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Abstract

A directed triple system of order v, DTS(v), is a pair (V,B) where V is a set of
v elements and B is a collection of ordered triples of distinct elements of V with
the property that every ordered pair of distinct elements of V occurs in exactly one
triple as a subsequence. A set of triples in a DTS(v) D is a defining set for D if
it occurs in no other DTS(v) on the same set of points. A defining set for D is a
smallest defining set for D if D has no defining set of smaller cardinality. In this
paper we are interested in the quantity

f =
number of triples in a smallest defining set for D

number of triples in D
.

We show that for all v ≡ 0, 1 (mod 3), v ≥ 3 there exists a DTS with f ≥ 1
2 , and

improve this result for certain residue classes. In particular we show that for all v ≡
1 (mod 18), v ≥ 19 there exists a DTS with f ≥ 2

3 . We also prove that, for all ε > 0
and all sufficiently large admissible v, there exists a DTS(v) with f ≥ 2

3 − ε.

Results are also obtained for pure, regular and Mendelsohn directed triple systems.
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1 Introduction

A directed triple system (DTS) with parameters v and λ, denoted by DTS(v, λ),
is a pair (V,B) where V is a set of v elements, called points, and B is a collec-
tion of ordered triples, more succinctly just called triples, of distinct elements
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of V , with the property that every ordered pair of distinct elements of V oc-
curs in exactly λ triples, as a subsequence. In this paper we are concerned
with DTSs with λ = 1. A DTS(v, 1) is denoted by DTS(v).

We usually specify a DTS by listing its triples. For example, the following
triples form a DTS(4):

(0, 2, 1), (2, 0, 3), (1, 3, 0), (3, 1, 2).

Here, for example, the triple (0, 2, 1) contains the ordered pairs (0, 2), (0, 1)
and (2, 1).

A set of triples in a DTS(v) D is a defining set for D if it occurs in no other
DTS(v) on the same set of points. A defining set of a DTS D is a smallest
defining set for D if D has no defining set of smaller cardinality.

A set of triples in a DTS(v) D is a trade in D if it can be replaced by a
different set of triples, called a replacement trade, to give another DTS(v). For
example, the set {(0, 1, 2), (2, 1, 3)} is a trade in any DTS that contains it,
since it covers the same set of ordered pairs as the set {(0, 2, 1), (1, 2, 3)}.

Each defining set of a DTS D contains at least one triple in every trade in D. In
particular, if D contains m mutually disjoint trades then the smallest defining
set of D contains at least m triples.

In this paper we are interested in the quantity

f =
number of triples in a smallest defining set for D

number of triples in D
,

where D is a DTS(v). We are also interested in the analogues of this quantity
for several special types of directed triple system, which we now define.

A DTS is pure if no two triples contain the same three points. A DTS is
regular if there is a constant r such that each point appears exactly r times
in each of the three possible positions in a triple. For example, the DTS(4) at
the beginning of this section is regular with r = 1.

A DTS is Mendelsohn, and we write that it is an MDTS, if each of the two
non-identity cyclic shifts of all its triples results in a DTS. The DTS(4) at the
beginning of this section is an MDTS: the two non-identity cyclic shifts of its
triples give

(1, 0, 2), (3, 2, 0), (0, 1, 3), (2, 3, 1)

and (2, 1, 0), (0, 3, 2), (3, 0, 1), (1, 2, 3),
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respectively, and each of these lists of triples is a DTS(4).

MDTSs are related to Mendelsohn triple systems (MTSs). The definition of
an MTS is similar to that of a DTS. The difference is that the containment of
ordered pairs in triples is cyclic instead of transitive: that is, a triple (x, y, z)
contains the ordered pairs (x, y), (y, z) and (z, x) instead of (x, y), (y, z) and
(x, z). Every MDTS is both an MTS and a DTS, and remains so under any
of the six permutations of the positions of the entries in all the triples. This
follows from the following property, called the order conditions, which is proved
in [9]:

For any MDTS, let Sa,b denote the multiset of ordered pairs of points in
positions a and b of the triples. Then S1,2 = S2,1, S3,1 = S1,3 and S2,3 = S3,2.

It follows from the order conditions that every MDTS is regular. Also, every
MDTS with λ = 1 is pure, because any DTS(v) which is not pure contains a
pair of triples of the form (a, b, c), (c, b, a), and hence the Mendelsohn property
is not satisfied.

The concepts of trade, defining set and smallest defining set, and the quantity
that we have denoted by f , all have analogues for pure, regular and Mendel-
sohn DTSs. For example, a set of triples of a pure DTS D is called a (pure)
trade for D if it can be replaced by a different set of triples to give another
pure DTS(v). Similarly, a set of triples of a pure DTS D is called a (pure)
defining set for D if it occurs in no other pure DTS on the same set of points.
Where it is necessary to distinguish trades and defining sets of ordinary DTSs
from their analogues for special types of DTS, we call them ordinary trades
and ordinary defining sets. Thus, for example, any pure trade for a pure DTS
D is also an ordinary trade for D, and any ordinary defining set for D is also
a pure defining set for D, but the converses of these statements are not nec-
essarily true. A pure defining set for D (known to be pure) could be smaller
than a smallest ordinary defining set for D. In this paper any mention of
trades, defining sets or f refers to the version for the type of DTS that is
being considered at that point, unless otherwise stated.

