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Abstract

We investigate equivalence classes under the operation of n-cycle switching
on isomorphism classes of STS(v)s for v ∈ {7, 9, 13, 15} and
n ∈ {4, 6, 8, 10, 12}. We also investigate equivalence classes under the op-
eration of n-cycle switching on realizations of STS(v)s on a fixed base set
V for v ∈ {7, 9, 13} and n ∈ {4, 6, 10}, and for (v, n) = (15, 12).
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1 Introduction

A Steiner triple system of order v, briefly STS(v), is a pair (V,B) where
V is a set of v elements and B is a collection of 3-element subsets of V ,
with the property that every 2-element subset of V appears in exactly
one member of B. The members of B are called blocks. For each pair
{a, b} ⊂ V , a graph Gab can be defined as follows. The vertices of Gab

are V \{a, b, c} where {a, b, c} is a block; {x, y} is an edge if either {a, x, y}
or {b, x, y} ∈ B. Clearly Gab is a union of disjoint cycles; it is called
the cycle graph through {a, b}. We can associate with this a cycle list
(c1, c2, c3, ..., cn) where the cis are the lengths of the individual cycles in
Gab and ci ≥ ci+1, i = 1, 2, 3, ..., n− 1. Clearly

∑n
i=1 ci = v − 3. The cycle

structure of an STS(v) is the collection of all
(
v
2

)
cycle lists for that STS(v).

An STS(v) is said to be uniform if all its cycle lists are identical. A uniform
STS(v) is said to be perfect when all of the cycles are of length v − 3. In
this case each cycle list is just (v − 3).

An operation which can be carried out on an STS(v) is that of cycle
switching. For a pair {a, b} ⊂ V , select one of the components of the cycle
graph Gab. For each edge {x, y} of this component resulting from a block
{a, x, y} replace this block by {b, x, y} and conversely. If the component
is a cycle of length n, this operation is called an n-cycle switch. Applying
an n-cycle switch to an STS(v) will result in another STS(v). STS(v)s for
v = 7 and v = 9 are unique and perfect. It is well-known that the two
non-isomorphic STS(13)s can be obtained from one another by switching
appropriate 4-cycles. Theorem 2 below shows that this result continues to
hold by switching appropriate 6-cycles.

There exist 80 pairwise non-isomorphic STS(15)s, all but one of which
give rise to 4-cycles [5] (page 10). Gibbons [1] analysed the 79 STS(15)s
containing 4-cycles and showed that all of them can be obtained from one
another by successive operations of 4-cycle switching. This can be de-
scribed in general graph-theoretic terms which is more appropriate for our
purposes. For every v ≡ 1 or 3 (mod 6) and every even n such that
4 ≤ n ≤ v − 3 (except for n = v − 5 which can not occur) define a graph
M(v, n), which we will call the isomorphism classes graph, as follows.

The vertices of M(v, n) are the set of pairwise non-isomorphic STS(v).
Two vertices are joined by an edge if and only if there is an n-cycle switch
which will transform either system into the other. (Note that it is possible
and permissible for a graph M(v, n) to contain loops). Gibbons’ result
is that the graph M(15,4) consists of a connected component having 79
vertices together with an isolated point. Isolated points correspond to those
systems whose cycle structure contains no n-cycles. Apart from such points,
a fundamental question is whether the graphs M(v, n) are connected. In
[2], the present authors showed that for v = 19, 21, 25, 27 and 31 the graphs
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M(v, 4) are not connected. In this paper we consider the switching of cycles
of length greater than 4 paying particular attention to the 80 STS(15)s.
However we first note some elementary results about switching cycles.

2 General Results

Theorem 1 Suppose S is an STS(v) with a cycle graph Gab consisting of
a single cycle. Let T be the STS(v) obtained by performing the (v−3)-cycle
switch on this cycle. Then S and T are isomorphic.
Proof The permutation (a b) is the required isomorphism.

Corollary 1 Any perfect STS(v) under the operation of (v−3)-cycle switch-
ing transforms to an isomorphic copy of itself.

