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Abstract

An embedding of a graph in a surface gives rise to a combinatorial design whose
blocks correspond to the faces of the embedding. Particularly interesting graphs
include complete and complete multipartite graphs. Embeddings of these in
which the faces are triangles, Hamiltonian cycles, or Eulerian cycles generate
interesting designs. These designs include twofold, Mendelsohn and Steiner
triple systems, and Latin squares. We examine some of these cases, looking at
construction methods, structural properties and enumeration problems.

1 Context

Throughout this survey we will be predominantly concerned with triangular
embeddings of graphs. These arise naturally in the context of the Heawood map-
colouring conjecture. In its orientable form this asserts that the minimum number
of colours required to colour a map on a surface S,, the sphere with g handles, is
given by

g > 0.

(s, — |V
For g > 0, the conjecture was finally established by Ringel, Youngs and others in
1968. The case g = 0 is the celebrated four colour theorem, finally established by
Appel and Haken [7, 8| in 1976.

To see the connection between the Heawood conjecture and triangular embed-
dings, consider the dual problem obtained by placing a vertex in each region of the
map and joining two vertices whenever the corresponding regions share a common
border. We now require the minimum number of colours to vertex colour the result-
ing dual graph. The extremal case is the complete graph K, requiring n colours. So
it is natural to ask for the minimum genus g such that K, may be embedded in S,.
Using Fuler’s formula n+ f — e = 2 —2g, where f denotes the number of faces and
e = (Z) is the number of edges, we see that g is minimal when f is maximal and
this will happen when the average number of edges per face is as small as possible.
Euler’s formula then gives [(n — 3)(n —4)/12] as a lower bound for the genus. For
n =0, 3, 4or7 (mod 12), this is achievable by taking all of the faces as triangles.
When n does not lie in one of these congruence classes it is also achievable but a
small number of non-triangular faces are required. The book by Ringel [78] gives
the details and also deals with the nonorientable case of embedding K, in N, the
sphere with 7y crosscaps. In the nonorientable case Fuler’s formulais n+f—e = 2—~
and a lower bound for the minimum genus is [(n — 3)(n —4)/6]. In the cases n =
0 or 1 (mod 3) except n = 7 this is achievable with all the faces as triangles. The
surface of minimum nonorientable genus in which K7 can be embedded is N3.

The connection between graph embeddings and combinatorial designs arises from
the observation that, when a graph is embedded in a surface, the faces that result
can be regarded as the blocks of a design. This design may be thought of as being
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embedded in the surface. The first person to observe the connection between com-
binatorial designs and graph embeddings was Heffter. In a paper dated November
1890 [57] he presents a partition of the integers 1,2,... ,12¢+ 6, $ > 0 into 4s + 2
triples so that for each triple {a,b,c}, a -+ b+ c¢= 0 (mod 12s + 7). He then shows
how, if 4s+3 is prime and the order of 2 modulo 4s+ 3 is either 4s+2 or 25+ 1, these
triples can be used to construct a twofold triple system (for the formal definition
see Section 2) of order 12s + 7, the blocks of which are the triangular faces of an
embedding of the complete graph Kjssy7 in an orientable surface. As observed in
both [52] and [78] it is still not known if there are infinitely many such values of s.
But the method is applicable for s = 0,1,2,4,5, 11 and 14, numbers given explicitly
in [57].

The only other paper published before 1970 which explores the relationship be-
tween combinatorial designs and graph embeddings appears to be that by Emch [36].
Although mainly combinatorial in nature, it does contain diagrams of the embed-
dings of the twofold triple system of order 6 in the projective plane, the embedding
of a pair of Steiner triple systems of order 7 in the torus, as well as an interesting em-
bedding of a pair of Steiner triple systems of order 9 in a pseudosurface formed from
a torus by identifying three pairs of points. We will meet all of these embeddings
later in the paper; see Figures 6.1, 6.2 and 12.1 respectively.

2 Preliminaries

In this section we review terminology taken from combinatorial design theory and
topological graph theory, and we summarize some of the basic results. The principal
item required from design theory is the following definition. A Steiner triple system
of order n is a pair (V,B) where V is an n-element set (the points) and B is a
collection of 3-element subsets (the blocks) of V such that each 2-element subset
of V is contained in exactly one block of B. It is well known that a Steiner triple
system of order n (briefly STS(n)) exists if and only if n = 1 or 3 (mod 6) [62]. If, in
the definition, the words “exactly one block” are replaced by “exactly two blocks”,
then we have a twofold triple system of order n, TTS(n) for short. If a TTS(n) has
no repeated blocks, it is said to be simple. A simple twofold triple system of order
n exists if and only if n =0 or 1 (mod 3) [28]. A (possibly non-simple) TTS(n) may
be obtained by combining the block sets of two STS(n)s which have a common point
set. An STS(n) can be considered as a decomposition of the complete graph K, into
triangles (copies of K3); likewise a TTS(n) can be considered as a decomposition of
the twofold complete graph 2K,, (in which there are two edges between each pair of
vertices) into triangles.

Up to isomorphism, there is just one STS(n) for n = 3,7,9, while there are two
for n = 13, precisely one of which is cyclic (that is, has an automorphism of order
13). There are 80 STS(15)s [27], of which two are cyclic, and there are 11,084,874,829
STS(19)s [60], of which four are cyclic. The number of nonisomorphic STS(n)s is
pn’/6=oln?) [83] and, speaking asymptotically, almost all of these have only a trivial
automorphism group [9).

A Mendelsohn triple system of order n is defined in a similar fashion to an ST'S(n)
except that triples and pairs are taken to be ordered, so that the cyclically ordered
triple (a,b,c) “contains” the ordered pairs (a,b),(b,¢) and (¢,a). A Mendelsohn
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triple system of order n, MTS(n) for short, exists if and only if n =0 or 1 (mod 3)
and n # 6 [73]. An MTS(n) may be considered as a decomposition of the complete
directed graph on n vertices into directed 3-cycles. If the directions are ignored,
then an MTS(n) gives a TTS(n).

A transversal design of order n and block size 3 is a triple (V, G, B) where V is a
3n-element set (the points), G is a partition of V into 3 parts (the groups) each of
cardinality n, and B is a collection of 3-element subsets (the blocks) of V such that
each 2-element subset of V' is either contained in exactly one block of B or in exactly
one group of G, but not both. A transversal design of order n and block size 3 is
denoted by TD(3,n); since we only consider block size 3, we will simply speak of a
transversal design of order n. A TD(3,n) may be considered as a decomposition of
the complete tripartite graph K, ,, », into triangles with the tripartition defining the
groups of the design. A TD(3,n) is equivalent to a Latin square of side n in which
the triples are given by (row, column, entry).

To see the connection between design theory and graph embeddings, consider the
case of an embedding of the complete graph K, in an orientable surface in which
all the faces are triangles. Taking these triangles with a consistent orientation to
form a set of blocks, the faces of the embedding yield a Mendelsohn triple system of
order n. Similarly, a triangular embedding of K,, in a nonorientable surface gives a
twofold triple system of order n.

We note here that all the surfaces we consider will be, unless otherwise stated,
closed, connected 2-manifolds, without a boundary. That is, in the orientable case,
Sy the sphere with g handles and, in the nonorientable case, N, the sphere with ~
crosscaps. The surfaces S1 and Sy are the forus and double torus respectively and
the surfaces N1 and Ns are the projective plane and Klein boltle respectively. Given
a surface embedding of some simple graph G with vertex set V(G), the rotation at a
vertex v € V(G) is the cyclically ordered permutation of vertices adjacent to v, with
the ordering determined by the embedding. The set of rotations at all the vertices of
G is called the rotation scheme for the embedding. In the case of an embedding of G
in an orientable surface, the rotation scheme provides a complete description of the
embedding. This is not generally the case for a nonorientable surface because the
rotation scheme does not enable the faces of the embedding to be unambiguously
reconstructed: some additional information is required. However, in the cases we
consider this will not be an issue, since sufficient extra information to determine the
faces will be known.

Ringel [78] gives the following tests to determine if a rotation scheme represents
a triangular embedding.

Rule A: A rotation scheme represents a triangular embedding of a simple graph
G if, for each vertex a € V(G), whenever the rotation at a contains the sequence
..bc. .., then the rotation at b contains either the sequence ... ac... or the sequence
RN
Rule A*: If the rotations at each vertex can be directed in such a way that for
each vertex a € V(G), whenever the rotation at a contains the sequence ...bc...,
then the rotation at b contains the sequence ...ca..., then the embedding is in an
orientable surface.

We refer the reader to [52, 78| for an explanation of current and voltage graphs

which are used to construct graph embeddings. In Sections 3, 4, 5 and 10 we
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make extensive use of these methods. The origin of current graphs lies in the work
of Gustin [53] who regarded these as combinatorial tools. Voltage graphs were
introduced by Gross [51].