The concepts of trade, defining set and smallest defining set, and the quan-
tity f , can also be defined for Steiner triple systems (STSs), in the obvious
way. In [10] it is shown that for all admissible values of v (that is, all values
of v satisfying the necessary conditions) there is an STS(v) with f > 1

4
. In

this paper we show that for ordinary DTSs, pure DTSs and regular DTSs,
for all admissible values, there is a system with f ≥ 1

2
. We also obtain a re-

sult for MDTSs. In [10], an asymptotic result, f ≥ 16
35

, is obtained for Steiner
triple systems. Using a similar argument we show that f ≥ 2

3
can be obtained

asymptotically for ordinary DTSs.
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The proofs in this paper use various types of combinatorial objects. The def-
initions of these objects are either given in the paper or can be found in the
references.

Several proofs depend on the following result, which involves pairwise balanced
designs (PBDs) and is a special case of a result (the Replacement Lemma [13])
that is used in several earlier papers on directed designs.

Lemma 1 If there exist a 2-(v, K, 1) design and a DTS(k) for each k ∈ K,
then there exists a DTS(v).

PROOF. Replacing each block of the 2-(v, K, 1) design with a copy of a
DTS(k) with point set the points of that block gives a DTS(v). 2

A lower bound for f for the DTS(v) constructed in Lemma 1 can be calculated
from lower bounds for f for the various DTS(k)s. In particular, if there is a
constant c such that each of the DTS(k)s has f ≥ c, then the resulting DTS(v)
also has f ≥ c.

Clearly, analogues of Lemma 1 hold for pure, regular and Mendelsohn DTSs,
and the above comment about f applies to these analogues also.

2 Directed triple systems and pure directed triple systems

A necessary and sufficient condition for the existence of a DTS(v) is v ≡ 0, 1
(mod 3), v ≥ 3 [12].

There is only one DTS(3) up to isomorphism, namely the system given by the
triples (0, 1, 2), (2, 1, 0). Clearly this system has f = 1

2
. Results for DTS(4)s

and DTS(6)s are given in [14]. In summary, these are as follows. Up to iso-
morphism there are three DTS(4)s, and each of these has f = 1

2
. Up to iso-

morphism there are 32 DTS(6)s; of these 28 have f = 1
2

and four have f = 2
5
.

We can use these results to prove the following theorem.

Theorem 2 For all v ≡ 0, 1 (mod 3), v ≥ 3, there exists a DTS(v) with
f ≥ 1

2
.

PROOF. For all v ≡ 0, 1 (mod 3), v ≥ 3, except v = 6, there exists a 2-
(v, {3, 4}, 1) design [1]. Replacing the blocks of size 3 and 4 in this design with
DTS(3)s and DTS(4)s, respectively, gives a DTS(v) with f ≥ 1

2
. Since there

is also a DTS(6) with f = 1
2
, this proves the result. 2
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A necessary and sufficient condition for the existence of a pure DTS(v) is
v ≡ 0, 1 (mod 3), v ≥ 4 (see [6], Subsection 24.4). A result similar to Theorem 2
holds for pure DTSs, as we show next.

The proof involves pure trades of three types, as below.

Type Trade Replacement trade

1 {(a, b, c), (b, a, d)} {(b, a, c), (a, b, d)}

2 {(c, a, b), (d, b, a)} {(c, b, a), (d, a, b)}

3 {(c, a, b), (b, a, d)} {(c, b, a), (a, b, d)}

Each of the pairs of triples on the left is a trade in any pure DTS that contains
it, since it covers the same ordered pairs of points as the pair of triples on the
right, and each of the triples of the trade contains the same points as a triple
in the replacement trade.

The proof also involves group divisible designs (GDDs). The existence of all
the GDDs used in the proof is confirmed in [7].

The following theorem is used both here and in Section 5.

Theorem 3 (Chu [4]) A DTS(w) can be embedded in a DTS(w + v) if and
only if w + v ≡ 0, 1 (mod 3) (the admissibility condition) and v ≥ w + 1.

Since every DTS(v) that is not pure contains a pair of triples of the form
(a, b, c), (c, b, a), that is, an embedded DTS(3), it follows from Theorem 3 that
every DTS(4) and every DTS(6) is pure.

Theorem 4 For all v ≡ 0, 1 (mod 3), v ≥ 4, there exists a pure DTS(v) with
f ≥ 1

2
.