Theorem 2 Suppose S is an STS(v) with a cycle graph Gab consisting of
an x-cycle and a y-cycle with x+ y = v− 3. Let Tx be the STS(v) obtained
by performing the x-cycle switch and Ty the STS(v) obtained by performing
the y-cycle switch. Then Tx and Ty are isomorphic.
Proof Again the permutation (a b) is the required isomorphism.

Theorem 3
(i) For v ≡ 1 or 3 (mod 6), v ≥ 13, the graph M(v, v− 7) is a subgraph of
the graph M(v, 4).
(ii) For v ≡ 1 or 3 (mod 6), v ≥ 13, the graph M(v, v− 9) is a subgraph of
the graph M(v, 6).
Proof Observe that if a cycle graph Gab contains a v−7-cycle (respectively
a v − 9-cycle) then it must also contain a 4-cycle (respectively a 6-cycle).

It is almost trivial now to describe the graphs M(v, n) for v ≤ 13 and
we do so only for completeness. M(7, 4) and M(9, 6) each consist of a single
vertex together with a loop. M(13, 4) has two vertices, corresponding to
the cyclic and non-cyclic STS(13)s respectively, which are joined by an
edge. In addition the vertex corresponding to the non-cyclic STS(13) has
a loop. By Theorem 2, M(13, 6) is isomorphic to M(13, 4). By Theorem
1, M(13, 10) comprises two disconnected vertices with a loop on each.
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3 Analysis of the STS(15)s

This section is concerned with the operation of cycle switching on the 80
STS(15)s. Throughout this paper we follow the system of identification as
given in [4], from which the cycle structure and all other relevant informa-
tion concerning these systems may be obtained. Full details of the cycle
switching is given in the Appendix.

There is only one STS(15) which is 4-cycle (quadrilateral) free, this
being system #80. We have verified Gibbons’ result that the remaining 79
STS(15)s form a connected graph under 4-cycle switching. However, we
find that, in addition to the switching recorded in [1], the systems #15 and
#58 each switch to themselves.

There are 16 STS(15)s which are 6-cycle free, these being systems #1
to #10 and #13 to #18 inclusive. These form isolated points in the graph
M(15,6). In addition we find that there are two disconnected components.
Systems #11, #12, #19, #20, #21, #22 and #61 form the vertices of
one component and the other 57 STS(15)s which contain 6-cycles form the
vertices of the other.

From Theorem 3, the graph M(15,8) is a subgraph of the graph M(15,4).
M(15,8) consists of a single connected component together with three iso-
lated vertices which correspond to the three systems #1, #16 and #80
which are 8-cycle free.

For 12-cycle switching it has been shown in Theorem 1 that any STS(15)
will switch to an isomorphic copy of itself. Of the 80 STS(15)s only #1 and
#2 are 12-cycle free. Thus the graph M(15,12) consists of 80 disconnected
vertices of which 78 have a loop and 2 do not.

4 Realizations of STS(v)s

We now consider the operation of cycle switching applied to realizations,
rather than isomorphism classes, of Steiner triple systems. For every v ≡ 1
or 3 (mod 6) and every even n such that 4 ≤ n ≤ v−3, n 6= v−5, a further
graph, the realizations graph R(v, n), can be defined whose vertices are the
realizations of STS(v) on a fixed base set V ; two vertices are joined by an
edge if and only if there is an n-cycle switch which will transform either
system into the other. Again our focus is on the connectedness of these
graphs. Note that unlike the graphs M(v, n), the graphs R(v, n) cannot
contain loops. The situations where v = 7 and v = 9 are straightforward
and are given in the following theorem, again mainly for completeness.

Theorem 4 The graphs R(7, 4) and R(9, 6) are connected.
Proof We first present the proof for R(7, 4). It is well known that STS(7)
is unique to within isomorphism and perfect. By Theorem 1, any 4-cycle
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switch is equivalent to a transposition. Conversely any transposition and
hence any sequence of transpositions can be represented by a corresponding
sequence of 4-cycle switches. Since the set of all transpositions generates
the symmetric group, the result follows. The proof for R(9,6) is analogous.

