) directed design is a pair (P ,B) where P is a set of v elements, called points,
and B is a collection of ordered k-tuples of distinct elements of P , called blocks, with the
property that every ordered t-tuple of distinct elements of P occurs in exactly λ blocks (as
a subsequence). Background information on directed designs can be found in [2] and [5].

We usually specify a directed design by listing its blocks. For example, the following blocks
form a 3-(4, 4, 1) directed design:

(1, 2, 3, 4), (2, 1, 4, 3), (3, 1, 4, 2), (4, 2, 3, 1), (3, 2, 4, 1), (4, 1, 3, 2).

Here, for example, the block (1, 2, 3, 4) contains the ordered triples (1, 2, 3), (1, 2, 4), (1, 3, 4)
and (2, 3, 4).

A t-(v, k, λ) directed design is cyclic if it has an automorphism which permutes its points
in a cycle of length v. The base blocks below, developed modulo 6, form a cyclic 3-(6, 4, 1)
directed design. This design is given by Soltankhah [14].

(0, 1, 3, 5), (0, 4, 2, 1), (0, 3, 1, 2), (0, 5, 1, 4), (0, 5, 2, 3).
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The following result (which is straightforward to prove) gives necessary conditions for the
existence of a t-(v, k, λ) directed design.

Result 1.1 Let D be a t-(v, k, λ) directed design. Then D is an s-(v, k, λs) directed design
for 0 ≤ s < t where

λs = λ

(
v−s
t−s

)
t!(

k−s
t−s

)
s!

.

Hence λs must be an integer for s = 0, 1, 2, . . . , t− 1.

2-(v, k, λ) directed designs have been studied quite extensively. For such designs, the neces-
sary conditions of Result 1.1 reduce to 2λv(v − 1) ≡ 0 (mod k(k − 1)) and 2λ(v − 1) ≡ 0
(mod k − 1). It has been shown [1, 9, 13, 15, 16] that for k ∈ {3, 4, 5, 6} these neces-
sary conditions are sufficient, with two exceptions, namely that no directed designs with
parameters 2-(15, 5, 1) or 2-(21, 6, 1) exist.

Existence results for t-(v, k, λ) directed designs with t ≥ 3 seem to be more elusive. However,
the question of the existence of 3-(v, 4, λ) directed designs has been settled recently. The
necessary conditions for these designs reduce to the single condition λv ≡ 0 (mod 2). In [11],
Levenshtein showed that a 3-(v, 4, 1) directed design exists for all even v. Soltankhah [14]
further proved that the necessary condition is sufficient except possibly when v ≡ 3 or 11
(mod 12). In [8], some of the present authors built on Levenshtein’s and Soltankhah’s results
to obtain a proof that the necessary condition is sufficient in general.

The proof for 3-(v, 4, λ) directed designs relies on the following result involving t-wise balanced
designs, which we shall also need in the present paper. A t-(v, K, λ) (t-wise balanced) design
is a pair (P ,B) where P is a set of v elements, called points, and B is a collection of subsets
of P , called blocks, with the property that the size of every block is in the set K and
every t-element subset of P is contained in exactly λ blocks. In particular, K = {k} gives
an ‘ordinary’ t-(v, k, λ) design. When λ = 1, t-wise balanced designs are also known as
generalized Steiner systems and denoted by S(t,K, v).

Result 1.2 (Replacement Lemma) If there exist a t-(v, K, λ1) design and a t-(k′, k, λ2)
directed design for each k′ ∈ K, then there exists a t-(v, k, λ1λ2) directed design.

Proof Replacing each block of the t-(v, K, λ1) design with a copy of a t-(k′, k, λ2) directed
design with point set the points of that block gives a t-(v, k, λ1λ2) directed design. 2

In this paper, we are concerned with t-(v, k, λ) directed designs in the cases t = 3, k = 5
and t = 4, k = 5. We restrict our attention to λ = 1.