PROOF. For all v ≡ 0, 1 (mod 3), v ≥ 4, except v = 10, 12, 15, 18, 19, 24, 27,
there exists a 2-(v, {4, 6, 7, 9}, 1) design [1]. Hence the result follows from the
existence of a pure DTS(v) with f ≥ 1

2
for v = 4, 6, 7, 9, 10, 12, 15, 18, 19, 24, 27.

We now demonstrate the existence of these designs.

Since each of the three DTS(4)s is pure, and each has f = 1
2

as an ordinary
DTS, it follows that each has f = 1

2
as a pure DTS.

Similarly, since each of the 32 DTS(6)s is pure, and some of them have f = 1
2

as ordinary DTSs, these designs have f = 1
2

as pure DTSs.

The pair of triples {(0, 1, 3), (1, 0, 5)} generates a pure DTS(7) under the map-
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ping i 7→ i + 1 (mod 7). Further, each pair of triples generated by this pair is
a type 1 trade, and these seven trades are disjoint. Hence this pure DTS has
f ≥ 7

14
= 1

2
.

The following triples form a pure DTS(9).

(0, 5, 1) (0, 6, 4) (0, 7, 2) (0, 8, 3) (5, 6, 7)

(1, 5, 2) (4, 6, 3) (2, 7, 4) (3, 8, 1) (6, 5, 8)

(2, 5, 3) (3, 6, 2) (4, 7, 1) (1, 8, 4) (7, 8, 5)

(3, 5, 4) (2, 6, 1) (1, 7, 3) (4, 8, 2) (8, 7, 6)

(4, 5, 0) (1, 6, 0) (3, 7, 0) (2, 8, 0)

Each pair of triples appearing consecutively (cyclically) in any of the first four
columns above is a type 3 trade. Hence any defining set for this DTS(9) must
contain at least three triples from each of the first four columns. The final
column of triples forms a DTS(4) and so any defining set for the DTS(9) must
also contain at least two triples from the final column. Hence any defining
set must contain at least 4 × 3 + 2 = 14 triples, so for this DTS(9) we have
f ≥ 14

24
= 7

12
> 1

2
.

The existence of a pure DTS(10) and a pure DTS(19) with f ≥ 1
2

follows from
the existence of an MDTS(10) and an MDTS(19), as follows. Every MDTS(v)
is pure, and, by the order conditions, its set of triples can be partitioned into
pairs of the form {(a, b, c), (b, a, d)}. Each such pair is a type 1 trade. Hence
every MDTS(v), when considered just as a pure DTS(v), has f ≥ 1

2
. It is

shown in [9] that an MDTS(v) exists if and only if v ≡ 1 (mod 3), v ≥ 4, so
it follows that there exist a pure DTS(10) and a pure DTS(19) with f ≥ 1

2
.

A pure DTS(12) with f ≥ 1
2

can be constructed as follows. Begin with a 3-
GDD(23): for example, such a design, with groups {A, B}, {C, D}, {E, F}, is
given by the following blocks:

{A, C, E}, {A, D, F}, {B, C, F}, {B, D, E}.

Replace each point of the GDD with two points, to give 12 points altogether.
These will be the points of the DTS and we refer to them as DTS points. For
each group of the GDD, take the triples of a DTS(4) on the four DTS points in
that group. Each block of the GDD contains six DTS points, say a, b, c, x, y, z,
where {a, x}, {b, y}, {c, z} are the pairs of DTS points corresponding to the
same GDD points. For each such block take the following eight triples (listed
in pairs):
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{(a, b, c), (b, a, z)}, {(z, a, y), (c, y, a)},

{(z, b, x), (c, x, b)}, {(y, x, c), (x, y, z)}.

The set of triples constructed in this way forms a DTS(12). Further, this DTS
has f ≥ 1

2
, since each of the DTS(4)s has f ≥ 1

2
, and each pair of triples in

the list above is a type 1 or type 2 trade.

A pure DTS(15) with f ≥ 1
2

can be constructed as follows. Some of its triples
are listed in pairs on the left below. Each of these pairs is a type 1 trade. The
remaining 56 triples are given by the table on the right. Each pair of numbers
nm in the body of the table is used to give two triples, namely (r, n, m)
and (m, n, c), where r and c are the letters in the row and column headings,
respectively. For example, the pair 02 gives the triples (A, 0, 2) and (2, 0, B).
Each such pair of triples is a type 3 trade. This gives a DTS(15) whose set
of triples is partitioned into disjoint trades of size 2. Hence this design has
f ≥ 1

2
.

