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Abstract. A cyclic face 2-colourable triangulation of the complete graph
K, in an orientable surface exists for n = 7 (mod 12). Such a triangulation
corresponds to a cyclic bi-embedding of a pair of Steiner triple systems of
order n, the triples being defined by the faces in each of the two colour classes.
We investigate in the general case the production of such bi-embeddings
from solutions to Heffter’s first difference problem and appropriately labelled
current graphs. For n = 19 and n = 31 we give a complete explanation for
those pairs of Steiner triple systems which do not admit a cyclic bi-embedding
and we show how all non-isomorphic solutions may be identified. For n = 43
we describe the structures of all possible current graphs and give a more
detailed analysis in the case of the Heawood graph.



1 Introduction

In 1967 Ringel and Youngs proved that the complete graph K, can be em-
bedded in an orientable surface of genus [(n — 3)(n — 4)/12] [10]. In the
cases where n = 0,3,4 or 7 (mod 12) the embeddings are triangulations and
the faces form a Mendelsohn triple system. A Mendelsohn triple system of
order n, MTS(n), is a pair (V, B) where V is a set of points of cardinality n
and B is a set of cyclically ordered triples of elements of V which collectively
have the property that every ordered pair of elements of V is contained in
one triple. (A triple (a,b,c) “contains” the pairs (a,b), (b,c), {c,a).) Such
systems exist for n = 0 or 1 (mod 3), n # 6. When n = 3 or 7 (mod 12)
there is potential for the Mendelsohn triple system to form two Steiner triple
systems. A Steiner triple system of order n, STS(n), is a pair (V, B) where
V is a set of points of cardinality n and B is a set of triples of elements of V
which collectively have the property that every unordered pair of elements
of V is contained in one triple. Such systems exist for n = 1 or 3 (mod 6).

If the graph K, is embedded in an orientable surface and every triple of
a Steiner triple system is a face of this embedding, then that system is also
regarded as being embedded in the surface with these faces being coloured,
say, black. If the remaining faces (white) also form a Steiner triple system,
we then have a face two-colourable bi-embedding of the two Steiner triple
systems.

An embedding of a graph (or design) in an orientable surface may be
described by means of a rotation scheme. Given a vertex x of the graph (or
a point of the design) the rotation about z comprises the cyclically ordered
list of other vertices (points) which are adjacent to x taken in the order in
which they appear around z in the embedding. The rotation scheme for
the embedding is the set of all the vertices together with their rotations
taken with a consistent orientation, i.e. all clockwise or all anticlockwise. A
rotation scheme is cyclic if we can denote the vertices by 0,1,....,n — 1 in
such a way that the rotation about x is obtained by adding x (mod n) to the
rotation about 0. In the case where n = 3 (mod 12), a cyclic STS(n) contains
a unique short orbit and consequently there can be no cyclic bi-embeddings
of such a system. In the case where n = 0 or 4 (mod 12) the embedding will
not be face two colourable.

In [12] Youngs gives at least one orientable cyclic bi-embedding for each
case where n = 7 (mod 12) and it is these that concern us in this paper.
The cyclic bi-embeddings in the case n = 19 are given in [4] and those in



the case n = 31 are given in [1]. Here we explore the construction of cyclic
bi-embeddings in the general case n = 12547 and show how these are related
to Heffter’s first difference problem.

2 Cyclic bi-embeddings - the general case

We take as our starting point the result of [10] that every cyclic (or index
1) embedding of Kjss,7 can be derived from an appropriate current graph
having 4s + 2 vertices. In our context, a current graph is a graph with
directions (clockwise or anticlockwise) assigned at each vertex and whose
edges are assigned both a direction (in the ordinary sense of the word) and
a current, the current being a non-zero element of the group Zjssi7. An
example in the case s = 2 is shown in Figure 1.

Figure 1: A current graph for s = 2.



The rotation about 0 in the resulting embedding of K557 = K31 is ob-
tained by traversing the graph, recording the (directed) currents encountered
on each edge, and taking the clockwise or anticlockwise exit from each edge
as indicated at that vertex. Thus we obtain the permutation

1715292810222620824255271416231221184919116 3021713 3.

The rotation about x is then obtained by adding = (mod 31) to all the
entries in this permutation. A full explanation of current graphs is given in
[5]. In the case where we are seeking a bi-embedding of two STS(12s + 7)s
the current graph must have the following properties:

(i) Each vertex has valency 3 (trivalency).