For t = 3, k = 5 and λ = 1, no designs were previously known. The only published result is
a computer search by Mahmoodi [12], showing that there is no such design for v = 5, 6 or 7.
We give an analytic proof of this result. More significantly, we have been able to construct
the first known 3-(v, 5, 1) directed designs, namely for v = 26 and v = 37. The first of these
allows us to obtain an infinite class of 3-(v, 5, 1) directed designs.

For t = 4, k = 5 and λ = 1, the existence of some 4-(v, 5, 1) directed designs follows
immediately from the known existence of corresponding Steiner systems S(4, 5, v), as follows.
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Result 1.3 There exists a 4-(v, 5, 1) directed design for v = 11, 23, 35, 47, 71, 83, 107, 131
and 167.

Proof There exists a 4-(5, 5, 1) directed design [6, 11]. Also, there exists a 4-(v, 5, 1) design
for the above values of v [3, 4, 7]. The result follows by the replacement lemma. 2

We have been able to construct new 4-(v, 5, 1) directed designs not obtained in this way.
Our results extend the set of values of v for which a 4-(v, 5, 1) directed design is known to
exist; the new values are v = 7, 8, 13, 18 and 48. The first of these allows us to obtain an
infinite class of 4-(v, 5, 1) directed designs. We have also found, by means of an exhaustive
computer search, that there is no 4-(6, 5, 1) directed design.

2 Results on 3-(v, 5, 1) directed designs

The necessary conditions given by Result 1.1 for 3-(v, 5, 1) directed designs are v ≡ 0, 1, 2
(mod 5). We prove below that these designs do not exist for v = 5, 6, 7. The proof for v = 5
is trivial and already known, but we include it for completeness.

Theorem 2.1 There exists no 3-(5, 5, 1) directed design.

Proof Suppose that there exists a 3-(5, 5, 1) directed design; let its points be 0, 1, 2, 3, 4.
The design contains six blocks, and therefore there are two blocks starting with the same
point, say x1 = (0, 1, 2, 3, 4) and x2 = (0, ∗, ∗, ∗, ∗). In the final four positions of x2, no
two points can appear in the order in which they appear in x1, and hence we must have
x2 = (0, 4, 3, 2, 1). Now consider the directed triple (1, 3, 2). This cannot appear in any
block without repeating a directed triple already contained in x1 or x2. 2

Theorem 2.2 There exists no 3-(6, 5, 1) directed design.

Proof Suppose that there exists a 3-(6, 5, 1) directed design; let its points be 0, 1, 2, 3, 4, 5.
Let the number of blocks in which 0 occupies the ith position be ni, for i = 1, 2, 3, 4, 5.

We now count the number of triples of the form (0, ∗, ∗). There are 6n1+3n2+n3 occurrences
of such triples. Since there are 20 such triples altogether, we have 6n1 + 3n2 + n3 = 20.
Similarly, counting triples of the forms (∗, 0, ∗) and (∗, ∗, 0), we obtain 3n2 + 4n3 + 3n4 = 20
and n3 + 3n4 + 6n5 = 20.

Looking at the second of these three equations, we see that 20 − 4n3 is a non-negative
multiple of 3; it follows that n3 = 2. Hence, by this same equation, n2 + n4 = 4, and by the
other two equations, n2 and n4 are even. We can rule out the possibility n2 = 4, n4 = 0 as
follows. Suppose that 0 appears in the second position in some block, say (P, 0, ∗, ∗, ∗). This
block contains exactly three of the four triples of the form (P, 0, ∗). Hence there is a block
containing exactly one of these triples; this block therefore has 0 occurring in the fourth
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position, which implies that n4 > 0. Similarly, by assuming that 0 appears in the fourth
position in some block, we may rule out the possibility n2 = 4, n4 = 0. Hence n2 = n4 = 2.

Now consider the six blocks of D containing 0 in the second, third or fourth positions:

x1 = (∗, 0, ∗, ∗, ∗), x3 = (∗, ∗, 0, ∗, ∗), x5 = (∗, ∗, ∗, 0, ∗),
x2 = (∗, 0, ∗, ∗, ∗), x4 = (∗, ∗, 0, ∗, ∗), x6 = (∗, ∗, ∗, 0, ∗).