{(A, B, D), (B, A, F)}

{(B, C, E), (C, B, G)}

{(C, D, F), (D, C, A)}

{(D, E, G), (E, D, B)}

{(E, F, A), (F, E, C)}

{(F, G, B), (G, F, D)}

{(G, A, C), (A, G, E)}

A B C D E F G

A 02 56 13 47

B 03 67 24 15

C 26 04 17 35

D 37 05 12 46

E 57 14 06 23

F 34 16 25 07

G 01 45 27 36

A pure DTS(18) with f ≥ 1
2

can be constructed as follows. Begin with a 3-
GDD(23). Replace each point of the GDD with three points, to give 18 DTS
points. For each group of the GDD, take the triples of a DTS(6) with f ≥ 1

2

on the six DTS points in that group. Each block of the GDD contains nine
DTS points, say a, b, c, d, e, f, g, h, i, where {a, b, c}, {d, e, f}, {g, h, i} are the
triples of DTS points corresponding to the same GDD points. For each such
block take the following 18 triples:

{(a, d, g), (d, a, h)}, {(i, a, e), (a, i, f)}, {(f, h, a), (h, f, b)},

{(b, e, h), (e, b, i)}, {(g, b, f), (b, g, d)}, {(d, i, b), (i, d, c)},

{(c, f, i), (f, c, g)}, {(h, c, d), (c, h, e)}, {(e, g, c), (g, e, a)}.
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The set of triples constructed in this way forms a DTS(18). Further, this DTS
has f ≥ 1

2
, since each of the DTS(6)s has f ≥ 1

2
, and each pair of triples in

the list above is a type 1 trade.

A pure DTS(24) with f ≥ 1
2

can be constructed in a similar way to the
DTS(18). In this case begin with a 3-GDD(24) and replace each point by
three points. For each group use a DTS(6) with f ≥ 1

2
, and for each block use

the 18 triples in the DTS(18) construction.

A pure DTS(27) with f ≥ 1
2

can also be constructed in a similar way to the
DTS(18). In this case begin with a 3-GDD(33) and replace each point by three
points. For each group use a DTS(9) with f ≥ 1

2
, and for each block use the

18 triples in the DTS(18) construction. 2

3 Regular and Mendelsohn directed triple systems

A necessary and sufficient condition for the existence of a regular DTS(v) is
v ≡ 1 (mod 3), v ≥ 4 [5]. A result similar to those for ordinary and pure DTSs
holds for regular DTSs, as we show next. The proof uses the fact that any
type 1 pure trade is also a regular trade in any regular DTS that contains it,
since the numbers of times that the points appear in the positions in the trade
are the same as in the replacement trade. The same is true of type 2 trades,
but not type 3.

Theorem 5 For all v ≡ 1 (mod 3), v ≥ 4, there exists a regular DTS(v) with
f ≥ 1

2
.

PROOF. For all v ≡ 1 (mod 3), v ≥ 4, except v = 10, 19, there exists a 2-
(v, {4, 7}, 1) design [1]. Hence the result follows from the existence of a regular
DTS(v) with f ≥ 1

2
for v = 4, 7, 10, 19.

Each of the three DTS(4)s is regular (see [14]), and hence since each has f = 1
2

as an ordinary DTS, each has f = 1
2

as a regular DTS.

The DTS(7) in the proof of Theorem 4 is regular and its set of triples is a
union of disjoint trades of type 1, so it has f ≥ 1

2
as a regular DTS. The same

is true of the DTS(10) and DTS(19) in the proof of Theorem 4. 2

By a result in [9], a necessary and sufficient condition for the existence of an
MDTS(v) is v ≡ 1 (mod 3), v ≥ 4.
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There is just one MDTS(4) up to isomorphism (namely the DTS(4) given at
the beginning of Section 1), and it is easy to check, using the order conditions,
that it has f = 1

4
. It is shown in [9] that there are precisely two non-isomorphic

MDTS(7)s.

Lemma 6 Each of the two non-isomorphic MDTS(7)s has f = 3
14

.

PROOF. It is shown in [9] that the two non-isomorphic MDTS(7)s are gen-
erated by the pairs of triples {(0, 1, 3), (0, 6, 4)} and {(0, 3, 1), (0, 4, 6)}, respec-
tively, under the mapping i 7→ i+1 (mod 7). Here we denote these designs by
D1 and D2, respectively. We show that f = 3

14
for D1; analogous arguments

prove the same result for D2.

First we show that D1 has no defining set of size 2. Let S be a set of two
triples of D1; then the triples in S have 0, 1 or 2 points in common.

First suppose that the triples in S are disjoint. Since each triple in D1 has
precisely one triple disjoint from it, and one of these two triples is generated by
(0, 1, 3) and the other by (0, 6, 4), we may take S = {(0, 1, 3), (5, 4, 2)} without
loss of generality. Then the MDTS(7) obtained by applying the permutation
(1 3)(2 4) to the points of D2 includes the triples in S but is different from D1

since it is isomorphic to D2. Hence S is not a defining set.

Now suppose that the triples in S have one or two points in common. Let a
and b be two points of D1 that do not appear in either triple in S. Applying the
permutation q = (a b) to D1 gives a MDTS(7) that includes the triples in S.
Now, by the order conditions, D1 includes a pair of triples of one of the fol-
lowing forms: {(a, b, ∗), (b, a, ∗)}, or {(a, ∗, b), (b, ∗, a)}, or {(∗, a, b), (∗, b, a)}.
In each case the two other points appearing in these triples are different, since
D1 is pure. Thus the images of these triples under the point permutation (a b)
are not triples of D1. Hence (a b)(D1) is different from D1. Thus S is not a
defining set in this case either.