(ii) At each vertex, the sum of the directed currents is zero (mod 12s + 7)
(Kirchoff’s current law).

(iii) Each of the elements 1,2, ...,6s + 3 of Zj9,,7 appears exactly once as
a current on one of the edges and each edge has exactly one of these
currents.

(iv) The directions (clockwise or anticlockwise) assigned to each vertex are
such that a complete circuit is formed, i.e. one in which each edge of
the graph is traversed in both directions exactly once.

(v) The graph is bipartite.

Conditions (i) and (ii) ensure that the embedding is a triangulation, while
conditions (iii) and (iv) ensure that the embedding is cyclic. See [10] and
[5] for further details. Condition (v) ensures that the embedding is face
two-colourable and therefore represents a bi-embedding of two STS(12s +
7)s. Consideration of the valency and the currents shows that our current
graphs have 4s 4 2 vertices. Furthermore, there can be no loops and, save
for the exceptional case s = 0, there can be no multiple edges. This latter
consideration stems from consideration of the configuration shown in Figure
2.



Figure 2: A possible multiple edge.

If this forms part of a current graph then w = z and so the whole current
graph comprises two vertices with a triply repeated edge.

There is a close connection between current graphs and solutions of
Heffter’s first difference problem (HDP). In 1897 Heffter [6] posed the follow-
ing question: can the integers 1,2, ..., 3k be partitioned into k triples {a, b, c}
such that, for each triple, a + b+ ¢ = 0 (mod 6k + 1)? Examination of the
triples formed by the directed currents at each vertex in either of the two
vertex sets of a bipartite current graph shows that they form a solution to
HDP for k = 2s + 1.

In view of the above observations, the problem of constructing cyclic
bi-embeddings of STS(12s + 7)s (s > 0) may be reduced to three steps:

(a) Identifying trivalent bipartite connected simple graphs having 4s + 2
vertices.

(b) Assigning directions (clockwise or anticlockwise) at each of the vertices
which then give rise to a complete circuit.

(c) Taking two solutions of HDP and labelling the edges of the graph in
such a way that the triples arising from each of the two vertex sets of
the bipartition correspond to these two solutions.

These three steps have a large measure of independence from one another.
However, we can not exclude the possibility that for a particular graph it may
be impossible to assign vertex directions to give a complete circuit and, even
if this is possible, it may not be possible to assign the HDP solutions to
the edges. We note that a test for the existence of a complete circuit in a
graph G is given by Xuong [11]. This asserts the existence of such a circuit
(equivalent to a one-face orientable embedding of G) if and only if G has a
spanning tree whose co-tree has no component with an odd number of edges.
It is also appropriate at this point to note recent results of Korzhik and Voss



[7] which show that from one cyclic bi-embedding of a pair of STS(12s + 7)s
it is possible to produce at least 4° non-isomorphic cyclic bi-embeddings by
varying the vertex directions.

Before proceeding with the strategy outlined in the three steps above,
it is appropriate to recall how Steiner triple systems arise from solutions to
HDP. Given a difference triple {a, b, c} with a + b+ ¢ =0 (mod 6k + 1), we
may form a cyclic orbit by developing the starter {0, a,a + b} or the starter
{0,b,a + b}. Taking the union of such orbits corresponding to a solution of
HDP yields a cyclic STS(6k + 1). The converse is also true, given a cyclic
STS(6k + 1) we may obtain a solution to HDP by taking from each orbit a
block {0, , 5} and forming the triple {4, B—a, 3} where

R if 1<xz<3k
TV 6k+1—2 if 3k+1<ax<6k

Each solution to HDP produces 2* different STS(6k + 1)s; however, there
may be isomorphisms between these systems. In addition, for a given value
of k, there will generally be many distinct solutions to HDP. For example,
in [2] it is shown that for k£ = 3 there are four solutions to HDP producing
4 x 23 distinct STS(19)s which lie in four isomorphism classes.