Blocks x1 and x2 cannot have the same point, P say, in the first position, because this
would give a repeated triple of the form (P, 0, ∗). So without loss of generality we may write
x1 = (1, 0, ∗, ∗, ∗) and x2 = (2, 0, ∗, ∗, ∗). Now x3 and x4 cannot contain either 1 or 2 in their
first two positions, since this would give a repeated triple of the form (1, 0, ∗) or (2, 0, ∗).
Also, x3 and x4 cannot be of the form x3 = ({P, Q}, 0, ∗, ∗), x4 = ({P, Q}, 0, ∗, ∗), where
the inclusion of the set brackets around P, Q indicates that they occur in those positions
in some order, because this would give a repeated triple of the form (P, 0, ∗). So without
loss of generality we may write x3 = ({3, 4}, 0, ∗, ∗) and x4 = ({3, 5}, 0, ∗, ∗). To ensure
the correct number of triples of the form (P, 0, ∗) for P = 1, 2, 3, 4, 5, we must now have
x5 = ({1, 4, 5}, 0, ∗), x6 = ({2, 4, 5}, 0, ∗). Further, to ensure the correct number of triples of
the form (∗, 0, 4) and (∗, 0, 5), the six blocks we are considering must have the form:

x1 = (1, 0, {4, 5, ∗}), x3 = ({3, 4}, 0, {5, ∗}), x5 = ({1, 4, 5}, 0, ∗),
x2 = (2, 0, {4, 5, ∗}), x4 = ({3, 5}, 0, {4, ∗}), x6 = ({2, 4, 5}, 0, ∗).

We now see that there is no way to replace some of the stars by 1s to give the correct number
of directed triples of the form (∗, 0, 1) with no repeats. Hence no such design exists. 2

Theorem 2.3 There exists no 3-(7, 5, 1) directed design.

Proof Suppose that there exists a 3-(7, 5, 1) directed design; let its points be 0, 1, 2, 3, 4, 5,
6. Let the number of blocks in which 0 occupies the ith position be ni, for i = 1, 2, 3, 4, 5, 6.

As in Theorem 2.2, we now count the numbers of triples of the forms (0, ∗, ∗), (∗, 0, ∗)
and (∗, ∗, 0) to obtain the equations 6n1 + 3n2 + n3 = 30, 3n2 + 4n3 + 3n4 = 30 and
n3 + 3n4 + 6n5 = 30. Further, we can deduce that n2 ≤ 6, since otherwise for some point
P 6= 0 there would exist two blocks of the form (P, 0, ∗, ∗, ∗), which would imply a repeated
triple of the form (P, 0, ∗). Similarly n4 ≤ 6. We can also deduce that n3 ≤ 6, since otherwise
for some P there would be three blocks of the form ({P, ∗}, 0, ∗, ∗), which would imply a
repeated triple of the form (P, 0, ∗). Moreover, if n3 = 6, then for every point P 6= 0 there are
precisely two blocks of the form ({P, ∗}, 0, ∗, ∗) and hence also a block ({P, ∗, ∗}, 0, ∗). Thus
in this case n4 > 0 and similarly n2 > 0. Solving the above equations subject to these further
conditions gives (n1, n2, n3, n4, n5) = (4, 1, 3, 5, 2), (2, 5, 3, 1, 4), (3, 4, 0, 6, 2), (2, 6, 0, 4, 3) or
(3, 3, 3, 3, 3). The above argument applies to any point. Let the number of points having
each of the above distributions for (n1, n2, n3, n4, n5) be x1, x2, y1, y2 and z respectively.
Then, counting the number of points, we obtain x1 + x2 + y1 + y2 + z = 7, and counting
the number of occurences of points in the third position, we obtain 3x1 + 3x2 + 3z = 21.
Hence y1 = y2 = 0. Now, counting the number of occurences of points in the first and second
positions, we obtain 4x1 + 2x2 + 3z = 21 and x1 + 5x2 + 3z = 21. Hence x1 = x2 = x (say)
giving 2x + z = 7, from which it follows that z ≥ 1.
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So there exists at least one point, say 0, for which n1 = n2 = n3 = n4 = n5 = 3. Now
consider the nine blocks of D containing 0 in the second, third or fourth positions. Those in
which 0 occupies the second position must have different points in the first position.