We observe that both of these graphs have undoubtedly been studied
further and possess many other interesting properties. Indeed the recent
paper by Lloyd [3], together with the references therein, present more in-
formation on R(7,4). We note here that the number of vertices in the graph
R(7, 4) is |S7|/|Aut(STS(7))| = 7!/168 = 30 and in the graph R(9, 6) the
number of vertices is |S9|/|Aut(STS(9))| = 9!/432 = 840.

We next consider the graph R(13, 4) and show that it too is connected.
Denote the cyclic STS(13) by C(13) and the non-cyclic STS(13) by N(13).
There are |S13|/|Aut(C(13))| = 13!/39 realizations of C(13) and
|S13|/|Aut(N(13))| = 13!/6 realizations of N(13). There are thirteen 4-
cycles in a C(13) and switching any one of these gives an N(13). There are
eight 4-cycles in an N(13), two of which switch the system to C(13)s and
the remaining six switch the system to other N(13)s. Thus, starting with
a given C(13), we may switch firstly to an N(13) and then to a different
C(13). There will be 39 permutations that map the given C(13) to the
new C(13). Therefore a consecutive pair of 4-cycle switches of the form
described may be represented by any one of these permutations. To prove
that all the vertices of R(13, 4) which correspond to C(13)s are in fact con-
nected, it suffices to prove that suitable combinations of these permutations
generate the symmetric group S13. Since every vertex corresponding to an
N(13) is connected to a vertex corresponding to a C(13), this will establish
that R(13, 4) is connected.

In order to investigate the permutations we choose as the given C(13)
the system with the following blocks: {i, i + 1, i + 4}, {i, i + 2, i + 7},
i = 0, 1, . . . , 12 with addition modulo 13. This has a 4-cycle with blocks
{0, 1, 4}, {0, 2, 7}, {2, 4, 9} and {7, 9, 1}. If we switch this 4-cycle we ob-
tain blocks {0, 2, 4}, {0, 1, 7}, {1, 4, 9} and {7, 9, 2}, and thereby create an
N(13). This contains a 4-cycle with blocks {7, 8, 11}, {8, 9, 12}, {10, 12, 2}
and {7, 9, 2}. Switching this 4-cycle results in a new C(13) containing the
blocks of the given C(13) apart from {0, 1, 4}, {0, 2, 7}, {2, 4, 9}, {7, 9, 1},
{7, 8, 11}, {8, 9, 12} and {11, 12, 2} which are replaced by {0, 2, 4}, {0, 1, 7},
{1, 4, 9}, {7, 9, 8}, {7, 2, 11}, {2, 9, 12} and {11, 12, 8}.

Amongst the permutations mapping the given C(13) to the new C(13)
are the following:

A: (12)(4 10)(5 6 9)(0 8 7 1 2 3 11)
B: (10)(0 1 7 2 5 12 9 11 6 8 3 4)
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We will show that suitable combinations of these permutations generate
the symmetric group S13 by obtaining all transpositions through a single
element. It is well-known that these generate the symmetric group.

There is a subtle but important point concerning the combination of
these permutations. The two permutations given above represent map-
pings from a single C(13), namely the given one. In applying one of these
permutations to a derived realization, the expression of this permutation in
terms of the elements of this derived realization will be different from the
original expression of the permutation in terms of the given system. The
difficulty may be overcome by regarding the given system as a template
and interpreting the permutations as mappings of the positions of the tem-
plate. Thus, if P is a permutation containing (. . . a b . . .), then P maps
the element in template position a to the element in template position b.
If X denotes a derived realization of C(13) (including the given system S)
then we will use the notation P [X] to denote the result of applying P to
X in the sense just described. As an example, using the mappings A and
B given above, and denoting the given system by S we may obtain the
following table.

Template 0 1 2 3 4 5 6 7 8 9 10 11 12
S 0 1 2 3 4 5 6 7 8 9 10 11 12
A[S] 8 2 3 11 10 6 9 1 7 5 4 0 12
B[A[S]] 2 1 6 10 8 12 7 3 11 0 4 9 5

Table 1. Composition of Mappings.