In a surface embedding of K,,, the rotation at each vertex will comprise a single
cycle of length n — 1. As described in [31] this provides a test for an MTS(n), or a
TTS(n), to be embeddable in an orientable, or a nonorientable surface, respectively.
Let (V,B) be a TTS(n). For each z € V, define the neighbourhood graph G.: its
vertex set is V' \ {z}, and two vertices y, z are joined by an edge if {z,y,z} € B.
Clearly, G, is a union of disjoint cycles. A TTS(n) occurs as a triangulation of
a surface if and only if every neighbourhood graph consists of a single cycle. If
the blocks of the TT'S(n) can be ordered to form an MTS(n), then the surface is
orientable, otherwise it is nonorientable.

Of much more interest is the relationship between embeddings of complete graphs
and Steiner triple systems. Suppose that we have an embedding, not necessarily a
triangular embedding, of the complete graph K,, with vertex set V in a surface S
with the property that the faces can be properly 2-coloured, that is, no two faces
with a common edge have the same colour. We will take the colour classes to be black
and white. If either colour class consists entirely of triangles, then these triangles
necessarily form the blocks of an STS(n) on the point set V. We will say that
the STS(n) is embedded in the surface S. If both colour classes consist entirely of
triangles, then we have two STS(n)s , black and white, biembedded in S. Slightly
more generally, we will say that two STS(n)s, say B and W, are biembeddable in a
surface S if there is a face 2-colourable triangular embedding of the complete graph
K, in S with the black (respectively white) faces forming a system isomorphic with
B (respectively W).

The first obvious question is whether, given an STS(n), it has an embedding in
an orientable and in a nonorientable surface. It turns out that this question has a
positive answer, and the proof is not difficult. We will show in Section & how to
construct a maximum genus embedding of an STS(n) where the faces comprise a set
of black triangles representing the Steiner system, together with a single white face.

A sequence of deeper questions concerns biembeddings of STS(n)s, that is, face
2-colourable triangular embeddings of K,,. We list these in increasing order of diffi-
culty.

1. For each n =3 or 7 (mod 12) is there a biembedding of some pair of STS(n)s
in an orientable surface? Similarly for each » = 1 or 3 (mod 6) is there such
a biembedding in a nonorientable surface?

2. If such biembeddings exist, how many are there?

3. Given an STS(n), does it have a biembedding with some other ST'S(n) in an
orientable and in a nonorientable surface?

4. Given a pair of STS(n)s, do they have a biembedding in an orientable and in
a nonorientable surface?

Of course, a necessary condition for a positive answer to questions 3 and 4 in the
orientable case is that n = 3 or 7 (mod 12). A complete answer to question 1 is given
in Section 3. In subsequent sections, principally Sections 4, 5 and 6, we describe
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progress with questions 2, 3 and 4. The remaining sections are devoted to other
related aspects such as Hamiltonian embeddings, biembeddings of Latin squares,
and biembeddings of symmetric configurations.

3 Existence

In this section we establish the existence of biembeddings of STS(n)s. The
orientable case n = 3 (mod 12) and the nonorientable case n = 3 (mod 6) come
from Ringel [78]. For the orientable case n = 7 (mod 12) we turn to graphs first
constructed by Youngs [86]. In each of these cases we present the general solution
either by specifying appropriate current graphs or by giving the logs obtained from
such graphs. For the nonorientable case n = 1 (mod 6) we refer the reader to [49]
which gives explicit current graphs. In both the orientable case n = 3 (mod 12)
and the nonorientable case n = 3 (mod 6), we relate these solutions to the Bose
construction for Steiner triple systems.

We first consider the orientable case n = 3 (mod 12). The current graphs con-
structed by Ringel for this case are index 3 Mobius ladders, and the general form
is shown in Figure 3.1. The ends labelled A should be identified, and likewise the
ends labelled B. The graph is bipartite, which ensures that the resulting embedding
is face 2-colourable. The vertex directions are indicated by solid and hollow cir-
cles, representing clockwise and anticlockwise respectively. Taking account of these
directions we form the logs of the three circuits denoted by [0], [1] and [2] in the
figure.

1 6s+1 6s+4 6s— 2 6s+7 6s—5 4 12s+1 1
A . . L I _ B
o
2] | 3 A o)
. . y . R
-+ » -+ | . -+ | w w -
L2 o o o o o™ o™
< (=} (=} (=} (=} — —
o
1|— © = S
gzl ) b L4
1 6s+1 6s+4 6s— 2 6s+7 6s—5 4 12s+1 1

Figure 3.1: Orientable current graph for n = 12s + 3.
For the particular case n = 15, the logs are as follows.

o: 1 13 9 11 5 12 7 14 2 6 4 10 3 8
1]: 4 7 8 5 9 4 10 6 11 2 3 1 13 12
2l: 1 & 7 10 6 11 5 9 4 13 12 14 2 3

From an index 3 current graph with currents in Z,, we may obtain a rotation
scheme for an embedding of K,, with vertex set Z,,. The rotation at ¢ € Z,, is deter-
mined by adding ¢ modulo n to each element of the log of [a], where i = a (mod 3),
a € {0,1,2}.

An alternative approach to obtaining biembeddings of STS(n)s, where n = 3
(mod 12) in orientable surfaces is given in [45] and uses the Bose construction.
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Bose construction

Let (G,+) be an Abelian group of odd order. Thus if 4,j € G then i« j = (i +j)/2
is a well defined element of G. Let V = G x Zz. On V form a collection B of triples
as follows.

(1) 2s+ 1 triples of the form {(¢,0), (i, 1), (4,2)}, i € G,
(2) 3s(2s+1) triples of the form {(4, k), (4, k), (ixj,k+1)}, 4,5 € G, i £ j, k € Z3.

Then it is easily verified that (V| B) is a Steiner triple system of order 3|G|.

A biembedding of STS(n)s where n = 3 (mod 12) can now be obtained as
follows. Build a Steiner triple system (V,B), where V' = Z4s11 X Z3, by the Bose
construction as above. Now define two Steiner triple systems (Z,, By) and (Z,, B1),
both isomorphic to (V,B) using the bijections f,, : V — Z,, m = 0,1 given by
fm(i k) = 3i+(—1)"ks where s = 6t+1. It is easy to prove that BoNB; = 0, that is,
the two STS(n)s are disjoint. To show that the pair is biembeddable in an orientable
surface, consider the triples in By (respectively Bj) as the black (respectively white)
triangles of a biembedding. For each pair of distinct points u,v € Z,, we take the
corresponding black and white triangles, both containing u and v as vertices, and
glue these triangles together along the side wv. Let S be the resulting topological
space; then S is certainly a generalized pseudosurface. We need to prove that, in
fact, S is an orientable surface. This is done by exhibiting the rotation scheme and
showing that it satisfies Ringel’s Rule A*. This is straightforward, though tedious,
and details are given in [45]. Thus, use of the Bose construction provides a proof
of the orientable case n = 3 (mod 12) of the Heawood map-colouring conjecture
by exclusively design-theoretic methods. In fact, the biembeddings so obtained are
isomorphic to those obtained from Ringel’s index 3 current graph construction.

The current graphs constructed by Ringel for the orientable case n = 7 (mod
12) of the Heawood map-colouring conjecture are not bipartite. Nor are the graphs
used in an alternative solution given by Youngs [85]. Hence the embeddings are not
face 2-colourable and are consequently not biembeddings of Steiner triple systems.
As recorded in Section 1, Heffter [57] had already in 1891 shown the existence of
orientable biembeddings of STS(n)s for some n = 7 (mod 12) but the case was not
completed until nearly 80 years later. In [86] Youngs uses what he calls “zigzag
diagrams” to construct index 1 bipartite current graphs, and hence biembeddings
of Steiner triple systems for this case. In this context, index 1 means that there
is a single circuit of the graph which traverses every edge precisely once in each
direction and whose log contains every nonzero element precisely once. Hence for
each i € {1,2,...,(n — 1)/2} either ¢ or —i must appear as a current on one of the
edges and each edge has exactly one of these (n — 1)/2 currents. The biembeddings
thus constructed are cyclic. The general forms of these current graphs are shown in
Figures 3.2 and 3.3 for n = 24m + 7, m > 2, and n = 24m + 19, m > 3 respectively.
In each case the ends labelled A should be identified, and likewise the ends labelled
B. For the values n = 7,19, 31,43 and 67, Youngs gives specific diagrams.
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Turning now to biembeddings of STS(n)s in nonorientable surfaces, the case n =
9 (mod 12) can also be found in [78]. The solution involves another class of index
3 current graphs which Ringel calls “cascades”, and the remark is made that the
method also works for the nonorientable case n = 3 (mod 12), although no details
are given. These were later worked out and are given in [10]. A simpler description
is the following where, as above, [0], [1] and [2] are the logs of the three circuits.

