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Abstract

In this paper it is shown that any partial Latin square of order n can be embedded in
a Latin square of order at most 16n? which has at least 2n mutually orthogonal mates.
Further, for any t > 2, it is shown that a pair of orthogonal partial Latin squares of
order n can be embedded in a set of ¢ mutually orthogonal Latin squares (MOLS) of
order a polynomial with respect to n. A consequence of the constructions is that, if
N(n) denotes the size of the largest set of MOLS of order n, then N(n?) > N(n) + 2.

In particular, it follows that N (576) > 9, improving the previously known lower bound
N(576) > 8.
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1 Introduction

In 1960 Evans [5] showed that it was possible to embed any partial Latin square of order n
in some Latin square of order ¢, for every t > 2n, where 2n is a tight bound. In the same
paper Evans raised the question of embedding orthogonal partial Latin squares in sets of
mutually orthogonal Latin squares.

The importance and relevance of this question is demonstrated by the prevalence and
application of orthogonal Latin squares to other areas of mathematics (see [3]). For instance,
the existence of a set of n — 1 mutually orthogonal Latin squares of order n is equivalent
to the existence of a projective plane of order n (see [11] for a relevant construction). Thus
results on the embedding of orthogonal partial Latin squares provide information on the
embedding of sets of partial lines in finite geometries. In addition, early embedding results
for partial Steiner triple systems utilised embeddings of partial idempotent Latin squares (see
for example [9]). It has also been suggested that embeddings of block designs with block
size 4 and embeddings of Kirkman triple systems may make use of embeddings of pairs of
orthogonal partial Latin squares (see [7]).

In 1976 Lindner [10] showed that a pair of orthogonal partial Latin squares can always
be finitely embedded in a pair of orthogonal Latin squares. However, there was no known
method for obtaining an embedding of polynomial order (with respect to the order of the
partial arrays). In [7], Hilton et al. formulated some necessary conditions for a pair of
orthogonal partial Latin squares to be embedded in a pair of orthogonal Latin squares.
Then in [8] Jenkins developed a construction for embedding a single partial Latin square of
order n in a Latin square of order 4n? for which there exists an orthogonal mate. In 2014,
Donovan and Yazic1 [4] developed a construction that verified that a pair of orthogonal
partial Latin squares, of order n, can be embedded in a pair of orthogonal Latin squares of
order at most 16n*.

In 2017, Barber et al. [2] established a remarkable result concerning completions of
mutually orthogonal partial Latin squares. As a consequence of their Theorem 1.4, it follows
that for any t € N, there exists kg € N such that for any n € N, any set of ¢ mutually
orthogonal partial Latin squares of order n can be embedded in a set of ¢t MOLS of order
m for every m > kon. That there is such a kq is an important existence result because it
gives a linear order embedding. However, the proof given in [2] does not yield an estimate
for the best (i.e., lowest) value of kg. For ¢ = 1, Evan’s result shows that ky = 2 is the
best possible value. For ¢ > 2, the proof given in [2] requires that kg > 107(¢ + 2)3/9 and,
being an existence result, there is little information about the structure of the resulting set
of MOLS. For t = 2 and small n, certainly n < 113 and possibly much larger, [4] gives a
tighter embedding than that of [2], and it more closely specifies the structure of the resulting
pair of MOLS.

In the current paper, we provide some new constructions that show that a partial Latin
square, of order n, can be embedded in a Latin square, of order at most 16n? with many
mutually orthogonal mates. (From here onwards, when we say B has ¢t mutually orthogonal
mates we mean B together with these ¢ Latin squares form a set of ¢4 1 mutually orthogonal
Latin squares.) Furthermore, we extend the results of [4] by developing a second construction
that takes any pair of orthogonal partial Latin squares of order n and any integer ¢, and
embeds the pair in a set of ¢t MOLS(m), where m < p;(n) for some polynomial p,. Also,



as a corollary, the construction can be used to increase the best known lower bound for the
largest set of MOLS(576). In the literature the existence of 8 MOLS(576) is established.
However, we construct 9 MOLS(576).

We preface the discussion of our main result with some necessary definitions.