x1 = (1, 0, ∗, ∗, ∗), x4 = (∗, ∗, 0, ∗, ∗), x7 = (∗, ∗, ∗, 0, ∗)
x2 = (2, 0, ∗, ∗, ∗), x5 = (∗, ∗, 0, ∗, ∗), x8 = (∗, ∗, ∗, 0, ∗)
x3 = (3, 0, ∗, ∗, ∗), x6 = (∗, ∗, 0, ∗, ∗), x9 = (∗, ∗, ∗, 0, ∗).

The proof proceeds by considering all the possibilities for the distribution of the points 1,
2 and 3 before the point 0 in blocks x4, x5, x6, x7, x8 and x9. There are nine of these,
all of which we eliminate. The arguments given are to be understood to be without loss of
generality.

(I) x4 = (1, 2, 0, ∗, ∗), x5 = ({3, ∗}, 0, ∗, ∗). Then x7 = (4, 5, 6, 0, ∗) and it follows that
x8 = (6, 5, 4, 0, ∗). Now it is impossible to complete x9.

(II) x4 = ({1, ∗}, 0, ∗, ∗), x5 = ({2, ∗}, 0, ∗, ∗), x6 = ({3, ∗}, 0, ∗, ∗). The same argument as
in (I) applies.

(III) x4 = (1, 2, 0, ∗, ∗), x7 = ({3, ∗, ∗}, 0, ∗), x8 = ({3, ∗, ∗}, 0, ∗). Then x9 = ({4, 5, 6}, 0, ∗).
Now the points 4, 5 and 6 occur in the first, second or third positions of blocks x7, x8

and x9 either once or three times. Hence x7 = ({3, 4, 5}, 0, ∗) and x8 = ({3, 4, 5}, 0, ∗)
and it is impossible to order blocks x7, x8 and x9 without repeating one of the triples
(4, 5, 0) or (5, 4, 0).

(IV) x4 = ({1, ∗}, 0, ∗, ∗), x5 = ({2, ∗}, 0, ∗, ∗), x7 = ({3, ∗, ∗}, 0, ∗), x8 = ({3, ∗, ∗}, 0, ∗).
The same argument as in (III) applies.

(V) x4 = ({1, ∗}, 0, ∗, ∗), x7 = ({2, 3, ∗}, 0, ∗), x8 = ({2, 3, ∗}, 0, ∗). The 3-(7, 5, 1) directed
design contains five triples of the form (2, ∗, 0) and five triples of the form (∗, 2, 0). Four
of these triples occur in blocks x7 and x8. Now consider the blocks x10 = (∗, ∗, ∗, ∗, 0),
x11 = (∗, ∗, ∗, ∗, 0) and x12 = (∗, ∗, ∗, ∗, 0). The point 2 occurs in precisely two of
these. The same argument applies to the point 3 and hence there is a block x10 =
({2, 3, ∗, ∗}, 0). Now it is impossible to order blocks x7, x8 and x10 without repeating
one of the triples (2, 3, 0) and (3, 2, 0).

(VI) x4 = ({1, ∗}, 0, ∗, ∗), x7 = ({2, 3, ∗}, 0, ∗), x8 = ({2, ∗, ∗}, 0, ∗), x9 = ({3, ∗, ∗}, 0, ∗). As
in (III), the points 4, 5 and 6 occur in the first, second or third positions of blocks x7, x8