The result of applying firstly the mapping A followed by B to the given
system S may be obtained by reading lines two and four of the Table. Using
this method of combining A and B, we have B[A[S]] = (AB)(S) where the
expression AB is interpreted in the usual sense of composition of permuta-
tions. In general, if {Pi : i = 1, 2, . . . , n} is a set of such permutations then
Pn[Pn−1[. . . [P1[S]] . . .]] = (P1P2 . . . Pn)(S). It will therefore suffice to prove
that suitable compositions, in the usual sense, of the permutations A and B
generate all transpositions through a single element. To do this, firstly ob-
serve that A21 = (4 10). Then note that {BnA21B12−n : n = 1, 2, . . . , 11}
gives all the remaining transpositions through the element 10.

The argument concerning the graph R(13, 6) is similar. We take the
same given C(13). This has a 6-cycle with blocks {1, 3, 8}, {1, 10, 11},
{1, 6, 12}, {2, 8, 10}, {2, 11, 12} and {2, 3, 6}. If we switch this 6-cycle we ob-
tain blocks {2, 3, 8}, {2, 10, 11}, {2, 6, 12}, {1, 8, 10}, {1, 11, 12} and {1, 3, 6},
and thereby create an N(13). This contains a 6-cycle with blocks {1, 0, 4},
{1, 2, 5}, {1, 3, 6}, {8, 4, 5}, {8, 2, 3} and {8, 0, 6}. Switching this 6-cycle re-
sults in a new C(13) containing the blocks of the given C(13) apart from
{0, 1, 4}, {1, 2, 5}, {2, 3, 6}, {4, 5, 8}, {10, 11, 1}, {11, 12, 2}, {1, 3, 8}, {6, 8, 0},
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{8, 10, 2} and {12, 1, 6} which are replaced by {0, 8, 4}, {8, 2, 5}, {8, 3, 6},
{4, 5, 1}, {10, 11, 2}, {11, 12, 1}, {2, 3, 1}, {6, 1, 0}, {8, 10, 1} and {12, 2, 6}.
Amongst the permutations mapping the given C(13) to the new C(13) are
the following:

C: (12)(4 10)(5 6 9)(0 1 8 7 2 3 11)
D: (10)(0 6 2 4 3 9 7 11 1 8 12 5)

We observe that C21 = (4 10) and that {DnC21D12−n : n = 1, 2, . . . , 11}
gives all the remaining transpositions through the element 10.

Finally in this section we consider the graph R(13, 10). By Theorem
1, this must comprise at least two disconnected components corresponding
to the cyclic and the non-cyclic STS(13)s respectively. We show that each
of these components is connected using an argument similar to that given
above for R(13, 4) and R(13, 6). Each 10-cycle switch is equivalent to the
transposition of two elements and we show that there are enough of these
to generate the symmetric group S13.

Consider the cyclic STS(13) given previously. This has 10-cycle switches
giving rise to the following transpositions: (n n + 2), (n n + 5), (n n + 6),
(n n + 7), (n n + 8) and (n n + 11), n = 0, 1, . . . , 12, with addition modulo
13. The remaining transpositions through the element 0 may be obtained
as follows: (0 1) = (1 6)(0 6)(1 6), (0 3) = (3 8)(0 8)(3 8), (0 4) =
(4 6)(0 6)(4 6), (0 9) = (9 11)(0 11)(9 11), (0 10) = (10 5)(0 5)(10 5) and
(0 12) = (12 5)(0 5)(12 5).

Take the non-cyclic STS(13) to be the one obtained from the cyclic
STS(13) given previously by switching the 4-cycle with blocks {0, 1, 4},
{0, 2, 7}, {2, 4, 9} and {7, 9, 1}. These blocks are replaced by {0, 2, 4},
{0, 1, 7}, {1, 4, 9} and {7, 9, 2}. Amongst others, this has 10-cycle switches
giving rise to the following transpositions: (0 2), (0 5), (0 6), (0 7), (0 8),
(0 10), (0 11), (0 12), (1 5), (3 5), (4 6) and (6 9). Now, (0 1) =
(1 5)(0 5)(1 5), (0 3) = (3 5)(0 5)(3 5), (0 4) = (4 6)(0 6)(4 6) and
(0 9) = (9 6)(0 6)(9 6), thus giving all transpositions through the element
0.