2 Definitions

Let I = {ay, s, ..., q,} represent a set of n distinct elements. A non-empty subset P of I x
I'x I is said to be a partial Latin square (PLS(n)), of order n, if for all (x1, z2, x3), (y1, Y2, y3) €
P and for all distinct i, j, k € {1,2,3},

x; = y; and x; = y; implies z;, = yp.

We say that P is indezed by I. We may think of P as an n X n array where symbol e € [
occurs in cell (r,¢), whenever (r,c,e) € P, and we will write e = P(r,c). We say that cell
(r,c) is empty in P if, for all e € I, (r,c,e) ¢ P. The volume of P is |P|. If |P| = n?, then
we say that P is a Latin square (LS(n)), of order n. If for all 1 < i < n, (o, o, ) € P,
then P is said to be idempotent. The set of elements {(z1, zq,23) € P | 1 = x5} forms the
main diagonal of P.

Two partial Latin squares P and (), of the same order n are said to be orthogonal, denoted
OPLS(n), if they have the same non-empty cells and for all r1, ¢y, 79, co, 2,y € [

{(7“1,01,1'), (7’2,62,1’)} - P lmphes {(Tlaclay)7 (T2762ay)} Z Q

Example 2.1.

0]1 0 1
2 113 311102
3 1 2

2 1 0 3

Figure 1: A pair of orthogonal partial Latin squares of order 4

This definition extends in the obvious way to a pair of orthogonal Latin squares of order
n. A set of t Latin squares of order n, which are pairwise orthogonal, is said to be a set of
t mutually orthogonal Latin squares, denoted MOLS(n). N(n) is the maximum number of
Latin squares in a set of mutually orthogonal Latin squares of order n.

A set T'C A, where A is a Latin square of order n, is said to be a transversal, if

e |T| =n,and
e for all distinct (7’1,01,1’1), (7"2,02,.1’2) c T, 1 §£ T, C1 §£ Co and T % 9.

Note that a Latin square has an orthogonal mate if and only if it can be partitioned into
disjoint transversals.



We say that a partial Latin square P on the set I can be embedded in a Latin square L on
the set J if there exist one-to-one mappings f{, f&, f¥: I — J such that if (z,, 29, 23) € P
then (ff'(z1), f¥(x2), f£(x3)) € L. A pair of orthogonal partial Latin squares (Py, P,) is said
to be embedded in a pair of orthogonal Latin squares (L1, Lo) if P; is embedded in L; and P,
is embedded in L, such that f{* = f/2 and fi* = f}*. A set of mutually orthogonal partial
Latin squares (P, Py, ..., P,) is embedded in a set of mutually orthogonal Latin squares
{Ll, Lg, ..., Ly} where b > a if P; is embedded in L; for all 1 < i < a where f1 = f1 and
f2 —f2J foralll <i,j <a.

This paper will make extensive use of Evans’ embedding result, which is stated as:

Theorem 2.2 ([5]). A partial Latin square of order n can be embedded in a Latin square of
order t, for any t > 2n.

The following is a similar embedding result for partial idempotent Latin squares.

Theorem 2.3 ([1]). A partial idempotent Latin square of order n can be embedded in a
idempotent Latin square of order t, for any t > 2n + 1.

It is also worth noting the following well known result which is the culmination of results
from a series of papers by many authors, for example [6].

Theorem 2.4. A pair of orthogonal Latin squares of order n can be embedded in a pair of
orthogonal Latin squares of order t if t = 3n, with the bound of 3n being best possible.

3 Embedding a PLS in a set of MOLS

We begin by assuming that there exists a set of ¢t MOLS(n) and show that any Latin square
L, of order n, can be embedded in a Latin square B, of order n?, with the additional property
that B has t mutually orthogonal mates. This result will then allow us to show that any
PLS(s) where s < n/2 can be embedded in a Latin square B of order n* such that B has
t orthogonal mates that are also mutually orthogonal. Thus this result, and the associated
construction, allows us to generalize Jenkins’ result which is stated as:

Theorem 3.1 ([8]). Let L be a Latin square of order n with n > 3 and n # 6. Then L can
be embedded in a Latin square of order n® which has an orthogonal mate.