O: 1 2 [246+12 1248 24L+24 12t+14] [—(6t+2) 6t 4

M: 1 —1 [—(12t46) —(6t+4) —(12+12) —(6t+7)] [—(6t+2) 6t+4]

[2]: —2 —1 [=(12t+6) —(6t+4) —(12t+12) —(6t+7)] [12t+4 —(12t+8)].
Here the terms inside the square brackets are repeated for ¢ = 0,1,... ,26 — 1 in

the case of n = 126 + 3 and for £ = 0,1,...,2s in the case of n = 125 + 9, with
arithmetic in each case modulo n. In both cases the rotation scheme obtained gives
two isomorphic Steiner triple systems again generated by the Bose construction
with the group G = Z,,. To see this, map each i € Z, to (a,b) where a = |i/3]
and b =i — 3a. One of the two STS(n)s is then very clearly a Bose system and by
applying the mapping f((a,b)) = (a + b,b) it is seen that the second system is also
a Bose system.

An alternative proof from the Bose construction for n = 3 (mod 6) is given in [30]
and is very similar to the construction given above for the orientable case. Build
a Steiner triple system (V,B), where V' = Zos11 X Zs, by the Bose construction
and define two Steiner triple systems (V, By) and (V, B;), both isomorphic to (V, B),
using the bijections f,, : V — V, m = 0,1, defined as follows.

fm((1,0)) = (5,0)
fm((@, 1) = (i +m,1)
fm((4,2)) = (1—m+2s,2).

Verification that this gives a biembedding of the two Steiner triple systems in a
nonorientable surface follows the same procedure as outlined in the orientable case.

Perhaps surprisingly, the existence of a nonorientable biembedding of STS(n)s
for n = 1 (mod 6) was not established until fairly recently [49]. Much of the spectrum
can be obtained from recursive constructions given in [19, 44, 46|. The cases n =7
or 25 (mod 36), n # 7, follow immediately from Construction 4.2 given in Section
4 and the known biembeddings for n = 3 or 9 (mod 12). The case n = 13 (mod
36) is more complex but comes from a nonorientable version of Construction 4 of
[46] using a face 2-colourable triangular embedding of the complete tripartite graph
K66 having a parallel class in one of the colour classes, see [40], a nonorientable
face 2-colourable triangular embedding of K3, see [38], and the n = 3 (mod 12)
case. The case n = 1 (mod 36) then follows from the Construction 4.2 using an
inductive argument. This leaves the cases n = 19 or 31 (mod 36) but the former
would follow immediately if a method for dealing with the latter was known. But in
[49] direct constructions using index 1 current graphs are given in all cases. There
are four general subcases corresponding to n = 1, 7, 13 or 19 (mod 24), as well as
a number of particular cases. Limitations of space preclude us from giving details.
We refer the reader to the original paper where all the current graphs are given in
the same format as in this paper.
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4 Growth estimates

We present two main recursive constructions. These have a degree of flexibility
that enable us to obtain a lower bound on the number of biembeddings of STS(n)s
for values of n lying in certain residue classes. Our first construction is new and
produces biembeddings of STS(3n)s from a biembedding of STS(n)s.

Construction 4.1

Take any biembedding of STS(n)s in either an orientable or a nonorientable surface.
Pick a preferred point oo of these designs. Define the cap al oo to comprise all the
triangles, both black and white, incident with oo in the embedding. Next pick a
preferred white triangle I" incident with co. We distinguish three categories of white
triangles:

(i) those not on the cap at oo,
(ii) those on the cap at oo other than the preferred triangle 7',
(iii) the triangle 7.

Next take three copies of the given biembedding on three disjoint surfaces S, S?
and S2. We use superscripts in a similar way to identify corresponding points on
these surfaces.

For each white triangular face (uvw) of type (i), we “bridge” S, S! and S? by
gluing a torus to the three triangles 7% = (u‘v*w?) in the following manner. Take a
face 2-colourable triangular embedding in a torus of the complete tripartite graph
K33 3 having three vertex parts {u'}, {v'} and {w*} and having black faces (ufwv?)
fori =0,1,2 (see Figure 4.1). We use the same labels for the vertices of this graph as
we do for the vertices of the three triangles T¢, but initially think of them as distinct
points. (A similar gloss will be used on several occasions.) Now glue the black faces
(w*wv*) on the torus to the white faces (u'v*w?) on SY, S' and S? respectively, so
that points on the torus and on the surfaces S* with the same label are identified.

’LLO ’U2 ’lUO ’LLO
2 2
w w
’U1 ’U1
1 0
u v
’lUl > ’lUl
’LLO ’U2 ’lUO ’LLO

Figure 4.1: Toroidal embedding of K3 3 3.
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For each white triangular face (uvoo) of type (ii), we carry out a similar bridging
operation but using a different type of bridge. For this we take a face 2-colourable
triangular embedding of the graph Ky — K3 in the nonorientable surface Ny, defined
by the following rotation scheme, where the colouration is determined by taking
each (ufvfoo?) as a black triangle.

oY wd 00 w? wl W !

ool wb vl 0w Wl P

002 w? 2wl vl ol WO

40 Wow? ool 02 oo? ol oo o0
ul PO w2 o® 02 ool wl so? 0
w2 O Wl oo vl 2 oo 0 eol
0 ol 12 o® w0 wl oo? u? ool
1 L 2 w2l od w0 oo wl eol
2 L ol w2 o0 ol wl ol

Table 4.1: N4 embedding of K9 — K3.

We glue these bridges to S°, S and S? as before. Note that none of these bridges
contain any edge ootoo’.

To complete the construction, we construct a single bridge to join the three
copies of the type (iii) triangle 7. For this bridge we take a face 2-colourable
triangular embedding of Ky in the nonorientable surface Ns. Such an embedding, a
biembedding of ST'S(9)s, is given in Section 3 and we can label the vertices so that
the black faces include the triangles (viu‘oot) for i = 0,1,2. As before, we glue the
white triangle T = (u'voo) on S¢ to the black triangle (viu‘oo?) on the bridge.
Note that this bridge contains the three edges co‘oo?.

It is now routine to check that the resulting embedding represents a biembedding
of two STS(3n)s in a nonorientable surface. O

We now make some observations about the construction that enable us to extend
it. Firstly, the toroidal embedding of K333 given in Figure 4.1 may be replaced by
one in which the cyclic order of the three superscripts is reversed. The reversed
embedding of K333 is isomorphic to the original but is labelled differently (see
Figure 4.2). For each white triangular face (uvw) of S we may carry out the bridging
operation across S°, 51, 52 using either the original K33 3 embedding or the reversed
embedding. The choice of which of the two to use can be made independently for
each white triangle (uvw). Replacing one bridge by the reversed bridge is an example
of a surface trade; these are discussed more generally in Section 7.
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w0 ol w0 u®
1 1
w u
’U2 ’U2
2 0
u v
’lU2 > ’lU2
w0 ol w0 u®

Figure 4.2: Reversed toroidal embedding of K33 3.

As a consequence of this observation, we have the following result.

Theorem 4.1 Forn =3 or 9 (mod 18), there are at least 2""/3~°(") nonisomor-
phic face 2-colourable triangular embeddings of the complete graph K,, and hence
biembeddings of STS(n)s, in a nonorientable surface.

Proof Take three fixed copies of the same face 2-colourable triangular embedding
of K, m =1 or 3 (mod 6), and apply Construction 4.1 while varying the toroidal
bridges. Since there are (m — 1)(m — 3)/6 toroidal bridges and two choices for each
bridge, we may construct 20m=1(m=3)/6 differently labelled face 2-colourable embed-
dings of K3,,. The maximum possible size of an automorphism class of these is
(3m)!. Hence there are at least gm? [6=o(m?) nonisomorphic face 2-colourable trian-
gular embeddings of K3,,, and replacing 3m by n gives the result. O

Our second observation about the construction is that it is not necessary for
50,51 and S? to contain three copies of the same embedding of K,,. All that the
construction requires is that the three embeddings have the “same” white triangular
faces. To be more precise, by the term “same” we mean that there are mappings
from the vertices of each surface onto the vertices of each of the other surfaces that
preserve the white triangular faces. The sceptical reader may feel dubious that we
can satisfy this requirement without in fact having three identically labelled copies
of a single embedding. However, if we examine the black triangles of the embeddings
generated as described in Theorem 4.1, we will see that it is indeed possible. We
claim that in any two such embeddings, the black triangles are identical. To see
this, note that the black triangles come from four sources, the original surfaces and
the three types of bridges. Those lying on the surfaces S°, S' and S? are unaltered
during the construction and therefore are common to both embeddings. Those lying
on the K333 bridges are the same whether or not the bridges are reversed (see
Figures 4.1 and 4.2). Those lying on Ny bridges and on the N5 bridge are common
to both embeddings. It follows that the on?/54—o(n?) nonisomorphic embeddings of
K, generated by Theorem 4.1 all contain identical black triangles. In each of these
embeddings, by reversing the colours, we produce a plentiful supply of nonisomorphic
embeddings in surfaces S* on which to base a reapplication of the construction. All
of these embeddings of K,, have the “same” white triangles.
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We can select three surface embeddings from this collection to form S°, S', $? in
N3 ways, where N = 27°/54=0(n®) The K 5 5 bridges may be selected in 2(=1)(1=3)/6
different ways. Any two of the resulting embeddings of K3, (obtained by varying
the surfaces S°, S1 and $2, and the K3 33 bridges) will be differently labelled. These
results lead easily to the next theorem.