Two solutions to HDP are said to be multiplier equivalent if one set of
triples may be obtained from the other by first multiplying by a constant fac-
tor (mod 6k+1) and then reducing any residue z in the range 3k+1 < z < 6k
to 6k + 1 — x. Clearly, two solutions to HDP which are multiplier equiva-
lent will produce isomorphic sets of Steiner triple systems, the isomorphism
being carried by the multiplier. Since it is known that, for certain values n,
there exist cyclic STS(n)s which are isomorphic but where no isomorphism is
carried by a multiplier (see [8]), we shall be careful to avoid the converse im-
plication in the general case. However, for prime values of n it is known (see
[8]) that isomorphic cyclic STS(n)s are multiplier equivalent. Consequently,
for such values of n, two solutions to HDP which are not multiplier equiva-
lent will give rise to non-isomorphic sets of Steiner triple systems. With this
in mind, we define a Heffter class to be an equivalence class of solutions of
HDP under all possible multipliers. The cases which we examine in detail,
namely n = 19, 31 and 43, are all primes.



3 The case n =19

In this case s = 1 and the current graph has 4s + 2 = 6 vertices. The only
bipartite trivalent simple graph on 6 vertices is K33 (the complete bipartite
graph with three vertices in each vertex set). In attempting to add directions
(clockwise or anticlockwise) at each vertex in order to form a complete circuit
we may fix arbitrarily the direction at one vertex. We find that there are 12
ways to add the remaining directions to give a complete circuit and these are
shown in Figure 3.

Figure 3: Directions at the vertices of K33 that give a complete circuit.



There are four solutions to Heffter’s first difference problem for £ = 3,
2], and these are given below.

D1 = {{1,3,4}, {2,7,9}, {5,6,8}}
D2 = {{1.4.5}, {2,6.8}, {3,7,9}}
D3 = {{1,56}, {2,809}, {347}

D4 = {{1,7,8}, {2,3,5}, {4,6,9}}

These four solutions of HDP fall into two Heffter classes. D4 is invariant
under all multipliers modulo 19. However,

4xD2 (mod 19) gives { {1, 3,4}, {5, 6, 8}, {2, 7, 9}}, and
2xD3 (mod 19) gives { {2, 7,9}, {1, 3, 4}, {5, 6, 8}}.

Thus D1, D2 and D3 are multiplier equivalent. We may take as our rep-
resentatives of the Heffter classes the following two sets of difference triples:

A = {{1,3,4}, {2,7,9}, {56, 8}
B = {{1,7,8}, {2, 3,5}, {4,6,9}}

It can be shown that, up to isomorphism, there is only one way in which
any two of the four solutions of HDP may be imposed upon K33. To see
this, consider first an attempt to impose B on one of the two vertex sets. It
is immediately clear that D4 ( = B) cannot be applied to the other vertex
set as this would imply the existence of the configuration shown in Figure 4.

Figure 4: Illegal configuration.



Thus we see that B can only be combined with one of D1, D2 or D3. By
considering multiplier equivalence we may assume that any solution involving
B also involves A ( = D1). Further elementary arguments lead to the solution
shown in Figure 5 (together with the solution obtained by reversing all the
currents).

Figure 5: A with B.

Next consider an attempt to impose A on one of the two vertex sets with
a copy of A on the other. Since A ( = D1) contains the triple {1, 3, 4}
and D2 contains the triple {1, 4, 5} and D3 contains the triple {3, 4, 7} it
is immediately clear that A cannot be combined with D2 or D3, or indeed
itself.

Combining the twelve possible allocations of vertex directions (clockwise
or anticlockwise) with the unique allocation of HDP solutions gives twelve bi-
embeddings of cyclic STS(19)s. We find that these lie in eight isomorphism
classes corresponding to Figure 3 (a), (b), (¢), (d), (f), (g), (h) and (j). This
result is in agreement with the results of [4].
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The eight non-isomorphic rotations about zero generated by the graphs
are:

(a) 1 12 2 5 139 7 8 14 16 15 6 11 18 3 17 10 4
(by 1 12 10 6 11 18 3 17 7 8 14 16 15 9 2 5 13 4
(¢) 1122 16 159 7 8 14 17 10 6 11 18 3 5 13 4
(d 112 2 16 156 11 18 3 5 13 9 7 8 14 17 10 4
(f) 112 10 6 14 16 159 2 5 11 18 3 17 7 8 13 4
(g 1 8 14 16 159 7 18 3 17 10 6 11 12 2 5 13 4
(hy 1 8 14 16 15 6 11 12 2 5 13 9 7 18 3 17 10 4
Gy 18 14 17 10 6 11 12 2 16 159 7 18 3 5 13 4

In the eight corresponding cyclic bi-embeddings we only have Steiner
triple systems from Heffter class A bi-embedded with Steiner triple systems
from Heffter class B. Neither Heffter class A systems nor Heffter class B
systems cyclically bi-embed with themselves. Examining the reasons for this
we can state a general theorem.