We complete the proof by showing that D1 has a defining set of size 3. We do
this by showing that the only MDTS(7)s that include the triples (0,1,3) and
(5,4,2) are D1 and p(D2), where p = (1 3)(2 4). Since D1 and p(D2) have no
other triples in common, this shows that (0,1,3) and (5,4,2) together with any
other triple in D1 form a defining set for D1.

Let D3 be an MDTS(7) that includes the triples (0, 1, 3) and (5, 4, 2). Then
D3

∼= D1 or D3
∼= D2. First consider the case D3

∼= D1. Since D1 is gener-
ated by {(0, 1, 3), (5, 4, 2)}, and since there is an automorphism of D1 which
maps (0, 1, 3) to (5, 4, 2) (namely (0 5)(1 4)(2 3)), there is an isomorphism
φ : D1 → D3 such that φ((0, 1, 3)) = (0, 1, 3). Since (5, 4, 2) is the only triple
in D1 disjoint from (0, 1, 3) (and hence also the only triple in D3 disjoint from
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(0, 1, 3)), it follows that φ((5, 4, 2)) = (5, 4, 2). Hence φ is the identity and
therefore D3 = D1.

Now consider the case D3
∼= D2. Since D2 is generated by {(0, 3, 1), (5, 2, 4)},

and since there is an automorphism of D2 which maps (0, 3, 1) to (5, 2, 4)
(namely (0 5)(1 4)(2 3)), there is an isomorphism φ : D2 → D3 such that
φ((0, 3, 1)) = (0, 1, 3). Since (5, 2, 4) is the only triple in D2 disjoint from
(0, 3, 1) (and hence (5, 4, 2) is the only triple in D3 disjoint from (0, 1, 3)), it
follows that φ((5, 2, 4)) = (5, 4, 2). Hence φ = (1 3)(2 4) = p and therefore
D3 = p(D2). 2

We can use the results for MDTSs for v = 4 and v = 7 to prove a result for
MDTSs for general v.

Theorem 7 For all v ≡ 1 (mod 3), v ≥ 4, except possibly v = 10, 19, there
exists an MDTS(v) with

f ≥


1
4

if v ≡ 1, 4 (mod 12),

1
4
− 3

2v(v−1)
if v ≡ 7, 10 (mod 12).

PROOF. For all v ≡ 1, 4 (mod 12), v ≥ 4, there exists a 2-(v, 4, 1) design
[11]. Replacing each block of this design with an MDTS(4) whose points are
the points of that block gives an MDTS(v). Since each of the MDTS(4)s has
f = 1

4
, the MDTS(v) has f ≥ 1

4
.

The case v = 7 is dealt with in Lemma 6.

For all v ≡ 7, 10 (mod 12), v ≥ 22, there exists a 2-(v, {4, 7}, 1) design with a
single block of size 7 [7]. Replacing each block of size 4 with an MDTS(4), and
the block of size 7 with an MDTS(7), gives an MDTS(v). Since any defining
set of the MDTS(v) contains at least one triple of each of the MDTS(4) and,
by Lemma 6, at least 3 triples of the MDTS(7), the MDTS(v) has

f ≥
(

1

4

(
v(v − 1)

3
− 14

)
+ 3

)/(
v(v − 1)

3

)
.

Simplifying the right-hand side of this inequality gives the stated result. 2
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4 Some particular classes of DTSs

In Section 2 we showed that for all admissible values of v there is a DTS(v)
with f ≥ 1

2
and a pure DTS(v) with f ≥ 1

2
. In this section we show that these

results can be improved for some infinite classes of DTSs.

Theorem 8 For all v ≡ 0, 1 (mod 9), v ≥ 19, except possibly v = 64 and
v = 27, 36, 54, 72, 81, 90, 135, 144, 162, 216, 234, there exists a pure DTS(v)
with f ≥ 2

3
both as a pure DTS and as an ordinary DTS.

PROOF. Let v be as defined in the statement of the theorem. We construct a
pure DTS(v) as follows. The complete graph Kv can be decomposed into copies
of K5 with one edge removed [8]. Take the v vertices of such a decomposition
to be points. For each copy of K5 with one edge removed in the decomposition,
with points a, b, c, d, e and missing edge de, take the following as triples of
the DTS:

(a, d, b), (b, e, a),

(b, d, c), (c, e, b),

(c, d, a), (a, e, c).

Then the resulting set of triples forms a pure DTS(v).