Theorem 4.2 Forn =9 or 27 (mod 54), there are at least 227" /31=°("*) ponisomor-
phic face 2-colourable triangular embeddings of the complete graph K,, and hence
biembeddings of STS(n)s, in a nonorientable surface.

Our second construction was first given by Sirdi and ourselves in [44]. It produces
biembeddings of STS(3n — 2)s from a biembedding of STS(n)s. It uses many of the
same ingredients as Construction 4.1, and we will be brief in our description of these
common features. However, unlike Construction 4.1, this second construction can
be used to produce both orientable and nonorientable biembeddings.

Construction 4.2

Take any biembedding of STS(n)s in either an orientable or a nonorientable surface
S. Pick a preferred point co and define the cap at oo as before. Delete this cap from S
by removing the point co, all (open) edges incident with oo and all (open) triangular
faces incident with co to give an embedding of K,,_1 in a surface S* with a boundary
D = (uyuz ... uy,—1). Each alternate edge of this Hamiltonian cycle is incident with
a white triangle in S*; suppose that these edges are uous, uqts, ... ,Up—1%1. Next
take three copies of this embedding in three disjoint surfaces S*, i = 0,1,2, each
with a boundary D* = (uju}...u¢ ;). The white triangles on $*,S*! and S*? are
bridged as before using toroidal face 2-colourable triangular embeddings of K33 3.

After all the white triangles have been bridged we are left with a new connected
triangulated surface with a boundary. We denote this surface by 3. It has 3n — 3
vertices and the boundary comprises the three disjoint cycles D?, each of length
n—1. In order to complete the construction to obtain a face 2-colourable triangular
embedding of Kj,_2, which gives a biembedding of two STS(3n — 2)s, we must
construct an auxiliary triangulated bordered surface 7™ and paste it to > so that
the three holes of > will be capped.

The bordered surface T™* is constructed from a surface 17" which has, as vertices,
the points u; fort =0,1,2 and 7 = 1,2,... ,n — 1 together with one additional
point which we call oo*. The construction of I’ uses voltage assignments. Suppose
initially that n = 3 (mod 6).

Let v be the plane embedding of the multigraph L with faces of length 1 and 3
coloured black and white, as depicted in Figure 4.3.
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Figure 4.3: The plane embedding of the multigraph L.

Figure 4.3 also shows voltages o on directed edges of L, taken in the group Zz =
{0,1,2}. The edges with no direction assigned carry the zero voltage.

The lifted graph L* has the vertex set {u;, 1<j<m-—1, i€ Zs}. As before,
we use the same letters for vertices of L as for vertices of our embedded graph in
33, but we initially assume that these graphs are disjoint. The edge set of L® can be
described as follows. For each fixed [ = 1,3,5,... ,n — 2, the six vertices uf, u} 1
1 € Zs, induce a complete graph J; ~ Kg in L. Moreover, two successive complete
subgraphs J; and Jiy2 (indices mod (n — 1)) are joined by three edges u! Huf 42
i € Z3. Thus we have a total of 15(n — 1)/2 + 3(n —1)/2 = 9(n — 1) edges in L%,
and there are neither loops nor multiple edges.

The lifted embedding v : L* — T has 4(n — 1) triangular faces: the white ones

are bounded by the triangles (ufup, 47, ), (ujuy uf ), (ufuf qu), ) and (uuju?),

where [ = 1,3,5,... ,n — 2, and the black ones are bounded by (udu; ,ui ,),

(ujui v 1), (Wi jul ) and (uu?ul), where I = 2,4,... ,n — 1. In addition,
there are four more faces in the embedding v%; three faces, which we denote by
F* bounded by (n — 1)-gons of the form (uiub...u? ;), i € Z3, and one face F’
bounded by the (3n—3)-gon (uSuduiui...u2_,ul_;); here we use the fact that n—1
is coprime with 3. Thus the boundary of F’ is a Hamiltonian cycle, say B, in L%.
Now cut out from T the three (open) faces F*, i € Zsz, bounded by the above
three disjoint (n— 1)-gons, obtaining thereby an orientable bordered surface T*. Let
L* be the graph obtained from L® by adding a new vertex co* and joining it to each
vertex of L, and keeping all edges in L unchanged. We construct an embedding
v*: L* — T* from v® in an obvious way: in the embedding v¢ (after the removal of
the three open faces), we insert the vertex co* in the centre of the face F” bounded
by the (3n —3)-gon and join this point by open arcs within F’ to every vertex on the

boundary of F’ (that is, with every vertex of the Hamiltonian cycle B). Instead of F”
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we now have (3n—3) new triangular faces on T*; they are bounded by 3-cycles of the
form oo*u;'.ug 11- We now colour the new triangular faces as follows: the face of v*
bounded by the 3-cycle oo*u%u? 1 will be black (respectively white) if the triangular
face of the embedding v* containing the edge u;u;/ 11 18 white (respectively black).
It is easy to check that this rule defines a 2-colouring of the triangular embedding
v*: L* — T*. We thus have 4(n — 1) + (3n — 3) = 7(n — 1) triangular faces on T,
exactly half of which are black.

We are ready for the final step of the construction. The surface X has three holes
with boundaries D® = (ujub...u?_;). The bordered surface T* has three holes as
well, whose boundary cycles D** can be oriented in the form D* = (u!_; ... ubu}).
It remains to do the obvious: namely, for ¢ = 0, 1,2 to paste together the boundary
cycles D* and D* so that corresponding vertices u; get identified. As the result
we obtain a surface 24T, known as the connected sum of the bordered surfaces X
and 7™, and a triangular embedding ¢ : K — X#T™ of some graph K. It is then
routine to check that K ~ Kj3,_o and that the triangulation is face 2-colourable.

If n =1 (mod 6) then we amend the voltage assignment on L as follows. We take
one of the two-point subgraphs in Figure 4.3, say that containing %; and we, and
replace the voltages 1 by 2 and vice versa, the remaining part of L being unaltered.
The proof then proceeds on the same lines as before with the modified version of L.
Note that this alteration ensures that the lifted embedding still has a (3n — 3)-gon
face even though n — 1 is not coprime with 3. The order of the vertices around this
face differs from that given previously, but it is still possible to insert a new vertex
oo and to complete a 2-colouring of the resulting triangular embedding. O

In Construction 4.2, the surface T™ is orientable, as are the toroidal bridges.
Hence, if the original biembedding of STS(n)s is orientable, then the resulting biem-
bedding of STS(3n — 2)s will be orientable. This is always possible for n =3 or 7
(mod 12).

As with Construction 4.1, we may obtain growth estimates as given in [19] by
Bonnington, Sirdn and ourselves.

Theorem 4.3 Forn=1 or 7 (mod 18), there are at least 2""/%*=°0") nonisomor-
phic face 2-colourable triangular embeddings of the complete graph K,, and hence
biembeddings of STS(n)s, in a nonorientable surface.

Theorem 4.4 Forn =1 or 19 (mod 54), there are at least 227°/31=°("*) nonisomor-
phic face 2-colourable triangular embeddings of the complete graph K,, and hence
biembeddings of STS(n)s, in a nonorientable surface.

By starting with orientable embeddings, we also obtain the following results.

Theorem 4.5 Forn =7 or 19 (mod 36), there are at least 2 /5=°("*) ponisomor-
phic face 2-colourable triangular embeddings of the complete graph K,, and hence
biembeddings of STS(n)s, in an orientable surface.

Theorem 4.6 For n = 19 or 55 (mod 108), there are at least 92n /81=0(n?) o
tsomorphic face 2-colourable triangular embeddings of the complete graph K, , and
hence biembeddings of STS(n)s, in an orientable surface.
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Not all residue classes that permit face 2-colourable triangular embeddings are cov-
ered by the theorems of this section. In particular, results are not given for n = 13
or 15 (mod 18). We remark that further generalizations of Constructions 4.1 and
4.2 are possible. Some details of these and additional constructions are given in [46]
where more than three copies of the initial embedding are used. These allow some
inroads to be made into these two remaining residue classes modulo 18, but we do
not have full coverage of these values.