Theorem 1 Suppose S, and Sy are sets of triples representing solutions to
HDP for a given value of k = 2s+ 1 (s > 0). If any triple of Sy has two
(or three) elements in common with any triple of Sy, then no Steiner triple
system obtained from Sy may be cyclically bi-embedded with any Steiner triple
system from Ss.

Proof. The two (or three) common elements can only be accommodated by
multiple edges in the current graph, but these are forbidden. 0O

Corollary 1.1 If C and Cy are Heffter classes for a given value of k =
2s+1 (s> 0), and every pair (Sy, S2) € Cy x Cy satisfies the conditions of
Theorem 1 then no Steiner triple system obtained from Cy may be cyclically
bi-embedded with any Steiner triple system obtained from Cy. In particular, if
C' is a Heffter class containing a single solution to HDP (which is equivalent
to saying that this solution is invariant under all multipliers modulo 6k +1),
then no pair of Steiner triple systems obtained from C may be cyclically bi-
embedded together. 0

Remark If n = 12s+ 7 is not prime then it is possible for isomorphic copies
of a given STS(n) to correspond to different Heffter classes. In such a cir-
cumstance, although it remains true that no realisation of a system obtained
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from C] may be cyclically bi-embedded with any realisation obtained from
(s, there is still the possibility that a system obtained from C may be cycli-
cally bi-embedded with an isomorphic copy of a realisation obtained from
Cs. If n = 1254 7 is prime, this complication cannot arise and Corollary 1.1
can be used to assert that no Steiner triple system from C; may be cyclically
biembedded with any isomorphic copy of a Steiner triple system obtained
from Cs.

4 The case n = 31

In this case s = 2 and the current graph has 4s + 2 = 10 vertices. There
are two non-isomorphic connected bipartite trivalent simple graphs on ten
vertices. These may be obtained from Kj5 by removing either a 10-cycle,
or a 6-cycle plus a disjoint 4-cycle. The two graphs are shown in Figure 6
which also specifies a set of vertex directions which in each case results in a
complete circuit.

Figure 6: Current graphs for n = 31.

In each case fixing the direction at one vertex, computer analysis gives
a total of 160 sets of vertex directions in case (a) and a total of 128 sets of
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vertex directions in case (b) which result in complete circuits.

There are eight Heffter difference classes corresponding to & = 5 (i.e.
n = 31). These may be obtained from the complete listing of solutions of
HDP given in [2] and are listed below:

TO-OTEHOQwW =

{{1, 2, 3},
{{1, 2, 3},
{{L, 3, 4},
{1, 2, 3},
{{1, 3, 4},
{{1, 5, 6},
{{1, 5, 6},

(4,7, 11},
{4, 8, 12},
{2, 8, 10},
{4, 7,11},
{2, 10, 12},
{2, 7,9},

{2, 10, 12},

{{1, 11, 12}, {2, 7, 9},

The number of ways of imposing HDP solutions on the graph of Figure
6(a) was found as follows:

{5, 12, 14},
{5, 9, 14},
{5, 12, 14},
{5, 10, 15},
{5, 11, 15},
{3, 13, 15},
{3, 13, 15},
{3, 5, 8},

{6, 9, 15},
{6, 10, 15},
{6, 9, 15},
{6, 12, 13},
{6, 7, 13},
{4, 10, 14},
{4, 7, 11},
{4, 13, 14},

{8, 10, 13}}
{7, 11, 13}}
{7, 11, 13}}
{8,09, 14} }
{8,9, 14} }
{8, 11, 12}}
{8,9, 14} }
{6, 10, 15}}

Figure 7: Assigning currents to the graph of Figure 6(a).
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The currents at all the vertices obey Kirchoft’s current law and so we
obtain

a+b+c=0 g+7+m=0
d+e+f=0 a+k+n=0
g+h+i1=0 b+d+0=0
j+k+1=0 c+e+h=0
m+n+o=0 f+i+1(=0

where all the congruencies are modulo 31.