From here forward when we say B has t mutually orthogonal mates we mean B together
with ¢t more Latin squares of the same order forms a set of ¢ + 1 mutually orthogonal Latin
squares.

Theorem 3.2. Let Fy = [Fi(r,c)],..., F, = [F,(r,c)] be t mutually orthogonal Latin squares
of order n indexed by [n] ={0,1,...,n—1}. Let L = [L(r,c)] be a Latin square of order n,
also indezed by [n|. Then the arrays B and Xy, for 1 < k < 't, form a set of t + 1 mutually
orthogonal Latin squares of order n* where

Xk = {((pa ’l“), (q,c), (Fk(Fl(p> T)aQ)>Fk(F1(p> q),c))) | 0 p,q,r, C n— 1}
B ={((p.r). (¢, 0), (Fi(p, ), L(Fi(p,7),¢))) | 0 < p,q,r,c < n — 1}
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Proof. For completeness we begin by showing these arrays are Latin squares, then that A},
1 < k <t, are mutually orthogonal and finally that for each k, X}, and B are orthogonal.
Assume that one of Aj, 1 < k <t or B is not a Latin square. Then

e for some (p,r), there exists (q,c) and (¢, ), with (¢, c) # (¢, ¢), such that
(Fk(Fl(p> T)a Q)> Fk(Fl(p> q)a C)) = (Fk(Fl(p> T)a q/)> Fk(Fl(pa q/)a C/))> or
(Fl(p> q)a L(Fl(p> T)a C)) = (Fl(pa q/)a L(Fl(p> T)a d))?

or

e for some (g, ¢), there exists (p,
(Fk(F1(p,7), 9), Fi(Fi(p, 4), ¢))
(Fi(p.q), L(Fi(p,7), ¢)) = (Fa(p

The first case implies

Fk(Fl(pa ’l“),q) - Fk(Fl(p> T)aq/) and Fk(Fl(p> Q)ac) - Fk(Fl(p> q,)>cl)'

Thus we may deduce that ¢ = ¢’ and consequently ¢ = ¢/, a contradiction. All the other

cases follow in a similar manner and hence X}, 1 < k < t, and B are Latin squares of order
2

ne.

Next assume that X}, and AX,, for k # ¢ are not orthogonal, and so there exist distinct
cells ((p,7), (¢, ¢)) and ((p',r'), (¢', ) such that

(Fk(Fl(pa T)a Q)a Fk(Fl(pv Q)a C)) = (Fk(Fl(plv T/)v q/)7 Fk(Fl(plv q/)7 C/)) and
(Ff(Fl(p> T)a Q)> FZ(Fl(p> q)a C)) = (FZ(Fl(p/a T/)a q/)a FZ(Fl(p/a q/)a C,))'

r) and (p/,r"), with (p,r) # (p/,7’), such that
= (B(F( 7). @), Fu( By (0 9). ), or
"q), IR (p/, 1), €)).-

Then
Fk(Fl(p7T>7q):Fk(Fl(plarl)vq/)7 (1)
F(Fi(p,q). c) = Fr(F (¥, 4'), ), (2)
Fé(Fl(par)>q):Fé(Fl(p,>T,)aq/)’ (3)
Fi(Fi(p,q),c) = Fo(Fi(p',q),c). (4)

But F} and F} are orthogonal Latin squares, hence Equations (1) and (3) imply £} (p, r) =
Fi(p',r") and ¢ = ¢/, while Equations (2) and (4) imply Fi(p,q) = Fi(p/,¢') and ¢ = (.
Thus we may deduce that p = p" and hence r = 7". So ((p,r), (¢,¢c)) = (( ), (¢, ), a
contradiction. Hence {X), | 1 < k < t}, is a set of t MOLS(n?).

Finally assume that for some k € {1,...,t}, X} and B are not orthogonal. Thus there
exist distinct cells ((p,r), (¢,¢)) and ((p, "), (¢',')) such that

(Fk(Fl(p> T)a Q)> Fk(Fl(p> q)a C)) = (Fk(Fl(p/a T/)a q/)a Fk(Fl(p/a q/)a C,)) and
(Fi(p,q), L(Fi(p,7), ¢)) = (F(p', ), LIFY (P, 7). ).