An alternative approach is given by Korzhik and Voss [65, 66, 67, 63|. By starting
with suitable current graphs and varying the vertex directions (see Section 5 for what
this means), they construct for all suitably large n in each residue class modulo
12, A2 nonisomorphic minimum genus embeddings of K,, in both orientable and
nonorientable surfaces. The values of A and b vary with the residue class but in
all cases b > 1/12. As observed in Section 1, in the nonorientable case, minimum
genus embeddings of K,, are triangular embeddings when n = 0 or 1 (mod 3), and
in the orientable case when n = 0, 3, 4 or 7 (mod 12). Since none of Korzhik
and Voss’ embeddings is face 2-colourable, they do not represent embeddings of
Steiner triple systems but, rather, embeddings of twofold triple systems or, in the
orientable case, Mendelsohn triple systems. Although these results cover all residue
classes, the bound is a long way from 29" In a more recent development [64],
Korzhik and Kwak combine the current graph approach with the cut-and-paste
technique of Constructions 4.1 and 4.2 to prove that if 125 4+ 7 is prime and if
n = (12s + 7)(6s + 7), then the number of nonorientable triangular embeddings of
K, is at least 27*/*(vV2/7240(1))

5 Orientable cyclic biembeddings

By a cyclic biembedding we mean a biembedding of two STS(n)s, each of which
has the same cyclic automorphism, and such that this cyclic automorphism extends
to an automorphism of the biembedding. We will assume that this cyclic auto-
morphism is z — z + 1 (mod n). A cyclic STS(n) exists for every n = 1 or 3
(mod 6) apart from n =9 [76], see [25] for details. In the case where n = 3 (mod
6), a cyclic STS(n) contains a unique short orbit and consequently there can be
no cyclic biembeddings. As detailed in Section 3, Youngs [86] produced orientable
cyclic biembeddings for all n = 7 (mod 12) constructed from index 1 current graphs,
and it is this case that we consider in this section. We take as our starting point the
fact that every such biembedding can be obtained in this way from a current graph
having the following properties.

(i) Each vertex has degree 3.

(ii)) At each vertex, the sum of the directed currents is 0 (mod 12s+7) (Kirchoff’s
current law).

(iii) Foreach i € {1,2,... ,6s- 3}, either i or —i appears exactly once as a current
on one of the edges and each edge has exactly one of these 6s + 3 currents.
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(iv) The directions (clockwise or anticlockwise) assigned to each vertex are such
that a complete circuit is formed, that is, one in which every edge of the graph
is traversed in each direction exactly once.

(v) The graph is bipartite.

Consideration of the degree and the currents shows that these current graphs have
45 + 2 vertices. Furthermore, there can be no loops and, save for the exceptional
case s = 0, no multiple edges. This last fact follows from consideration of the
configuration shown in Figure 5.1.

z
Figure 5.1: A possible multiple edge.

If this forms part of a current graph then w = z and so the whole current graph
comprises two vertices with a triply repeated edge.

There is a close connection between current graphs and solutions of Heffter’s
first difference problem (HDP). In 1897, Heffter [58] posed the following question:
can the integers 1,2,... ,3k be partitioned into k triples {a, b, ¢) such that, for each
triple, a -+ b+c¢ =0 (mod 6k-+1)? Examination of the triples formed by the directed
currents at each vertex in either of the two vertex sets of a bipartite current graph
shows that they form a solution to HDP for £ = 2s 4 1.

In view of the above observations, the problem of constructing orientable cyclic
biembeddings of a pair of STS(12s + 7)s, s > 0, may be reduced to three steps:

(a) Identifying simple connected cubic bipartite graphs having 4s + 2 vertices.

(b) Assigning directions (clockwise or anticlockwise) at each of the vertices which
then give rise to a complete circuit.

(¢) Taking two solutions of HDP and labelling the edges of the graph in such
a way that the triples arising from each of the vertex sets of the bipartition
correspond to these two solutions.

These three steps have a large measure of independence from one another. How-
ever, we cannot exclude the possibility that for a particular graph it may be impossi-
ble to assign vertex directions to give a complete circuit, and, even if this is possible,
it may not be possible to assign the HDP solutions to the edges. We note that a
test for the existence of a complete circuit in a graph G is given by Xuong [84]. It
agserts the existence of such a circuit, equivalent to a one-face orientable embedding
of G, if and only if G has a spanning tree whose co-tree has no component with an
odd number of edges.
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Before proceeding further, it is appropriate to recall how Steiner triple systems
arise from solutions to HDP. Given a difference triple {a, b, ¢} with a+b+c = 0 (mod
6k 1), we may form a cyclic orbit by developing the starter {0, a, a-+b} or the starter
{0,b,a+b}. By taking all the difference triples from a solution of HDP and forming
a cyclic orbit from each, a cyclic STS(6k -+ 1) is obtained. The converse is also true:
given a cyclic STS(6k + 1), we may obtain a solution to HDP by taking from each

orbit a block {0, a, 8} and forming the difference triple (&, ﬁ/—\a, B), where

R if 1<2<3k
"\ 6ktl-az if 3k+1<z<6k

FEach solution to HDP produces 2% different STS(6k + 1)s; however, there may
be isomorphisms between these systems. In addition, for a given value of £, there
will generally be many distinct solutions to HDP. In this context, we say that two
solutions to HDP for £ = 2s + 1 are multiplier equivalent if one set of difference
triples may be obtained from the other by first multiplying by a constant factor
(mod 6k + 1) and then reducing any residue z in the range 3k +1 < 2 < 6k
to 6k + 1 — x. Further, we define a Heffler class to be a class of all solutions
to HDP that are multiplier equivalent. The significance of this definition is that
STS(6k 4 1)s obtained from multiplier equivalent solutions to HDP are themselves
multiplier equivalent and hence isomorphic.

For n = 19, all the computations may be done by hand. The only cubic bipartite
graph is K33. Fixing the rotation at one vertex of K33 there are twelve ways
of assigning vertex directions to produce a complete circuit [15]. There are four
solutions to HDP for k£ = 3 [22], but only two Heffter classes, namely:

I (1,3,4) (2,7,9) (5,6,8)
(1,4,5) (2,6,8) (3,7,9)
(1,5,6) (2,8,9) (3,4,7)

IT: (1,7,8) (2,3,5) (4,6,9)

It is then easy to show that there is only one pair of solutions to HDP with which
to label the edges of K3 3 as described above; one solution coming from Heffter class
I and the other from Heffter class II. The resulting orientable cyclic biembeddings
of STS(19)s are then found to lie in just eight isomorphism classes. The rotations
at 0 of these biembeddings together with an identification of the cyclic systems
so biembedded are given in the Table below. They were first listed in [45]. The
references to the cyclic STS(19)s, A1, A2, A3, A4, are as given in [72]. The rotation
at i is obtained by adding ¢ (mod 19) to the rotation at 0.

(1) 1 12 10 6 14 16 15 9 2 5 11 18 3 17 7 8 13 4| Al A3
2 1 & 13 9 2 16 15 6 14 17 7 18 5 11 12 10 4| A1 A3
@3 1 12 2 16 15 9 7 & 14 17 10 6 11 18 3 5 13 4| A2 A3
4 1 12 2 5 13 9 7 8 14 16 15 6 11 18 3 17 10 4| A2 A3
() 1 & 14 16 15 6 11 12 2 5 13 9 18 3 17 10 4| A2 A3
6) 1 & 14 17 10 6 11 12 2 16 15 9 7 18 3 5 13 4| A2 A3
(Mm 1 12 2 16 15 6 11 18 3 5 13 9 7 8 14 17 10 4| A2 A4
® 1 & 14 16 15 9 7 18 3 17 10 6 11 12 2 5 13 4| A2 A4
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Table 5.1: Rotations at 0 of the eight STS(19) cyclic biembeddings.

All four cyclic STS(19)s are cyclically biembeddable but none cyclically biembeds
with itself. Only STS(19)s from Heffter class I (Al and A2) may be cyclically
embedded with STS(19)s from Heffter class II (A3 and A4). The first of these
cyclic biembeddings was also previously given in [70] as well as two further cyclic
embeddings of Kig corresponding to T'TS(19)s.