If we select {a,b,c} to correspond to a triple from a representative of a
Heftter class then these congruencies give nine equations in twelve unknowns.
The symmetry of the graph of Figure 6(a) (obtained from K55 by deletion
of a 10-cycle) is such that we may, without loss of generality, assume that
a,b and ¢ (in that order) correspond to the first triple listed against one
of the eight Heffter classes A to H shown above. We find that there are
32 solution sets for a,b,...,0. In consequence we obtain 160 x 32 = 5120
rotation schemes from the graph of Figure 6(a). Analysis of these shows that
they lie in precisely 1760 isomorphism classes.

In the case of Figure 6(b), the graph is less symmetric. There are two
classes of vertex (corresponding to the 6- and 4-cycles deleted from Kj 5) and
there are six possible orders in which the three elements of a difference triple
may be selected to correspond to a,b and c¢. Taking account of these aspects
we find 120 solution sets for the systems of equations relating to Figure 6(b).
In consequence we obtain 128 x 120 = 15360 rotation schemes from the
graph of Figure 6(b). Analysis of these shows that they lie in precisely 648
isomorphism classes.

Combining our results for Figures 6(a) and 6(b) gives at most 1760 +
648 = 2408 isomorphism classes for cyclic bi-embeddings of the STS(31)s. In
general, the automorphism group of a bi-embedding of two STS(n)s can have
order at most n(n—1) (or 2n(n—1) if we permit a reversal of the orientation).
It follows that, for prime values of n, the automorphism group of such a bi-
embedding has at most one cyclic subgroup of order n. Consequently, given a
cyclic bi-embedding of two STS(31)s, the structure of the associated current
graph may be uniquely determined from the embedding. Since the graphs
of Figure 6(a) and 6(b) are non-isomorphic it follows that none of the 1760
bi-embeddings corresponding to Figure 6(a) can be isomorphic to any of the
648 bi-embeddings corresponding to Figure 6(b). We may therefore assert
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that there are precisely 2408 isomorphism classes for cyclic bi-embeddings of
STS(31)s. This result is confirmed by [1]. In addition we are now able to
answer the question raised in that paper concerning the reasons why certain
STS(31)s cannot be bi-embedded.

We will say that two Heffter classes C and Cs bi-embed if there exists a
cyclic bi-embedding of two STS(n)s, one system, Si, obtained from C; and
the other system, Ss, obtained from C5. From the results of [1] we know
that, for n = 31, the Heffter difference classes bi-embed as in the following
table:

bi-embeds with none
bi-embeds with E

A bi-embeds with A C

B bi-embeds with B C

C bi-embedswith A B C D F
D bi-embeds with C D E F

E Dbi-embedswith D E F H

F bi-embeds with C D E F
G

H

Table 1: Bi-embeddings of Heffter classes for n = 31.

The following pairs of Heffter classes satisfy the conditions of Corollary 1.1
and therefore do not bi-embed:

(A,G) (AJH) (B,E) (B,G) (B,H) (C,E) (C,G) (C,H)
(b,G) (b,H) (E,G) (F,G) (F,H) (G,G) (G,H) (H,H)

In particular, class G is invariant under all multipliers. However, Corollary
1.1 does not, of itself, provide a complete explanation for Table 1, for example
it does not show that classes B and D do not bi-embed. Similarly Theorem 1
is not sufficient to explain in all cases why a particular pair of cyclic STS(31)s
cannot be cyclically bi-embedded. In order to complete the explanation of
the computational results of [1], we now obtain a further necessary condition
which two solutions to Heffter’s difference problem must satisfy if there exists
a cyclic bi-embedding of two STS(n)s derived from these two solutions. We
will refer to this condition as the “in/out” test and we illustrate it by reference
to two representatives of Heffter classes B and D.
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Denote these sets of triples by S; and Sy where

Sy (=4xB) = {{1, 14, 15}, {4, 8, 12}, {5, 6, 11}, {2, 7, 9}, {3, 10, 13}},
Sy (=D) = {{1, 2,3}, {4, 7, 11}, {5, 10, 15}, {6, 12, 13}, {8, 9, 14}}.