We summarize the results of this Section concerning realizations of the
STS(13)s in the following Theorem.

Theorem 5
(i) The graphs R(13, 4) and R(13, 6) are connected.
(ii) The graph R(13, 10) comprises precisely two disconnected components
corresponding to the cyclic and to the non-cyclic STS(13)s.
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5 The graph R(15, 12)

The only graph R(15, n) which it appears tractable to study is that for
n = 12. By Theorem 1, if S is an STS(15) every 12-cycle switch will give
an STS(15) isomorphic to S. Thus the graph R(15, 12) must comprise
at least 80 mutually disconnected components, each of these being a sub-
graph obtained by consideration of one of the 80 pairwise non-isomorphic
STS(15)s. Denote by R(i, 15, 12), 1 ≤ i ≤ 80, the component correspond-
ing to STS(15) #i as in [4]. We explore the connectedness of each of the
components R(i, 15, 12).

Firstly, as observed earlier, systems #1 and #2 are 12-cycle free. It
follows therefore that the graphs R(i, 15, 12), i = 1, 2, consist of
|S15|/|Aut(#i)| isolated vertices. The actual numbers are 15!/20160 for
R(1, 15, 12) and 15!/192 for R(2, 15, 12).

We then find that precisely 72 of the remaining 78 graphs R(i, 15, 12) are
connected, namely those for i 6∈ {1, 2, 3, 4, 5, 6, 7, 13}. To prove this, recall
from Theorem 1 that a 12-cycle switch is equivalent to a transposition of a
pair of elements. As before, it then suffices to show that for a given value of
i, compositions of these transpositions generate all transpositions through
a single element, and hence that they generate the symmetric group S15.
Having established this, it follows that each graph R(i, 15, 12), for i ≥ 8
and i 6= 13, forms a connected graph on 15!/|Aut(#i)| vertices. For reasons
of space we do not give the details for all 72 cases but, as an example, take
the case i = 51. Here there are 12-cycles giving rise to transpositions (1 b)
for b ∈ {3, 4, 5, 6, 8, 9, 12, 13, 14, 15}, as well as (2 6), (3 7), (3 10) and (3 11).
We obtain all remaining transpositions through the element 1 as follows:
(1 2) = (1 6)(2 6)(1 6), (1 7) = (1 3)(3 7)(1 3), (1 10) = (1 3)(3 10)(1 3)
and (1 11) = (1 3)(3 11)(1 3).

Each of the remaining six cases is now discussed individually using the
representation of the system and its automorphism group given in [4].

#3 There exist 12-cycles corresponding to the transpositions (a b) for
a ∈ {4, 5, 6, 7} and b ∈ {8, 9, 10, 11, 12, 13, 14, 15}. These generate
the symmetric group S12 on {4, 5, . . . , 15}. There are no 12-cycles
giving rise to transpositions involving the elements 1, 2 or 3, and the
automorphism group of #3 partitions {1, 2, 3} from the remaining
elements. The restriction of Aut(#3) to the set {1, 2, 3} is the cyclic
group C3. It follows that the 15! permutations of {1, 2, . . . , 15} parti-
tion into sets, each of cardinality 3× 12!, such that the permutations
in each set give rise either to identical realizations of #3 or to real-
izations which are equivalent under a sequence of 12-cycle switches.
Therefore the graph R(3, 15, 12) has 15!/3.12! = 910 components,
each of which is a connected graph on 3.12!/|Aut(#3)| = 3.12!/96

10



vertices.