For n = 31, the computations require a computer. There are two cubic bipartite
graphs on 10 vertices and they may be obtained from Kj 5 by either removing a
single 10-cycle, or a 6-cycle and a 4-cycle. Fixing the direction at one vertex gives
a total of 160 sets of vertex directions in the former case and 128 sets of vertex
directions in the latter case which result in complete circuits. There are 64 solutions
to HDP for k£ = 5 [22], which lie in eight Heffter classes. Altogether there are 2,408
isomorphism classes of orientable cyclic biembeddings of STS(31)s, involving 76 of
the 80 cyclic STS(31)s [26]. Of these classes, 64 are cyclic biembeddings of a system
with itself, representing 44 distinct systems. These were first given in [12] and
further details of the argument again appear in [15]. As with n = 19, only systems
from certain pairs of Heffter classes are cyclically biembeddable. The four STS(31)s
which are not cyclically biembeddable all come from one particular Heffter class,
represented by the difference triples (1,5, 6), (2,10, 12), (3,13, 15), (4,7, 11), (8,9, 14).
These ST'S(31)s are not cyclically biembeddable with any STS(31) from any Heffter
clags. Of course, this does not imply that these four systems have no biembeddings
at all.

For n = 43, there are 13 cubic bipartite graphs on 14 vertices to consider [77].
Of these, two have edge-connectivity 2, and so cannot have currents assigned along
their edges that are different as required by property (iii) above. This is because the
current in one of the two edges of the cutset would have to be equal (but opposite
in direction) to that in the other. The 11 remaining graphs admit direction and
current assignments. Further details are given in [10, 15].

Before leaving this section we remark that [15] gives theoretical reasons, based
on the above analysis, why certain pairs of cyclic STS(n)s cannot be cyclically
biembedded together in an orientable surface. These are sufficient to give a complete
explanation of cyclic biembeddability in orientable surfaces for n = 19 and n = 31,
but not for all n =7 (mod 12).

6 Enumeration

Our purpose in this section is to briefly summarize the current state of knowledge
about triangular embeddings of the complete graph K,, and hence of embeddings and
biembeddings of designs, for small values of n. Specifically we will consider the cases
n =23,4, 7,12 and 15 for embeddings in an orientable surface and n =6, 7, 9, 10, 12,
13 and 15 for embeddings in a nonorientable surface. We give enumeration results,
by which we mean the number of nonisomorphic embeddings of the specified type.
Automorphisms include those that, for face 2-colourable embeddings, exchange the
colour classes and, in the orientable case, those that reverse the orientation. The
first two cases are trivial. The STS(3) has a unique biembedding in the sphere which
has automorphism group S3 of order 6. There is a unique MTS(4), the embedding
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of which in the sphere is also unique. The automorphism group is 54 of order 24
and odd permutations reverse the orientation.

The next two cases are less trivial but well-known. There is a unique TTS(6) and
its unique embedding in the projective plane is shown below. The automorphism
group is PSLy(5) ~ As realized as (2 — (az+b)/(cz+d), a,b,c,d € GF(5), ad—bc =
1). This has order 60, the maximum possible, and acts transitively on flags, that is
ordered triples (v, e, f) where e is an edge incident to vertex v and face f.

Figure 6.1: Embedding of TTS(6) in the projective plane.

The unique biembedding of the STS(7) in the torus has for its automorphism
group the affine linear group AGL(1,7) of order 42. In the realization shown below,
this is {(z — az + b, a,b € GF(7), a # 0). The automorphisms of even order ex-
change the colour classes but preserve the orientation. There is no embedding of the
complete graph K7 in the Klein bottle.

Figure 6.2: Biembedding of STS(7) in the torus.

Triangulations for n = 9 and n = 10 are necessarily nonorientable. In the for-
mer case there are precisely two embeddings. One of these is a biembedding of
STS(9)s and has automorphism group C3 x Sz of order 18. A realization is ob-
tained by taking one system with block set {012, 345, 678, 036, 147, 258, 048,
156, 237, 057, 138, 246} and the other obtained from this by applying the permu-
tation 7 = (0 1)(2 6)(4 7)(3)(5)(8). In this realization, the permutations = and
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(06 7)(1 843 25) generate the automorphism group. The automorphisms of even
order exchange the colour classes. The other embedding is not face 2-colourable and
is the TTS(9) having the following block set {BC0, CAl, AB2, BC3, CA4, AB5,
A05, B10, C21, A32, B43, C54, A04, B15, C20, A31, B42, C53, 013, 124, 235, 340,
451, 502}. These embeddings were found by Altshuler and Brehm [6], and redis-
covered by Bracho and Strausz [20], from which the given realization is taken. The
automorphism group is Cg of order 6 and is generated by the permutation (0 1 2 3
4 5)(A B C). The two embeddings of Ky correspond to the twofold triple systems
#36 and #35 respectively of the listing of the 36 nonisomorphic TTS(9)s as given
in [25]. Using this listing it is not difficult for the reader to verify these results in-
dependently by examining the neighbourhood graphs of the systems as explained in
Section 2. There are 394 nonisomorphic TTS(10)s without repeated blocks [23]. Of
these, precisely 14 can be embedded. Four have trivial automorphism group, four
have Cy and there is one each with groups Cs, Cs, S3, Co, A4 and As, [20).

The next two cases to consider are n = 12 and n = 13. There are 59 noniso-
morphic embeddings of MTS(12)s in an orientable surface [5], and 182,200 noniso-
morphic embeddings of TTS(12)s in a nonorientable surface [35]. There are two
STS(13)s, one is cyclic and the other is not. We will refer to these here as C' and
N respectively. There are 615 biembeddings of C' with C, of which 36 have an au-
tomorphism group of order 2 and four an automorphism group of order 3; the rest
have only the trivial automorphism. There are 8,539 biembeddings of C with N, of
which ten have an automorphism group of order 3 and the rest have only the trivial
automorphism. Finally, there are 29,454 biembeddings of N with N, of which 238
have an automorphism group of order 2 and the rest have only the trivial automor-
phism. In each case, automorphisms of order 2 exchange the colour classes. These
results come from [38] and were confirmed in [35] where all 243,088,286 nonorientable
triangular embeddings of K13 were determined.

The final case which we consider is n = 15, and is of particular interest. To
quote Ellingham and Stephens, [35], “it is probably infeasible to generate all trian-
gular embeddings of K75 in Nao” and “it may be possible to generate all orientable
embeddings of K75 in S11” but “finding them may be a feasible (if still long-term)
project on a large many-processor system”. But the importance of this case is that
n = 15 is the smallest value, apart from the well-known cases of the trivial STS(3)
and unique STS(7), for which biembeddings of STS(n)s in an orientable surface can
be investigated. There are 80 nonisomorphic STS(15)s; a standard numbering and
some of their structural properties are given in [72]. They provide a laboratory for
experimentation and for framing conjectures. However, before we consider orientable
embeddings we first of all deal with the nonorientable case.

In [16], it was shown that every pair of the 80 isomorphism classes of STS(15)
may be biembedded in a nonorientable surface. There are precisely three such
biembeddings of system #1 with itself and five such biembeddings of system #1 with
system #2 [11, 14]. System #1 is the point-line design of the projective geometry
PG(3, 2) and system #2 is obtained from system #1 by making a Pasch trade, see
Section 7. As a consequence of the results concerning the biembeddings of ST'S(n)s
for n = 9,13 and 15, we believe that there is reasonable evidence to support the
following conjecture.
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Conjecture 6.1 Every pair of STS(n)s, n =1 or 3 (mod 6) and n > 9, can be
biembedded in a nonorientable surface.

Turning to orientable biembeddings of the STS(15)s, we firstly observe that
there are precisely three systems having an automorphism of order 5. Each of these
systems has a biembedding with itself having an automorphism group of order 10.
One of these is the one originally given by Ringel [78], and which can also be obtained
from the Bose construction, see Section 3 for details. The other two may be obtained
by Ringel’s method from index 3 current graphs [13]. In each case an automorphism
of order 2 with a single fixed point, exchanges the colour classes but preserves the
orientation. In [17] a computer search for biembeddings of the 80 systems, each
with itself, was based on examining all possible automorphisms of order 2 having
a single fixed point and exchanging the colour classes. As a result, it was shown
that 78 of the 80 systems have orientable biembeddings of this type. The exceptions
are systems numbered #2 and #79 in the standard listing. In the case of #2, it
is further shown in [17] not to have an orientable biembedding with itself. It was
also shown that, in the case of #79, any such biembedding can only have the trivial
automorphism group. However more recent and, at the time of writing, unpublished
work by the present authors and Martin Knor has disposed of this possibility. Hence
we can state the following theorem.

Theorem 6.1 Of the 80 nonisomorphic STS(15)s, 78 have a biembedding with
themselves in an orientable surface. The two exceplions which have no such biem-
bedding are #2 and #79 in the standard listing.

An orientable biembedding of system #79 with system #77 having an automor-
phism of order 3 is also given in [17] and is the first known example of a biembedding
of a pair of nonisomorphic STS(15)s, though of course, as described in Section 5,
there are already many known biembeddings of pairs of nonisomorphic STS(n)s for
n =19 and n = 31.