Then
Fu.(Fi(p,r),q) = Fe(Fi(p', 1), d), (5)
Fe(Fi(pq),¢) = Fr(FL (Y, ¢), &), (6)
Fi(p.q) = Fi(y',q), (7)
L(Fi(p,r),c) = L(Fy(p', 1), ). (8)



Since F}, is a Latin square, Equation (7) substituted into Equation (6) gives ¢ = ¢’. Then
Equation (8) gives Fi(p,r) = Fi(p/,7’) and when substituted into Equation (5) gives ¢ = ¢'.
Returning to Equation (7) we get p = p’ and consequently r» = r'. So ((p,r),(q,¢)) =
((p',r"),(d,)), a contradiction. Hence for all 1 < k < t, X}, is orthogonal to B, and the
result follows. O

Corollary 3.3. Let P be a partial Latin square of order n, n > 3. Then P can be embedded
in a Latin square B that has order at most 16n?, where B has at least 2n mutually orthogonal
mates. Furthermore if P is idempotent then B can be constructed to be idempotent.

Proof. We will first embed P in a Latin square L of order m where 2¥ = m > 2n > 2+-1
which is always possible given Evans’ result, Theorem 2.2. We can also assume that L is
indexed by [m| = {0,1,...,m — 1}. As is well known, since m is a prime power, there
exists a set of m — 1 mutually orthogonal Latin squares {Fy, Fy, ..., F,,,_1} of order m, also
indexed by [m] and in standard form (that is, F;(0,5) = j for each 1 < ¢ < m — 1 and
0<j<m—1). Then the set {X}, Xy,..., X,,_1,8} of Theorem 3.2 defined using these F;
is a set of m mutually orthogonal Latin squares of order m?.

Observe that since F;(0,7) = r, the construction places a copy of P in the sub-array
defined by p = 0 and ¢ = 0 and so P has been embedded in B which has been shown to have
m — 1 mutually orthogonal mates.

As 28 = m > 2n > 271 we have 287! > 4n > 28 = m, so 16n%2 > m?. Hence every
partial Latin square of order n embeds in a Latin square of order at most 16n? for which
there exists at least 2n mutually orthogonal mates.

Now, one can make sure B is idempotent if P is idempotent. When embedding P, ensure
that L is idempotent, which can be guaranteed by Theorem 2.3 because m > 2n + 1. Note
that F) is in standard form and is decomposable into transversals as it has an orthogonal
mate. So there exists a transversal of F} involving the element (0,0,0). Without loss of
generality one can assume that this transversal is on the main diagonal of Fy. So Fi(p,p) #
Fi(p',p') for p # p'. Hence, if p # p/, the cells ((p,7), (p,r)) and ((p',7), (p',r)) of B contain
elements with different first coordinates. The second coordinate in cell ((p,r), (p,7)) of B is
L(Fi(p,r),r). So for each fixed p, these second coordinates form a row-permuted copy of L.

Now consider the subsquare S, of B formed by the cells ((p, ), (p, 7)) for 0 < r, 7’ < m—1.
The entries in S, all have the same first coordinate F(p, p), and the second coordinates form
a row-permuted copy of L. Since L is idempotent, L has a transversal and by permuting
the rows {(p,0), (p,1),...,(p,m—1)} of B we can arrange for this transversal of S, to lie on
the main diagonal of B. This can be done independently for each p = 0,1,...,m — 1, and
the result is a transversal of B on its main diagonal. By suitable renaming of the elements
of B we can then arrange for B to be idempotent. In the case p = 0, the original entry
in the cell (0,7),(0,7") of B is (0, L(r,7")), so no permuting of the rows of Sy or renaming
of elements (0, x) is required (strictly speaking we apply the identity permutation and the
identity renaming here). Hence B retains a copy of L in the subsquare Sy. Finally, to
complete the proof, we apply the same permutation of the rows and renaming of elements
to each X}, as were applied to B. O

Note that one can increase the number of mutually orthogonal Latin squares that are
orthogonal to B as much as one likes by increasing the order of the embedding Latin square



L to guarantee the existence of a larger number of mutually orthogonal Latin squares of the
same order as L.