and x9 either once or three times. Therefore x7 = ({2, 3, 4}, 0, ∗), x8 = ({2, 4, 5}, 0, ∗)
and x9 = ({3, 4, 6}, 0, ∗). Further, the point 4 occurs precisely once in the first or
second positions of blocks x4, x5 and x6. Now consider the blocks x10 = (∗, ∗, ∗, ∗, 0),
x11 = (∗, ∗, ∗, ∗, 0) and x12 = (∗, ∗, ∗, ∗, 0). By the same reasoning as in (V), the points
2 and 3 occur in precisely two of these and the point 4 in precisely one. It is easily
verified that no matter how these are distributed it is impossible to order blocks x7,
x8, x9, x10, x11 and x12 without repeating a triple (2, 3, 0), (3, 2, 0), (2, 4, 0), (4, 2, 0),
(3, 4, 0) or (4, 3, 0).
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(VII) x7 = (1, 2, 3, 0, ∗), x8 = (3, 2, 1, 0, ∗). Then x9 = (4, 5, 6, 0, A) and it follows that
x4 = (6, 5, 0, B, C), x5 = (6, 4, 0, D, E) and x6 = (5, 4, 0, F,G), where the points
A, B, C,D, E, F, G are all different. But none of these can be the point 0.

(VIII) x7 = (1, 2, 3, 0, ∗), x8 = ({1, 2, ∗}, 0, ∗), x9 = ({3, ∗, ∗}, 0, ∗). The argument is similar
to that in (VII). We have x9 = ({3, 5, 6}, 0, A), which implies that x8 = ({1, 2, 4}, 0, ∗),
which in turn implies that x4 = ({5, 6}, 0, B, C), x5 = ({4, 6}, 0, D,E) and x6 =
({4, 5}, 0, F,G) where the points A, B, C,D,E, F, G are all different. Again none of
these can be the point 0.

(IX) x7 = ({1, 2, ∗}, 0, ∗), x8 = ({1, 3, ∗}, 0, ∗), x9 = ({2, 3, ∗}, 0, ∗). Then it follows that
x7 = ({1, 2, 6}, 0, C), x8 = ({1, 3, 5}, 0, B) and x9 = ({2, 3, 4}, 0, A), where A 6= B 6=
C 6= A. This implies that x4 = ({5, 6}, 0, {A, ∗}), x5 = ({4, 6}, 0, {B, ∗}) and x6 =
({4, 5}, 0, {C, ∗}). Now A = 1, B = 2 and C = 3. Finally, x1 = (1, 0, {4, 5, 6}),
x2 = (2, 0, {4, 5, 6}) and x3 = (3, 0, {4, 5, 6}), but it is impossible to order these without
repeating a triple.

Hence no such design exists. 2

Mahmoodi [12] has shown that 3-(v, 5, λ) directed designs exist for v = 5, 6, 7 and λ = 2, 3.
Since a t-(v, k, λ1) directed design and a t-(v, k, λ2) directed design on the same point set
together give a t-(v, k, λ1 + λ2) directed design, this leads to the following theorem.

Theorem 2.4 For v = 5, 6, 7, there exists a 3-(v, 5, λ) directed design if and only if λ > 1.

We now consider 3-(v, 5, 1) directed designs for v = 10, 11, 12. The authors have tried, with-
out success, to construct examples of such designs. However, we can rule out the existence
of such designs with certain automorphisms. First we state and prove an easy lemma.

Lemma 2.5 Let D be a t-(v, k, λ) directed design and let b be the number of blocks. For
0 ≤ m < k, if v −m does not divide b then D does not have an automorphism containing a
(v −m)-cycle.

Proof Suppose that D has an automorphism α containing a (v−m)-cycle, where 0 ≤ m < k.
Then each block of D contains at least one point of the (v −m)-cycle, and hence generates
an orbit under 〈α〉 whose size is a multiple of v −m. It follows that b is also a multiple of
v −m. 2

By using the above lemma and exhaustive computer searches we are able to prove the
following result.

Theorem 2.6 For m = 0, 1, 2 and v = 10, 11, 12 there exists no 3-(v, 5, 1) directed design
with an automorphism containing a (v −m)-cycle.
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Proof The values of b, the number of blocks in the directed design, corresponding to
v = 10, 11, 12 are b = 72, 99, 132. Lemma 2.5 rules out the cases (m, v) = (0, 10), (1, 11),
(2, 12). We have eliminated the other cases by exhaustive computer search. 2

For 3-(v, 5, 1) directed designs and m = 3, 4, a stronger result holds.

Theorem 2.7 For m = 3, 4 and v ≥ 2m + 1, there exists no 3-(v, 5, 1) directed design with
an automorphism containing a (v −m)-cycle.