Again, with Martin Knor, we have established a programme to find further such
biembeddings. Of particular interest is whether there exists a biembedding of system
#2 with some other system. In fact we have discovered such a biembedding and
hence can state another theorem.

Theorem 6.2 Fach of the 80 nonisomorphic STS(15)s has a biembedding with some
STS(15) in an orientable surface.

7 Trades

The concept of a trade is well established in combinatorial design theory. Below
we give definitions sufficient for our purposes. A good overview is given in [29] and
the listings we make use of appear in [61]. In this section we describe surface trades
in triangular embeddings. By this we mean replacing one set of triangular faces
with another set that covers the same edges. By applying such trades one may
generally move between nonisomorphic embeddings of the same graph. Referring
to the constructions presented in Section 4, the replacement of one K, , ,, toroidal
bridge by the reversed bridge provides an example of a surface trade. Underlying any
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such surface trade there is a combinatorial trade on some (possibly partial) twofold
triple system. However, the existence of a combinatorial trade amongst the triples
formed by a set of triangular faces does not ensure the existence of a corresponding
surface trade since applying the trade may transform the surface into a generalized
pseudosurface. The geometrical arrangement of the faces is important both for the
feasibility of the trade and for questions of orientability.

One may also consider surface trades in the context of the “distance” between
different triangular embeddings of a graph G, where distance is defined as the min-
imum number of faces in which two triangular embeddings of G can differ. We
describe below various surface trades which were used in [43] to show that the mini-
mum distance between two different nonorientable triangular embeddings of K, is at
least 4, a number that increases to 6 if one or both of the embeddings is orientable.
Moreover, these distances are achievable for some values of n.

A triangular embedding of a graph G, with vertex set V of cardinality n, deter-
mines a partial twofold triple system, PTTS(n) = (V,B), where B is the collection
of triples of points of V' formed by the vertices of the triangular faces; this has the
property that every pair of points corresponding to an edge of G appears in pre-
cisely two triples (triangular faces of the embedding), but those corresponding to
the edges of the complementary graph do not appear in any triple. When G is a
complete graph K, the resulting PTTS(n) is a TTS(n). A combinatorial trade on
a PTTS(n) may be defined as follows.

Suppose that 77 and 75 are disjoint sets of triples taken from a finite base set
U. If every pair of points of U occurs in the triples of 1} with precisely the same
multiplicity (0, 1 or 2) with which it appears in the triples of 75, then the pair
T = {T1,T>} is called a combinatorial trade. The volume of the trade T, vol(T), is
the common cardinality of 7} and Ts, and the foundation of the trade 7, found(7),
is the set of points of U which appear amongst the triples of 17 (or 75).

The rationale for the above definition is that if P, = (V,By) is a PTTS(n) whose
triples include those of 17, then by replacing these triples with those of 75, we form
another PTTS(n), P> = (V, Bs) say, and the triples of By and Bs cover exactly the
same pairs of points from V with the same multiplicities.

Now consider the effect of making a trade on an embedding. Suppose that M;
is a triangular embedding of the simple connected graph G in some surface S and
that P; = (V,B;) is the associated PTTS(n). Further suppose that 7 = {T7,T5}
is a trade with found(7) C V and that 7} C By. Put Bs = (B1 \ T1) U 7%, so that
Py, = (V,By) is a PTTS(n) covering all the edges of G precisely twice and no other
pairs from V. If we now regard the triples from Bs as triangular faces and sew these
faces together along the common edges, then this operation may or may not result
in a surface embedding My of G; the reason that the process may fail to yield such
an embedding is that the sewing operation may yield a generalized pseudosurface.
However, when the operation succeeds in producing a surface embedding, then we
say that 7 forms a surface trade between the embeddings M7 and My of the graph
G.

A variety of interesting questions may be posed concerning trades and embed-
dings. For example, does every combinatorial trade on a PTTS(n) yield at least one
surface trade? Is it possible to characterize those combinatorial trades which, no
matter how they lie on the surface, always transform a surface embedding into a sur-
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face embedding (rather than into a generalized pseudosurface embedding)? Which
surface trades are guaranteed to preserve orientability? How many different surface
trades with foundation size less than n must a triangular embedding of K, possess?
And if b = b(n) denotes the minimum integer such that any two triangular embed-
dings of K,, may be transformed into one another by a trade of volume at most b,
how does b vary with n? In order to make progress with such questions it is helpful
to have a catalogue of small surface trades.

Apart from the trivial case G = K3, no triangular embedding of a simple con-
nected graph G can give rise to a PTTS(n) with a repeated triple. Furthermore,
in this trivial case, it is clear that no trade exists. We may therefore assume that
G # K3, and that the associated PTTS(n) does not contain any repeated triples.
We consider here the case of trades 7 on PTTS(n)s with vol(7) < 6. Up to iso-
morphism, there are precisely five such combinatorial trades, one having vol(7) = 4
and the other four having vol(7) = 6. These five trades are all given in [61], and it
is shown in [18] that there are no further trades 7 = {71,72} having vol(7) < 6.

The five trades are listed below. The first three have common names as given.
In each case 77 is isomorphic with 75.

1. (Pasch or quadrilateral trade) 77 = {123, 145, 624,635},
Ty = {124,135, 623, 645}

2. (6-cycle trade) Ty = {123,145, 167, 834, 856, 872},
Ty = {134,156, 172,823, 845, 867}.

3. (Semihead trade) Ty = {127,136, 145,235, 246, 347},
T = {126,135, 147, 237, 245, 346}.

4. (Trade-X) Ty = {123,124, 156,256, 345, 346},
Ty = {125,126, 134, 234, 356, 456}

5. (Trade-Y) Ty = {124,125, 136, 137, 267, 345},
Ty = {126,127, 134, 135,245, 367}.

Surface trades are not new. For example, in Figure 1 of 21|, which relates to
triangulations of the projective plane, the pair {a, b} gives a geometrical realization
of trade-X, the pair {c, d} a realization of a Pasch trade, and the pair {e, f} a
realization of a semihead trade. Trade-X represents a sequence of diagonal flips.
However, our purpose in this section is to show how one can determine the precise
geometrical circumstances in which a surface trade results from a combinatorial
trade. We give the details for Pasch trades and we summarize the other cases,
leaving the interested reader to consult our joint paper with Bennett, Korzhik and
Sirén [18] for further information.

So, consider the possibility of the triangular faces (defined by their vertex triples)
123, 145, 624, 635 of an embedding M being traded with the triangular faces 124,
135, 623, 645 to form an embedding M’. Initially we ignore the question of ori-
entability. At the point 1, and up to reversal, there are two possibilities for the
rotation in M, namely

(a) 1: 23---45--- or
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(b) 1: 23.-.54...,

where --- denotes undetermined sections of the rotation.

In M’ there are faces 124 and 135, but in case (b) the partial rotations 4---2
and 3---5 preclude these unless the undetermined sections of these partial rotations
are empty, that is, case (b) has the form 1 : 2354. In this case M also contains
the faces 124 and 135, and so M’ would have two copies of each of these faces. So
we may exclude case (b). Returning to case (a) and applying similar reasoning at
the other vertices shows that the partial rotations in M and in M’ at the points
1,2,...,6 are, up to reversals, as shown in Table 7.1. Note also that these partial
rotations in M and M’ are isomorphic; for example the permutation (3 4) takes one
to the other.

M M’
1: 23.--45-.. 1: 24..-35-
2: 3164 2: 36---14--
3: 1256 3:15---26- -
4: 5162 4: 5612
5: 14---36- - 5: 13---46- -
6:24---35-- 6: 2345

Table 7.1: Partial Pasch surface trade.

Next consider the question of orientability. Assuming a consistent orientation of
M and starting with 1: 23---45---, werequire2: 31---64--- and4: 51---62---
However, these give respectively 6 : 42--- and 6 : 24---, contradicting orientabil-
ity. Therefore a consistent orientation of M, and similarly M’, is not possible.
Thus a surface trade based on the combinatorial Pasch trade is necessarily between
nonorientable embeddings.

We have shown the necessity of Table 7.1 for the existence of a Pasch surface
trade, but we have not demonstrated that such a trade exists. In order to do
this, take the rows of the partial rotation scheme for M with the undetermined
sections eliminated and then determine any resulting non-triangular faces. From
each such face, eliminate multiple vertices, if any, by the insertion of additional
triangles involving new faces as illustrated below in Figure 7.1, where the twice
repeated vertex z is eliminated from the face I’ by the insertion of new vertices 21
and z9.

on- trlan ular face F
Figure 7.1: Ehmmatmg multiple vertices from face F'.