These two representatives do not generate a cyclic bi-embedding but this
is not explained by Theorem 1. If S} and S; are to be placed at the two
vertex sets of a bipartite graph and Kirchoft’s current law is to be obeyed at
cach vertex, then the elements of the first triple of Sy (which are currents on
the edges of the graph) can, without loss of generality, be assigned directions
{1°, 14°, 15'}, where 1° implies that the current is flowing out (away) from
the vertex and 15° implies that the current is flowing into (towards) the
vertex. Having assigned these directions to a triple in S;, the directions of
the currents 1, 14 and 15 in Sy are determined. Thus we have

Sy = {{107 14°, 15i}7 {47 8, 12}7 {57 6, 11}7 {27 7, 9}7 {37 10, 13}}7
Sy = {{117 2, 3}7 {47 7, 11}7 {57 10, 150}7 {67 12, 13}7 {8> 9, 141}}

We are now able to assign directions to currents in three of the triples of Sy
depending upon those triples being of the form a + b+ ¢ = 0 (mod 31) or
a+b—c=0 (mod 31). This gives

Sy = {{1°,14°,15%}, {4, 8, 12}, {5, 6, 11}, {2, 7, 9}, {3, 10, 13}},
Sy = {{1¢, 2%, 3°}, {4, 7, 11}, {5, 107, 15°}, {6, 12, 13}, {8, 97, 147} }.

The 2¢ in Sy will determine the directions in the triple of S; that contains 2
as {2°, 7°, 9'}. This leads to a contradiction between the directions of the
current 9 in S; and S,. Thus these two representatives of B and D do not
generate a cyclic bi-embedding.

In general, two solutions to Heffter’s difference problem must produce
a consistent allocation of “in/out” directions if a corresponding cyclic bi-
embedding is to be achieved. Note also that the graphical structure and
edge labelling of the potential current graph are determined by the above
process, although the vertex directions (clockwise or anticlockwise) are not.

We find that applying the “in/out” test in addition to Theorem 1 provides
a full explanation for those pairs of Heffter classes that do not bi-embed in
the case n = 31. This is not true in general for larger values of n; see the
example for n = 133 given below.

To complete the analysis of the n = 31 case, consider a pair of Heffter
classes which do bi-embed. From Tables 1 and 2 in the Appendix of [1] it can
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be observed that, within each such pair of classes, there are pairs of STS(31)s
that still do not cyclically bi-embed. Consider such a pair of STS(31)s. The
corresponding pair of HDP solutions will determine the structure of any
potential current graph as described in the previous paragraph. However,
the individual STS(31)s will determine the vertex directions (clockwise or
anticlockwise) in this graph. In every case, the failure to achieve a cyclic bi-
embedding of such a pair of STS(31)s is a consequence of the vertex directions
in the associated current graph being incompatible in that they do not yield
a complete circuit.

As remarked earlier, for larger values of n, the combination of Theorem
1 and the “in/out” test is generally not sufficient to guarantee the existence
of a cyclic bi-embedding. For example, in the case n = 133 consider the two
sets of Heffter difference triples:

Sl 82
{7,49,56} {14,21,35} {28,42,63} | {7,21,28} {14,49,63} {35,42,56}
{18,23,41} {10,27,37} {19,20,39} | {8,23,31} {10,19,29} {6,24,30}

{8,25,33} {15,16,31}

{2,4,6}  {22,44,66}
{24,40,64} {30,46,57}
{34,38,61} {11,43,54}

{12,17,29}
{26, 48,59}
{32, 36,65}
{3,47,50}

{9,18,27}  {4,22,26}  {5,20,25}
{36,44,53} {38,40,55} {34,45 54}
{33,41,59} {15,51,66} {17,47,64}
{13,52,65} {16,46,62} {11,50,61}

{13,45,58} {1,51,52} {9,53,62} |{12,48,60} {1,2,3}  {37,39,57}
{5,55,60} (32,43, 58}

It is easy to verify that a cyclic bi-embedding corresponding to the pair
(51, 92) is not excluded by either Theorem 1 or the “in/out” test. However,
the current graph obtained from the “in/out” test is disconnected (note that
the first three triples in each of the above sets consist of the same nine ele-
ments) and so cannot admit a complete circuit. Thus no cyclic bi-embedding
can result from the pair (57, S).

5 The case n = 43

In this case s = 3 and the current graph has 4s + 2 = 14 vertices. There
are thirteen non-isomorphic connected bipartite trivalent simple graphs on
fourteen vertices (see [9]). The graphs are shown in Figure 8 which also
specifies a set of vertex directions which in each case results in a complete
circuit.

17
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2 W

(m)
Figure 8: Current graphs for n = 43.
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For each case (fixing the direction at one vertex), the number of sets of
vertex directions which result in complete circuits is given in the following
table:

@ (b)) () (4 (o () (g
1792 1280 1408 1152 2048 1664 1920
() @ 0 & @O ()
1984 1920 1728 1152 2178 2240.