Proof Suppose that such a design exists, with an automorphism α of the above type. Let
P , Q, R be points not in the (v − m)-cycle. Under 〈α〉, the triple (P, Q, R) generates a
sub-orbit of size at most m. However, the block containing (P, Q,R) contains a point of
the (v − m)-cycle, and hence generates an orbit of size at least v − m, that is, at least
2m+1−m = m+1. Hence the orbit contains a repeated triple, which is a contradiction. 2

Finally in this section, we present our calculations relating to 3-(v, 5, 1) directed designs for
v = 17, 26, 37. We adopt a similar approach in all three cases. Let the set of points of the
design be Zv = {0, 1, 2, . . . , v − 1}. For v = 17 and 37 we seek a directed design invariant
under the group of mappings {z 7→ a2z + b : a, b ∈ Zv, a 6= 0}, that is, the Frobenius group
Fv,(v−1)/2. For v = 26 we use the group of mappings {z 7→ az + b : a, b ∈ Z26, (a, 26) = 1}.
An exhaustive computer search shows that there exists no 3-(17, 5, 1) directed design under
the action of the stated group.

For v = 26, we find that there are precisely two non-isomorphic solutions. These are gener-
ated respectively by the following blocks:

(a) (0, 1, 13, 24, 19), (0, 1, 4, 12, 17), (0, 1, 16, 5, 6), (0, 1, 11, 15, 7), (0, 2, 14, 18, 21);

(b) (0, 1, 17, 12, 4), (0, 2, 13, 9, 12), (0, 1, 23, 7, 25), (0, 1, 24, 21, 22), (0, 2, 6, 20, 23).

To prove that the two designs are non-isomorphic we calculate an invariant. A 3-(v, 5, 1)
directed design is also a 2-(v, 5, v−2) directed design, by Result 1.1. With each ordered pair
(x, y) ∈ V × V with x 6= y, we can associate a 5× 5 upper triangular matrix T (x, y) whose
entries ti,j, 1 ≤ i ≤ 5, 1 ≤ j ≤ 5 are defined as follows. For 1 ≤ i < j ≤ 5, ti,j is the number
of occurences of the pair (x, y) in positions i and j respectively of a block of the design;
otherwise ti,j = 0. The invariant is easy to calculate in this case because, by the action of
the automorphism group, every ordered pair can be mapped onto (0, 1), (0, 2) or (0, 13).

For design (a), the matrices T (0, 1), T (0, 2), T (0, 13) are respectively
0 4 1 2 4
0 0 2 2 2
0 0 0 2 1
0 0 0 0 4
0 0 0 0 0

 ,


0 1 3 3 1
0 0 3 3 3
0 0 0 3 3
0 0 0 0 1
0 0 0 0 0

 ,


0 0 12 0 0
0 0 0 0 0
0 0 0 0 12
0 0 0 0 0
0 0 0 0 0

 .
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For design (b), the matrices T (0, 1), T (0, 2), T (0, 13) are respectively
0 3 2 3 2
0 0 2 2 3
0 0 0 2 2
0 0 0 0 3
0 0 0 0 0

 ,


0 2 2 2 3
0 0 3 3 2
0 0 0 3 2
0 0 0 0 2
0 0 0 0 0

 ,


0 0 12 0 0
0 0 0 0 0
0 0 0 0 12
0 0 0 0 0
0 0 0 0 0

 .

It is easily verified that both designs are self-converse, that is, isomorphic to the directed
design obtained by reversing the blocks.

An exhaustive computer search was not possible for v = 37. However two such designs are
generated by the following blocks under the action of the stated group:

(a) (0, 1, 2, 5, 32), (0, 2, 7, 19, 25), (0, 1, 12, 34, 16), (0, 2, 1, 28, 33), (0, 2, 10, 8, 11),
(0, 2, 14, 6, 17), (0, 1, 18, 36, 22);

(b) (0, 1, 2, 5, 32), (0, 2, 28, 11, 25), (0, 1, 28, 34, 3), (0, 2, 24, 30, 1), (0, 1, 29, 14, 13),
(0, 1, 24, 20, 6), (0, 2, 22, 13, 3).