Corollary 3.4. Let L be a Latin square of order n withn > 7 and n # 10,18 or 22. Then L
can be embedded in a Latin square B of order n® where B has at least four mutually orthogonal
mates.

Proof. We know by [3] (Section II1.3.6, Table 3.88) and [12] that if n > 7 and n # 10,18 or
22, there exist four mutually orthogonal Latin squares of order n. Use these Latin squares
to form B, X, Xy, X3 and X. O

A bachelor Latin square is a Latin square which has no orthogonal mate; equivalently,
it is a Latin square with no decomposition into disjoint transversals. A confirmed bachelor
Latin square is a Latin square that contains an entry through which no transversal passes.

Wanless and Webb [13] have established the existence of confirmed bachelor Latin squares
for all possible orders n, n ¢ {1,3}. So it is interesting to note that the above results
(including Jenkins’ result) established that when one essentially “squares” a bachelor, it is
possible to find an orthogonal mate.

4 Embedding a pair of OPLS in a set of MOLS

In this section we make use of the embedding result of Donovan and Yazci, [4], to show that
a pair of orthogonal partial Latin squares can be embedded in a pair of orthogonal Latin
square which have many orthogonal mates.

Theorem 4.1 ([4]). Let P and Q be a pair of orthogonal partial Latin squares of order n.
Then P and Q can be embedded in orthogonal Latin squares of order k* and any order greater
than or equal to 3k* where 2¢ =k > n > 271 for some integer a.

Theorem 4.2. Let Al = [Al(’l,])], Ag = [AQ(Z,])] and Bl = [Bl(l,])], BQ = [BQ(Z,])] be
pairs of orthogonal Latin squares of order n. Let Cy = [C1(3,7)],...,Cy = [Ci(i, )] be t
mutually orthogonal Latin squares of order n. Then the squares

By = {((p,7), (¢, ), (Ar(p, q), Bi(r,)))},
By = {((p> T)? (Q> C)> (A2(p> Q)a B2(T> C)))}>
‘)C‘ivf(i) = {((p, T)v (CL C>7 (Ci(p7 Bl(rv C))? Cf(i)(q, B2(T7 C)))}v

where 1 € [t] = {1,...,t} and f : [t] — [t] is a bijection, form a set of t + 2 mutually
orthogonal Latin squares of order n?.

Proof. The arrays B; and By may be obtained by taking direct products, so it is clear that
they are orthogonal Latin squares.

Assume that the array X, 5 is not a Latin square, for some o, 3. Then there exists
(p,r) such that (Cy(p, Bi(r,¢)), Cs(q, Ba(r,c)) = (Cu(p, Bi(r, ), Cs(q’, Ba(r, '), for some
(g,¢), (¢, ) with (¢, c) # (¢, ¢'), or there exists (g, ¢) such that (Cy(p, Bi(r, ¢)), Cs(q, B2(r, ¢))



= (Co(p, B1(1",¢)), Cs(q, B2(r', ¢)), for some (p,r), (p',r") with (p,r) # (p',r’). The former
case implies

Ca(p7 Bl(rv C)) - Ca(p7 Bl(ra C/)>7 (9)

Cs(q, Ba(r,c)) = Cs(¢, Ba(r, ). (10)
By (9) ¢ = ¢ and so (10) implies ¢ = ¢/, a contradiction. The latter case implies

Ca(pa Bl(ra C)) = Ca(p/,Bl(T/,C)), (11)

Cs(q, Ba(r, ) = Cs(q, Ba(r, ¢)). (12)

But then (12) implies » = 7" and by (11) p = p/, a contradiction. Hence X, 5 is a Latin
square.