#4 There exist 12-cycles corresponding to the transpositions (a b) for
a ∈ {4, 6} and b ∈ {8, 11, 13, 14}. These generate the symmetric
group S6 on {4, 6, 8, 11, 13, 14}. There also exist 12-cycles correspond-
ing to the transpositions (a b) for a ∈ {5, 7} and b ∈ {9, 10, 12, 15}.
These generate the symmetric group S6 on {5, 7, 9, 10, 12, 15}. There
are no 12-cycles giving rise to transpositions involving the elements
1, 2 or 3, or to transpositions (a b) with a ∈ {4, 6, 8, 11, 13, 14}
and b ∈ {5, 7, 9, 10, 12, 15}. The automorphism partition of #4 is
{1}, {2}, {3}, {4, 6}, {5, 7}, {8, 11, 13, 14}, {9, 10, 12, 15} and the rest-
riction of Aut(#4) to {1, 2, 3} is the identity group. It follows that
the 15! permutations of {1, 2, . . . , 15} partition into sets, each of car-
dinality (6!)2 within which the corresponding realizations of #4 are
equivalent under a sequence of 12-cycle switches. Therefore the graph
R(4, 15, 12) has 15!/(6!)2 components, each of which is a connected
graph on (6!)2/|Aut(#4)| = (6!)2/8 vertices.

#5 There exist 12-cycles corresponding to the transpositions (a b) for
a ∈ {4, 5, 6, 7} and b ∈ {8, 9, 10, 11}. These generate the symmetric
group S8 on {4, 5, . . . , 11}. There are no 12-cycles giving rise to trans-
positions involving the elements 1, 2, 3, 12, 13, 14 or 15, and the auto-
morphism partition of #5 is {1, 3}, {2}, {4, 5, 6, 7, 8, 9, 10, 11}, {12, 13,
14, 15}. The restriction of Aut(#5) to the set {1, 2, 3, 12, 13, 14, 15} is
the dihedral group D4 of order 8. It follows that the 15! permutations
of {1, 2, . . . , 15} partition into sets, each of cardinality 8×8!, such that
the permutations in each set give rise either to identical realizations
of #5 or to realizations which are equivalent under a sequence of 12-
cycle switches. Therefore the graph R(5, 15, 12) has 15!/8.8! compo-
nents, each of which is a connected graph on 8.8!/|Aut(#5)| = 8.8!/32
vertices.

#6 There exist 12-cycles corresponding to the transpositions (a b) for
a ∈ {4, 5} and b ∈ {8, 11, 12, 14}. These generate the symmetric
group S6 on {4, 5, 8, 11, 12, 14}. There also exist 12-cycles correspond-
ing to the transpositions (a b) for a ∈ {6, 7} and b ∈ {9, 10, 13, 15}.
These generate the symmetric group S6 on {6, 7, 9, 10, 13, 15}. There
are no 12-cycles giving rise to transpositions involving the elements
1, 2 or 3, or to transpositions (a b) with a ∈ {4, 5, 8, 11, 12, 14}
and b ∈ {6, 7, 9, 10, 13, 15}. The automorphism partition of #6 is
{1, 2, 3}, {4, 5, 8, 11, 12, 14}, {6, 7, 9, 10, 13, 15} and the restriction of
Aut(#6) to {1, 2, 3} is the symmetric group S3. It follows that the
15! permutations of {1, 2, . . . , 15} partition into sets, each of cardinal-
ity 3!(6!)2, such that the permutations in each set give rise either to
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identical realizations of #6 or to realizations which are equivalent un-
der a sequence of 12-cycle switches. Therefore the graph R(6, 15, 12)
has 15!/3!(6!)2 components, each of which is a connected graph on
3!(6!)2/|Aut(#6)| = 3!(6!)2/24 vertices.

#7 There exist 12-cycles corresponding to the transpositions (a b) for
a ∈ {4, 5, 6, 7} and b ∈ {8, 9, 10, 11, 12, 13, 14, 15}. These generate
the symmetric group S12 on {4, 5, . . . , 15}. There are no 12-cycles
giving rise to transpositions involving the elements 1, 2 or 3, and the
automorphism group of #7 partitions {1, 2, 3} from the remaining ele-
ments. The restriction of Aut(#7) to the set {1, 2, 3} is the symmetric
group S3. It follows that the 15! permutations of {1, 2, . . . , 15} par-
tition into sets, each of cardinality 3!12!, such that the permutations
in each set give rise either to identical realizations of #7 or to real-
izations which are equivalent under a sequence of 12-cycle switches.
Therefore the graph R(7, 15, 12) has 15!/3!12! = 455 components,
each of which is a connected graph on 3!12!/|Aut(#7)| = 3!12!/288
vertices.