Each pair of triples appearing in the same column above is a type 3 pure trade.
Hence any pure or ordinary defining set for the pure DTS(v) contains at least
four triples (two from each column) from each such set of six triples. Hence
the DTS(v) has f ≥ 2

3
as a pure DTS and as an ordinary DTS. 2

Theorem 9 For all v ≡ 0 (mod 15), v ≥ 15, except possibly v = 30, there
exists a pure DTS(v) with f > 31

50
both as a pure DTS and as an ordinary

DTS.

PROOF. Let s ≥ 1, s 6= 2. We construct a pure DTS(15s) as follows. Begin
with a 4-GDD((3s)4); this is equivalent to a pair of mutually orthogonal Latin
squares of side 3s. Replace each point in one of the groups by two points, and
leave the points in the other three groups unchanged, to give a total of 15s
DTS points.

For each of the three groups of the GDD that contain 3s DTS points, take
as triples of the DTS the triples of a pure DTS(3s) with f ≥ 1

2
on the DTS

points in that group. Similarly, for the group that contains 6s DTS points,
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take as triples of the DTS the triples of a pure DTS(6s) with f ≥ 1
2

on the
DTS points in that group. Each block of the GDD contains five DTS points,
say a, b, c, d, e, where d and e are the points corresponding to the same GDD
point. For each such block take as triples of the DTS the six triples listed in
the proof of Theorem 8. The resulting set of triples forms a pure DTS(15s).

There are (3s)2 sets of six triples corresponding to the blocks of the GDD,
and any pure or ordinary defining set for the DTS(15s) contains at least two-
thirds of these triples. It also contains at least half of the other triples, since
the DTS(3s)s and the DTS(6s) all have f ≥ 1

2
. Hence for the pure DTS(15s),

considered either as a pure DTS or as an ordinary DTS, we have

f ≥
(

2
3
· 6(3s)2 + 1

2
· 3 · 3s(3s− 1)

3
+ 1

2
· 6s(6s− 1)

3

)/(
15s(15s− 1)

3

)
.

Simplifying gives

f ≥ 31

50
+

3

25(15s− 1)
. 2

The proof of the next result involves Kirkman triple systems (KTSs). A
KTS(v) exists for all v ≡ 3 (mod 6) [15].

Theorem 10 For all v ≡ 3 (mod 12), v ≥ 15, there exists a DTS(v) with
f > 5

8
.

PROOF. Let s ≥ 1, and construct a DTS(12s + 3) as follows. Begin with a
KTS(6s + 3); this has 3s + 1 resolution classes, each containing 2s + 1 triples.
For the DTS points, take the 6s + 3 points of the KTS and a further 6s
points, two corresponding to each resolution class of the KTS, except for one
resolution class which is to have no such points.

For each triple {a, b, c} of the KTS that lies in a resolution class corresponding
to extra points, take as triples of the DTS the six triples in the proof of
Theorem 8, where d and e are the points corresponding to the resolution class
in which {a, b, c} lies. For each triple {a, b, c} of the KTS in the resolution
class not corresponding to extra points, take as triples of the DTS the two
triples

(a, b, c), (c, b, a).

Finally, take as triples of the DTS the triples of a DTS(6s) with f ≥ 1
2

on the
points corresponding to the resolution classes. Then the resulting set of triples
forms a DTS(12s + 3) (which is not pure).

13



There are 3s(2s+1) sets of six triples associated with blocks lying in resolution
classes that correspond to extra points, and each of these is of the form given
in the proof of Theorem 8. Any two triples from the same column form a type
3 pure trade and hence an ordinary trade, and so any defining set for the
DTS(12s + 3) contains at least two-thirds of such triples. There are 2s + 1
pairs of triples associated with the resolution class that does not correspond
to extra points, and each such pair forms a DTS(3), which has f ≥ 1

2
. Since

also the DTS(6s) has f ≥ 1
2
, the DTS(12s + 3) has

f ≥
(

2
3
· 18s(2s + 1) + 1

2
· 2(2s + 1) + 1

2
· 6s(6s− 1)

3

)/(
(12s + 3)(12s + 2)

3

)
.

Simplifying gives

f ≥ 5

8
+

2s− 1

8(4s + 1)(6s + 1)
>

5

8
. 2

The proof of the next result is similar, but involves resolvable Mendelsohn
triple systems. A resolvable MTS(v) exists for all v ≡ 0, 1 (mod 3), v 6= 6
[3]. A resolvable MTS(v) with v ≡ 1 (mod 3) has v resolution classes each of
which is missing a single point, and each point of the MTS is missing from
exactly one class.

Theorem 11 For all v ≡ 3 (mod 6), v ≥ 9, there exists a DTS(v) with

f ≥ 5

8
− 3

8v
.

In particular, for all v ≡ 9 (mod 12), v ≥ 21, there exists a DTS(v) with
f ≥ 17

28
.

PROOF. Let s ≥ 1. We construct a DTS(6s + 3) as follows. Begin with a
resolvable MTS(3s + 1). For the DTS points, take the 3s + 1 points of the
MTS, a further 3s + 1 points, one corresponding to each resolution class of
the MTS, and one final point ∞.