Next take distinct o and v, and consequently distinct § and 4, where = f(«) and
0 = f(7). Then assume that for distinct cells ((p,r), (q,¢)) and ((p',r'), (¢, ))

(Ca(p, Bi(r,c)), Csq, Ba(r, ¢)) = (Culp', Bi(r', ¢)), Cs(d, Ba(r', ¢))),
(C’Y(p’ Bl (T> C))> C5(Q> B2(T> C))) = (C’Y(p/’ Bl (T/> C/))’ 05((]/7 B2(T/a C/)))'

Then
Ca(p, Bi(r,c)) = Ca(p', Bi(1, ¢)), (13)
Cﬁ(Q7 B2(T7 C)) = Cﬁ(qlvB2(r/7cl))7 (14)
C’Y(p’ Bl(T’ C)) = C’Y(p,’Bl(T,>C/))a (15)
Cs(q, Ba(r,¢)) = Cs(¢', B2 (1", ). (16)

But C, is orthogonal to C, and so Equations (13) and (15) imply p = p’ and B(r,c) =
By(r', ). Further Cjs is orthogonal to Cs and so Equations (14) and (16) imply ¢ = ¢
and By(r,c) = By(r', ). Finally B; and By are orthogonal and so r = 7’ and ¢ = ¢/. But
this contradicts the assumption that the cells ((p,7), (g, ¢)) and ((p',7'), (¢, )) are distinct.
Hence &, 3 and X, 5 are orthogonal.

Finally we prove that B; and X, 3 are orthogonal. Assume this is not the case and that
there exist distinct cells ((p,r), (¢,¢)) and ((p',7'), (¢, ¢)) such that

(Al (p7 Q), Bl(rv C)) = (Al(p/7 q/)7 By (T/v Cl))v
(Ca(pv Bl(rv C>>7 Cﬁ(qv B2(T7 C))) = (Ca(p/v Bl(rlv C/>>7 Cﬁ(qlv B2(T/7 Cl)))'

Then
Ai(p, ) =AY, 4), (17)
Bi(r,c) = By(r', ), (18)
Calp, Bi(r,¢)) = Co(p', B (1", ), (19)
CB(Q7 B2(T7 C)) = Cﬁ(qlv B2(7J7 Cl))' (20)

Since C,, is a Latin square, substituting Equation (18) into Equation (19) implies p = p'.
Now since A; is a Latin square, Equation (17) implies ¢ = ¢’. Then, since Cp is a Latin
square, Equation (20) implies By(r, ¢) = Bs(1’,¢'). But By and Bs are orthogonal so Equation
(18) then gives r = " and ¢ = ¢’. Consequently By and X, 5 are orthogonal. Similarly it can
be shown that By and &, 3 are orthogonal. O



Note that we can use Ay, Ay, By, By € {C1,C,...C.}. So the pairs (A;, As) and (By, Bs)
do not have to be distinct from the set {C, Cs, ... Cy}

Corollary 4.3. For any t > 2, a pair of mutually orthogonal partial Latin squares of order
n can be embedded in a set of t mutually orthogonal Latin squares of polynomial order with
respect to n.

Proof. Let A; and Ay be two orthogonal partial Latin squares of order n. By Theorem
4.1 we can embed them into two orthogonal Latin squares A; and Ay of order k* where
20 =k >n > 21 Askis a power of a prime, there are at least k* —1 MOLS(k*). So there
are at least (k* — 1+ 2) MOLS(k®) two of which contain the copies of A; and Ajy. Similarly
by choosing the order of A; and A, larger, one can obtain as many orthogonal mates as
one wants at the expense of increasing the order of the squares into which the partial Latin
squares are embedded. O

Obviously Theorem 4.2 can also be used to construct mutually orthogonal Latin squares
of order n? for a given integer n. For example, in the literature only 8 mutually orthogonal

Latin squares of order 576 are known to exist, but the following corollaries constructs 9
MOLS(576).

Corollary 4.4. N(n?) > N(n) + 2.
Corollary 4.5. There are 9 mutually orthogonal Latin squares of order 576.

Proof. By [3] Table 3.87 there are at least 7 mutually orthogonal Latin squares of order 24.
When applied in the construction given in Theorem 4.2, we may obtain 7 4+ 2 = 9 mutually
orthogonal Latin squares of order 24% = 576. U
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