There are 159 Heffter difference classes corresponding to k =7 (i.e. n = 43)
which are listed in the Appendix.

The large number of orientations for each of these graphs along with
the potentially large number of ways of imposing the Heffter triples at the
vertices renders analysis similar to that in the case n = 31 beyond the scope
of this paper. However there are a number of observations that can be made:

1. Graphs (d) and (k) are two-edge connected. This implies that they
cannot have currents along their edges that are unique as required by
property (ii) of Section 2 since the current in one of the two edges of
the cutset would have to be equal (but opposite in direction) to the
current along the other of these two edges. However, for each of the
remaining graphs the edges can be labelled in accordance with (c) in
Section 2.

2. Graph (m) is the Heawood graph. Its symmetry reduces the problem
of assigning the triples at the vertices in a similar way to case (a) of
n = 31 as explained in Section 4. In this case there are 14 congru-
encies in 21 unknowns. Fixing an initial triple yields 13 congruencies
in 18 unknowns. Each of the 159 Heffter classes has a representative
containing one of the six triples

{1, 2,3}, {1,3,4}, {1, 4, 5}, {1, 5, 6}, {1, 6, 7}, or {1, 9, 10}.
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Computer analysis then gives the following results:

Initial triple of Number of solutions
the Heffter class produced by this triple

{1,2, 3} 72
{1, 3, 4} 96
{1, 4, 5 108
{1, 5, 6} 24
{1,6,7} 200
{1,9, 10} 68

The number of pairs of Heffter difference classes (when n = 43) that can
be bi-embedded using the Heawood graph is sixteen and these pairs are
listed below, the number of each Heffter difference class corresponding
to that given in the Appendix.

(1,1) (1,158)  (6,109)  (30,31)  (40,40) (40, 155)
(61,126)  (68,138)  (71,114) (83,111) (114,151) (114,152)
(125,127) (151,152) (151,155) (152,158)

. If n =125+ 7 is a prime and w is a primitive root of unity, then with
t = 2s + 1, the set of triples

{w? + 7w + 0+ j}:0<i<t, 0<j<n-—1}

forms the blocks of a cyclic Steiner triple system on n points. Such
systems are known as Netto systems (see, for example, [3]). It is known
that, in the case n = 19, the Netto system does cyclically bi-embed with
other systems. In fact the Netto system for n = 19 is generated by the
Heffter class B given in Section 3 and cyclic bi-embeddings of this Netto
system are given by rotations (d) and (g) of that Section. In the case
n = 31 the Netto system is generated by the Heffter class G given in
Section 4 and there are no cyclic bi-embeddings of this system. In the
case n = 43 the Netto system corresponds to Heffter class number 157
in the Appendix. This class is invariant under all multipliers (mod 43)
and thus this system will not cyclically bi-embed with itself. Whether
this system cyclically bi-embeds with another system was determined
as follows.
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Each graph in Figure 8, apart from (d) and (k), was considered sep-
arately. Graphs (a), (b), (e), (g), (h), (i), (j) and (1) are symmetric
with respect to the bipartition while (¢) and (f) are not. In the sym-
metric cases a single vertex was arbitrarily chosen from one of the two
sets of the bipartition and in the unsymmetric cases a single vertex
was arbitrarily chosen from each of the two sets of the bipartition. In
turn, each difference triple from Heffter class 157 was imposed on the
three edges incident with the chosen vertex in each of the six possible
permutations. The resulting congruencies were solved in each case, as
outlined above. Only in the case of graph (c) did the solutions corre-
sponding to one of the vertex sets of the bipartition give the complete
set of difference triples from Heffter class 157. In every case, these
solutions admitted the Netto system when appropriate directions that
give a complete circuit were imposed on the vertices of the graph. The
corresponding Steiner triple systems given by the other vertex set of
the bipartition belong to Heffter class 4, 12, 69 or 111. A sample cyclic
bi-embedding of the Netto system of order 43 is given by the following
permutation which specifies the rotation about 0.

137124140186 7242820 11331629 3125223295

351539342381327 1736422 14303841926 10213

The other Heffter class involved in this particular bi-embedding is num-
ber 4.

Acknowledgement: We thank Professor Josef Siran of the Slovak Technical
University, Bratislava, for his helpful comments and for pointing out reference
[11].
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Appendix: Heffter difference classes for n = 43.
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