For each triple (a, b, c) of the MTS, take as triples of the DTS the three triples

(a, d, b), (b, d, c), (c, d, a)

(that is, the triples in the first column of triples in the proof of Theorem 8)
where d is the point corresponding to the resolution class in which (a, b, c) lies.
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Also, for each resolution class, take as triples of the DTS the two triples

(m, d,∞), (∞, d, m),

where d is the point corresponding to the resolution class and m is the MTS
point missing from the resolution class. Finally, take as triples of the DTS
the triples of a DTS(3s + 1) with f ≥ 1

2
on the points corresponding to the

resolution classes. Then the resulting set of triples forms a DTS(6s+3) (which
is not pure).

Any defining set for the DTS(6s + 3) contains at least two triples from each
set of three triples of the form above. There are s(3s + 1) such sets. Each pair
of triples of the form of the row of two triples above is a DTS(3), which has
f ≥ 1

2
. Since also the DTS(3s + 1) has f ≥ 1

2
, the DTS(6s + 3) has

f ≥
(

2
3
· 3s(3s + 1) + 1

2
· 2(3s + 1) + 1

2
· (3s + 1)3s

3

)/(
(6s + 3)(6s + 2)

3

)
.

Simplifying gives

f ≥ 5

8
− 1

8(2s + 1)
,

and putting v = 6s + 3 gives the stated result. 2

5 Asymptotic results

Theorem 8 establishes the existence of a DTS(v) with f ≥ 2
3

whenever v ≡ 1
(mod 18), v ≥ 19. We now use this result to prove that, for all ε > 0 and all
sufficiently large admissible v, there exists a DTS(v) with f ≥ 2

3
− ε.

For each admissible value of v, we define fv to be the maximum value of f for
all DTS(v). We prove the main result of this section in two stages. First note
that if l is admissible, then so is lk for all k ≥ 1. The proof involves transversal
designs (see [2]).

Lemma 12 Suppose that u = lkv + w where l, w and v + w are admissible,
v ≥ w + 1 and there exists a transversal design TD(lk, v). Then

fu ≥
(

(u− w)(u− w − v)

u(u− 1)

)
flk .

15



PROOF. Since v ≥ w + 1, by Theorem 3 there exists a DTS(v + w) con-
taining a DTS(w) as a subsystem. We now take lk copies of this DTS(v + w)
intersecting in a common DTS(w) subsystem; we may take the points of the
ith copy to be

1, 2, . . . , w, 1i, 2i, . . . , vi.

Altogether there are lkv + w = u points and we may form a DTS(u) on
these points by taking as triples all the triples of all the DTS(v + w)s (the
horizontal triples) together with certain other triples which we describe below
(the vertical triples). The vertical triples must cover every pair of the form
(ci, dj) for c, d = 1, 2, . . . , v, i, j = 1, 2, . . . , lk and i 6= j. To form the vertical
triples we take a TD(lk, v) with groups {1i, 2i, . . . , vi} for i = 1, 2, . . . , lk. We
then replace each block of size lk with a DTS(lk) (on the same points) with
the maximum value of f , namely flk . There are v2 blocks in the TD and
lk(lk − 1)/3 triples in each DTS(lk).

Ignoring contributions from the horizontal triples, we have

fu ≥
(

v2lk(lk − 1)

3
flk

)/(
u(u− 1)

3

)
=

(u− w)(u− w − v)

u(u− 1)
flk . 2

Theorem 13 Suppose that l ≥ 3 is admissible and that flk ≥ f ∗ for all k ≥ 1.
Then, for any ε > 0, there exists u0 such that for all admissible u > u0,

fu > f ∗ − ε.

PROOF. There exists v0 such that for all v > v0 the number of mutually
orthogonal Latin squares of side v, denoted by N(v), satisfies N(v) ≥ v

1
14.8 [2].

Hence, for v > v0 and m ≤ v
1

14.8 , there exists a transversal design TD(m, v)
[2]. We will assume that v0 is so large that

14.8
log(v0 + 2)

log v0

< 15.

Take u ≥ max{(v0 +2)
16
15 , l16} and admissible. Define k = b(logl u)/16c so that

1 ≤ k ≤ (logl u)/16 < k + 1, and hence l16k ≤ u < l16(k+1). We may write
u =

∑n
i=0 uil

i, where 0 ≤ ui < l and un 6= 0. Since l is admissible, l ≡ 0 or 1
(mod 3).

Next we will choose α ∈ {0, 1} and define

v = unl
n−k + un−1l

n−k−1 + · · ·+ uk − α,
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w = αlk + uk−1l
k−1 + uk−2l

k−2 + · · ·+ u0,

so that u = lkv + w. We specify the choice of α as follows to ensure that both
w and v + w are admissible.