Checking the invariants of these two designs and their converses, as described above, shows
that all four designs are pairwise non-isomorphic.

We can use the replacement lemma (Result 1.2), together with one of the 3-(26, 5, 1) directed
designs constructed above, to give an infinite class of 3-(v, 5, 1) directed designs, as follows.

Theorem 2.8 There exists a 3-(25n + 1, 5, 1) directed design for all n ≥ 1.

Proof There exist Steiner systems S(3, q + 1, qn + 1) for all prime powers q and all n ≥ 1;
these are the spherical geometries. Let q = 25 and use the replacement lemma with a
3-(26, 5, 1) directed design constructed above. 2

3 Results on 4-(v, 5, 1) directed designs

The necessary conditions given by Result 1.1 for 4-(v, 5, 1) directed designs are v ≡ 0, 1, 2, 3
(mod 5). As in the previous section, the strategy for constructing these designs will be to
find suitable unions of orbits under an assumed automorphism group. Promising candidates
are the sharply triply transitive groups PGL2(p

α), and we first present the results of our
investigations on these.

Let v ≡ 8 (mod 10) and v−1 = pα be a prime or prime power. Further, let V = GF(pα)∪{∞}
be the base set of a 4-(v, 5, 1) directed design, D, and let PGL2(p

α) act on the ordered 5-
tuples of V in the usual way. The number of blocks of D is v(v−1)(v−2)(v−3)/5. The order
of PGL2(p

α) is (pα + 1)pα(pα − 1). Hence, the possibility exists that D may be constructed
as the union of (v − 3)/5, which is integral, full orbits of ordered 5-tuples under PGL2(p

α).
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The first case to consider is v = 8, in which case a single orbit is required. Since there are in
total only 20 orbits of PGL2(7) acting on ordered 5-tuples of GF(7) ∪ {∞}, all calculations
can be done by hand. It is easily verified that precisely four of these orbits, namely those
generated by the ordered 5-tuples (a) (∞, 0, 1, 2, 5), (b) (∞, 0, 1, 2, 6), (c) (∞, 0, 1, 3, 4) and
(d) (∞, 0, 1, 4, 5) form a 4-(8, 5, 1) directed design. It is equally easy to verify, by seeking
possible isomorphisms directly, that the four systems are pairwise non-isomorphic and that
systems (a) and (c) are converses, as are systems (b) and (d).

For v = 18, three orbits are required for the design and it is more appropriate to perform
the calculations by computer. There are precisely 40 pairwise non-isomorphic 4-(18, 5, 1)
directed designs invariant under the group PGL2(17). Twenty of these are listed in tabular
form below; the other twenty are the converses of those given.

System Orbits (∞, 0, 1, xn, yn)
no. x1 y1 x2 y2 x3 y3

1 4 3 7 6 2 11
2 4 3 7 6 8 10
3 4 3 9 15 2 11
4 4 3 9 15 8 10
5 4 9 2 6 7 16
6 4 9 2 6 8 11
7 4 9 13 5 7 16
8 4 9 13 5 8 11
9 5 3 12 16 2 11
10 5 3 12 16 8 10

System Orbits (∞, 0, 1, xn, yn)
no. x1 y1 x2 y2 x3 y3

11 5 3 13 6 2 11
12 5 3 13 6 8 10
13 8 4 5 12 3 6
14 8 4 5 12 14 11
15 8 4 10 7 3 6
16 8 4 10 7 14 11
17 9 4 2 6 15 14
18 9 4 2 6 16 7
19 9 4 13 5 15 14
20 9 4 13 5 16 7

We have confirmed that the forty designs given above are non-isomorphic by the following
means. With each design we associate a vector v = (v2, v3, . . . , v16) defined in the following
way. Given a sub-orbit starter x, we define n(x) as follows. The sub-orbit generated by x
occurs in one of the three orbits of the design; if it is obtained by deleting the ith element from
each block in that orbit, let n(x) = i− 1. Then for j = 2, 3, . . . , 16, let vj = n((0, 1,∞, j)) +
5n((0, 1, j,∞))+25n((0, j, 1,∞))+125n((j, 0, 1,∞)). The vector v, considered as a multiset,
is invariant under isomorphism. These invariants distinguish all the designs except that they
do not distinguish systems 13, 14, 15 and 16 from their respective converses. In each of these
four cases, taking account of the correspondences between the points of the designs implied
by their associated vectors v reduces the number of possible isomorphisms to one, and this
one is easily ruled out.