#13 There exist 12-cycles corresponding to the transpositions (a b) for a ∈
{6, 7} and b ∈ {8, 9, 10, 11, 12, 13, 14, 15}, as well as (2 9), (3 8), (4 9)
and (5 8). These generate the symmetric group S14 on {2, 3, . . . , 15}.
There are no 12-cycles giving rise to transpositions involving the el-
ement 1, and the automorphism group of #13 partitions {1} from
the remaining elements. It follows that the 15! permutations of
{1, 2, . . . , 15} partition into sets, each of cardinality 14! within which
the corresponding realizations of #13 are equivalent under a sequence
of 12-cycle switches. Therefore the graph R(13, 15, 12) has 15!/14! =
15 components, each of which is a connected graph on 14!/|Aut(#13)|
= 14!/8 vertices.

We summarize the results of this Section concerning realizations of the
STS(15)s in the following Theorem.

Theorem 6 The graph R(15, 12) comprises 80 mutually disconnected com-
ponents, R(i, 15, 12), 1 ≤ i ≤ 80, corresponding to the 80 pairwise non-
isomorphic STS(15)s. Of these components, eight are themselves discon-
nected and these are described in Table 2 below. The remaining 72 form
connected graphs with R(i, 15, 12) having 15!/|Aut(#i)| vertices.
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i Number of mutually Number of vertices in each
disconnected components connected component of
in R(i, 15, 12) R(i, 15, 12)

1 15!/20160 1
2 15!/192 1
3 15!/3.12! = 910 3.12!/96
4 15!/(6!)2 (6!)2/8
5 15!/8.8! 8.8!/32
6 15!/3!(6!)2 3!(6!)2/24
7 15!/3!12! = 455 3!12!/288
13 15!/14! = 15 14!/8

Table 2. The Disconnected Components of R(15, 12).
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Appendix

Below are given the tables for switching 4-cycles, 6-cycles and 8-cycles
in the 80 STS(15)s. The systems are identified numerically in the first
column, following the enumeration given in [4]. Within each table the
second column gives the number of n-cycles contained in that STS(15).
The subsequent entries in each row indicate which STS(15)s are obtained
by switching each particular n-cycle. Thus the Table for switching 4-cycles
gives more information than that given by Gibbons [1] (Table 7.5, page
153). The n-cycles are ordered as described in the next paragraph. We use
the realization of each isomorphism class on the base set {1, 2, . . . , 15} as
given in [4].

The blocks forming each n-cycle span n + 2 distinct elements. We
will identify an ordered triple 〈α, β, γ〉 of these elements by the process
described below. These ordered triples are then used to order the n-cycles.
If the n-cycles Ci and Cj correspond to the ordered triples 〈αi, βi, γi〉 and
〈αj , βj , γj〉 respectively, then we place Ci before Cj if either

(i) αi < αj , or

(ii) αi = αj and βi < βj , or

(iii) αi = αj , βi = βj and γi < γj .

It will be easily seen that ordered triples corresponding to distinct n-cycles
of a particular STS(15) are themselves distinct.

For a 4-cycle {x, a, b}, {x, c, d}, {y, b, c}, {y, d, a}, put
α = min{x, y, a, b, c, d}. Take β to be the unique element of {x, y, a, b, c, d}
such that the pair {α, β} is not contained in a block of the 4-cycle, and
then put γ = min({x, y, a, b, c, d} \ {α, β}).

For a 6-cycle {x, a, b}, {x, c, d}, {x, e, f}, {y, b, c}, {y, d, e}, {y, f, a},
put α = min{x, y}, β = max{x, y} and γ = min{a, b, c, d, e, f}.

For an 8-cycle {x, a, b}, {x, c, d}, {x, e, f}, {x, g, h}, {y, b, c}, {y, d, e},
{y, f, g}, {y, h, a}, put α = min{x, y}, β = max{x, y} and
γ = min{a, b, c, d, e, f, g, h}.
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