Suppose first that l ≡ 1 (mod 3). Then w ≡ α + uk−1 + uk−2 + · · ·+ u0 (mod
3), so simply choose α to ensure that w is admissible. Then observe that

v +w ≡ (un +un−1 + · · ·+uk−α)+(α+uk−1 +uk−2 + · · ·+u0) ≡ u (mod 3),

so that v + w is admissible.

Now suppose that l ≡ 0 (mod 3). We then have w ≡ u0 (mod 3). But u ≡ u0

(mod 3), so that u0 ≡ 0 or 1 (mod 3), and so w is admissible. Also, v + w ≡
uk−α+u0 ≡ uk−α+u (mod 3). If u ≡ 0 (mod 3) then select α as per Table
1 below, whereas if u ≡ 1 (mod 3) then select α as per Table 2 below.

uk (mod 3) 0 1 2

α 0 0 1

Table 1

uk (mod 3) 0 1 2

α 0 1 0

Table 2

For either residue class for u, w and v + w are then both admissible.

By our choice of α, we have 0 ≤ w < 2lk. Hence lk(v + 2) > lkv + w = u and

so v + 2 > ul−k ≥ u
15
16 ≥ v0 + 2, giving v > v0. Also, lk ≤ u

1
16 < (lk(v + 2))

1
16

and so lk < (v + 2)
1
15 . But v > v0 and so (v + 2)

1
15 < v

1
14.8 , giving lk < v

1
14.8 .

It follows that there is a TD(lk, v).

Since v + 2 > u
15
16 , u ≥ l16 and w < 2lk ≤ 2u

1
16 , we have

v > u
15
16 − 2 > 2u

1
16 + 1 > w + 1.

From Lemma 12 we now have

fu≥
(

(u− w)(u− w − v)

u(u− 1)

)
flk

≥
(

(u− w)(u− w − v)

u(u− 1)

)
f ∗.
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But 0 ≤ w < v and 0 < v ≤ ul−k < u(lu−
1
16 ) = lu

15
16 .

Hence
(u− w)(u− w − v)

u(u− 1)
→ 1 as u →∞.

Consequently, for any ε > 0 there exists u0 such that for all admissible u > u0,
fu > f ∗ − ε. 2

Corollary 14 For any ε > 0 there exists u0 such that, for all admissible
u > u0, there exists a DTS(u) with f > 2

3
− ε.

PROOF. Since 19k ≡ 1 (mod 18) for all k ≥ 1, it follows from Theorem 8
that f19k ≥ 2

3
for all k ≥ 1. Now take l = 19 in Theorem 13. 2

References

[1] R.J.R. Abel, F.E. Bennett and M. Greig, PBD-closure, in The CRC Handbook
of Combinatorial Designs, second edition (ed. C.J. Colbourn and J.H. Dinitz),
CRC Press, 2007, 247–255.

[2] R.J.R. Abel, C.J. Colbourn and J.H. Dinitz, Mutually orthogonal Latin squares
(MOLS), in The CRC Handbook of Combinatorial Designs (as above), 160–192.

[3] J.-C. Bermond, A. Germa and D. Sotteau, Resolvable decompositions of K∗
n,

J. Combin. Theory Ser. A 26 (1979), 179–185.

[4] W.S. Chu, Embeddings of simple directed triple systems, Acta Math. Sinica
(N.S.) 14 (1998), no. 1, 135–138.

[5] C.J. Colbourn and M.J. Colbourn, The analysis of directed triple systems by
refinement, Ann. Discrete Math. 15 (1982), 97–103.

[6] C.J. Colbourn and A. Rosa, Triple Systems, Clarendon Press, Oxford, 1999.

[7] G. Ge, Group-divisible designs, in The CRC Handbook of Combinatorial Designs
(as above), 255–260.

[8] G. Ge and A.C.H. Ling, On the existence of (K5 \ e)-designs, preprint.

[9] M.J. Grannell, T.S. Griggs and K.A.S. Quinn, Mendelsohn directed triple
systems, Discrete Math. 205 (1999), 85–96.

[10] M.J. Grannell, T.S. Griggs and J. Wallace, The smallest defining set of a Steiner
triple system, Util. Math. 55 (1999), 113–121.

[11] H. Hanani, The existence and construction of balanced incomplete block
designs, Ann. Math. Stat. 32 (1961), 361–386.

18



[12] S.H.Y. Hung and N.S. Mendelsohn, Directed triple systems, J. Combin. Theory
Ser. A 14 (1973), 310–318.

[13] V. Levenshtein, On perfect codes in deletion and insertion metric, Discrete
Math. Appl. 2 (1992), 241–258.

[14] E.S. Mahmoodian, N. Soltankhah and A. Penfold Street, On defining sets of
directed designs, Australas. J. Combin. 19 (1999), 179–190.

[15] D.K. Ray-Chaudhuri and R.M. Wilson, The existence of resolvable block
designs, in A Survey of Combinatorial Theory (ed. J.N. Srivastava et al), North-
Holland, Amsterdam, 1973, 361–375.

19