For v = 38, there are no 4-(v, 5, 1) directed designs invariant under the group PGL2(v − 1).
This was a complete surprise to the authors, and, at the time of writing, we have been
unable to determine a mathematical reason why there are no such designs. This requires
further study. For v = 48 the computer produced over 2 000 directed designs in ten minutes.
Based on an analysis of the fraction of the search space completed we estimate that there
are approximately 2.5 million such solutions! An example of a 4-(48, 5, 1) directed design
invariant under the group PGL2(47) is generated by the following nine ordered 5-tuples:
(∞, 0, 1, x, y) for (x, y) = (2, 6), (7, 23), (15, 22), (12, 11), (30, 26), (13, 20), (34, 37), (9, 28),
(38, 17).
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Three further values of v for which we have investigated the existence of a 4-(v, 5, 1) directed
design are v = 6, 7 and 13. An exhaustive computer search shows that there exists no
4-(6, 5, 1) directed design.

A 4-(7, 5, 1) directed design on the set Z7 is generated by the following 24 blocks under the
action of the cyclic group of mappings {z 7→ z + b : b ∈ Z7}:

(0, 1, 2, 3, 6), (0, 1, 3, 2, 4), (0, 3, 4, 6, 1), (0, 2, 3, 1, 5), 0, 5, 6, 2, 1), (0, 4, 1, 5, 3),
(0, 6, 5, 1, 3), (0, 5, 2, 3, 4), (0, 1, 5, 4, 6), (0, 4, 5, 1, 2), (0, 5, 6, 4, 3), (0, 6, 1, 5, 2),
(0, 2, 4, 6, 5), (0, 3, 5, 1, 6), (0, 1, 6, 4, 2), (0, 3, 5, 4, 2), (0, 4, 6, 2, 3), (0, 2, 5, 1, 4),
(0, 2, 6, 4, 1), (0, 3, 6, 4, 5), (0, 6, 3, 1, 4), (0, 4, 3, 2, 1), (0, 6, 3, 2, 5), (0, 5, 3, 2, 6).

A 4-(13, 5, 1) directed design on the set Z13 is generated by the following 22 blocks under
the action of the Frobenius group of mappings {z 7→ az + b : a, b ∈ Z13, a 6= 0}:

(0, 1, 2, 3, 7), (0, 1, 4, 6, 8), (0, 1, 10, 5, 6), (0, 1, 6, 7, 5), (0, 1, 11, 6, 10),
(0, 1, 5, 10, 3), (0, 1, 3, 5, 12), (0, 1, 4, 9, 11), (0, 1, 3, 10, 4), (0, 1, 5, 9, 4),
(0, 1, 11, 3, 9), (0, 1, 3, 6, 2), (0, 1, 8, 7, 3), (0, 1, 9, 10, 12), (0, 1, 4, 7, 2),
(0, 1, 12, 11, 5), (0, 1, 10, 7, 9), (0, 1, 8, 9, 5), (0, 1, 11, 7, 4), (0, 1, 10, 11, 2),
(0, 1, 12, 9, 8), (0, 1, 8, 4, 12).

The existence of a 4-(7, 5, 1) directed design is of particular importance because it permits
the construction of the first infinite class of 4-(v, 5, 1) directed designs.

Theorem 3.1 There exists a 4-(2n − 1, 5, 1) directed design for all n ≥ 3.

Proof There exist generalized Steiner systems S(4, {5, 7}, 2n − 1) for all n ≥ 3 (see [10]).
Use the replacement lemma with the 4-(5, 5, 1) directed design and the 4-(7, 5, 1) directed
design given above. 2
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