Having completed this elimination, for a non-triangular face without multiple
vertices, insert a new vertex into the interior of that face and join it by non-
intersecting edges to all the vertices on the boundary, thereby forming a triangular
embedding of some simple connected graph.
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Application of this algorithm to the case of the Pasch trade given in Table 7.1
give the rotations M and M’ as shown below in Table 7.2

M M’
1: 23z45y 1: 24z35y
2: 3ly64z 2: 36yldz
3: 12256z 3: 15226z
4: 51x62z 4: 5612z
5: 14236y 5: 13246y
6: 24235y 6 : 23z45y
z: 1364 z: 1364
y: 1265 y: 1265
z: 2354 z: 2354

Table 7.2: Example of a Pasch surface trade.

The same algorithm may be applied to produce examples of other surface trades
from partial rotation schemes; it preserves orientability in the sense that if a partial
rotation scheme is potentially orientable, then the resulting triangular embedding
M will be orientable. This does not, however, ensure that the traded embedding
M’ is orientable. Also note that it is always possible to render both M and M’
nonorientable by gluing on a nonorientable triangular embedding which shares a
common face with M and M’.

The results of [18] for all five surface trades having volume at most 6, are sum-
marized in Table 7.3. In the case of Trade-X, every possible geometric realization
permits a surface trade. In the case of a face 2-colourable embedding M both Trade-
X and Trade-Y necessarily involve both colour classes. The entry “28” against the
semihead trade reduces to 19 if we allow M and M’ to be exchanged. This only
arises for semihead trades because the geometric realizations of the partial rotations
in M and M’ can be nonisomorphic in this case.

Name Number of nonisomorphic Comments
geometric realizations
Pasch 1 M and M’ are
necessarily nonorientable.
6-cycle 4 In one case it is possible

for one or both of
M and M’ to be orientable.
Semihead 28 In one case it is possible
for one or both of
M and M’ to be orientable.
Trade-X 7 In one case it is possible
for both M and M’ to be orientable,
but not to have one orientable
and the other nonorientable.
Trade-Y 3 In one case it is possible
for one or both of
M and M’ to be orientable.
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Table 7.3: Small surface trades.

Perhaps the most compelling reason for considering surface trades is the pos-
sibility of using them to obtain lower bounds of the form 297" on the numbers of
triangular embeddings of K, for residue classes not covered by the methods described
in Section 4. Such potential use depends on constructing embeddings having a large
number of independent trades, possibly using current graphs. So far, at least, we
have not been able to implement this strategy.

8 Maximum genus embeddings

Whenever a biembedding of two STS(n)s exists, it represents a minimum genus
face 2-colourable embedding of K, in a surface and hence may be considered to be
a minimum genus embedding of each of the two STS(n)s involved. From Euler’s
formula, in the orientable case the minimum genus is (n — 3)(n —4)/12 and in the
nonorientable case it is (n — 3)(n —4)/6.

Our focus in this section lies at the opposite extreme, namely on cellular em-
beddings of Steiner triple systems of maximum genus. To be precise, we seek a face
2-colourable embedding of a complete graph K, in a surface in which the black faces
are triangles and so determine an STS(n), while there is just one white face and the
interior of that face is homeomorphic to an open disc. This latter condition ensures
that the embedding is cellular and it precludes artificial inflation of the genus by
the addition of unnecessary handles or crosscaps. In the orientable case, the corre-
sponding genus is (n — 1)(n — 3)/6, and in the nonorientable case, (n — 1)(n — 3)/3.
To avoid trivialities, we shall assume that n > 3 and then the single white face,
which has n(n —1)/2 edges, may be referred to unambiguously as the large face. In
topological graph theory, graphs which are cellularly embeddable with precisely one
face are called “upper-embeddable”. By analogy with this usage, we use the term
upper-embedding for embeddings of STS(n)s of the type just described, appending
the qualifier “orientable” or “nonorientable” as appropriate.

By contrast with biembeddings, it is easy to prove that for n > 3 every STS(n)
has both an orientable and a nonorientable upper-embedding. It is also possible
to give detailed results about the possible automorphisms of such embeddings. We
represent handles and crosscaps in diagrams as shown in Figure 8.1. The results of
this section are taken from our joint paper with Sirdn [47].

] O

/ N
Figure 8.1: Representation of handles and crosscaps.

Theorem 8.1 FEvery STS(n) has an orientable upper-embedding.

Proof The triples of the STS(n) will be represented as black triangles of the em-
bedding. The initial step is to take all of the black triangles containing a fixed point
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oo of the STS(n). From these, one constructs a face 2-coloured planar embedding
of a connected simple graph G on n vertices, having for its faces the (n — 1)/2 black
triangles incident with co, and one white face. The graph GG and its embedding are
illustrated in Figure 8.2.

Figure 8.2: The planar embedding of G.

We proceed to add the remaining (n—1)(n —3)/6 triples of the STS(n), one at a
time, increasing the genus by 1 at each step. Consider at any stage the boundary of
the white face. We assume that every point of the STS(n) appears on this boundary
at least once. This assumption is certainly true for the initial embedding illustrated
in Figure 8.2. If the next triple to be added is {u, v, w} then we locate one occurrence
of each of these points on the boundary of the white face, add a handle to the white
face, and paste on the triangle (u,v,w) (or (u,w,v), depending on the order of the
selected points around the white face). This is illustrated in Figure 8.3 which shows
the location of the triangle relative to the handle.

u v

Figure 8.3: Adding a black triangle.

If the points u, v, w originally divided the boundary of the white face into three
sections A, B and C, then it is easy to see that after the addition of the black
triangle (u,v,w) as shown in Figure 8.3, there still remains just one white face with
boundary A(vw)C(uv)B(wu). This face has three more edges than at the previous
stage and every point of the STS(n) still appears on the boundary. It is also clear
that if the interior of the white face was homeomorphic to an open disc prior to the
addition of the black triangle, then it remains so after this addition. O
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We remark that it is not necessary to start with the planar embedding specified
in the proof. All that is required is a planar embedding of some graph G containing
only black triangles from the STS(n) and a single white face, the interior of which
is homeomorphic to an open disc, incident with all the points of the STS(n).

Theorem 8.2 Every STS(n) with n > 3 has a nonorientable
upper-embedding.

Proof The proof is identical with that of Theorem 8.1 up to the addition of the
final black triangle. This is added to the white face using two crosscaps rather than
one handle. Figure 8.4 illustrates this step. For clarity, the edges uv, vw and wu are
labelled a, b and c respectively.

Figure 8.4: Adding the final black triangle.

Using the same notation as in the proof of Theorem 8.1, the boundary of the
white face after the addition of the black triangle (u,v,w) is A(vw)B(vu) C(wu).
The resulting surface has ((n — 1)(n — 3)/6) — 1 handles and 2 crosscaps, giving
nonorientable genus (n — 1)(n — 3)/3. O

It follows from Theorems 8.1 and 8.2 that for each admissible n, the number of
orientable (or nonorientable) upper-embeddings of STS(n)s is at least as great as
the number of STS(n)s.

We next give some results about the possible automorphisms of upper-embeddings
of STS(n)s. We repeat the assumption that n > 3.

Theorem 8.3 If ¢ is an aulomorphism of an orientable or nonorientable upper-
embedding of an STS(n) then ¢, represented as a permutation of the points, has one
of two forms:

(a) ¢ comprises a product of disjoint cycles of equal length, or

(b) ¢ comprises a single fixed point together with a product of disjoint cycles of equal
length.

Purthermore, ¢ preserves the direction around the large face, and the common cycle
length is odd.
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Proof Suppose that ¢ has two fixed points, @ and b. Since ¢ must preserve the large
face and the edge ab appears somewhere on the boundary of this face, it must fix
the points adjacent to the edge ab on this boundary. By repetition of this argument,
¢ fixes every point of the STS(n). Thus ¢ is the identity mapping and so is both of
type (a) and type (b). It follows that if ¢ is not the identity mapping then it can
have at most one fixed point.

Next suppose that ¢ contains two disjoint cycles of lengths p and ¢, where 1 <
p < q. Then ¢* is an automorphism with p fixed points and a cycle of length at
least 2. By the previous paragraph, this is not possible. Hence ¢ must take one of
the forms (a) or (b) defined in the statement of the theorem.

Now assume that ¢ has the form (a) and that it reverses the direction around
the large face. Clearly ¢ is not the identity. Consider any edge ab which is mapped
by ¢ to an edge a’b’ appearing on the boundary of the large face as shown in Figure
8.5.

Figure 8.5: Points around the large face.

If ¢ is adjacent to b on this boundary then it must be mapped to ¢’ adjacent to
b’ as shown in Figure 8.5. Proceeding in this fashion we deduce that ¢(a’) = a and,
further, that ¢?(z) = z for every point 2 of the STS(n). Since ¢ is not the identity
and has the form (a), we see that ¢ must be the product of disjoint transpositions,
contradicting the fact that n is odd.

Next, agsume that ¢ has the form (b) and that it reverses the direction around
the large face. Again, ¢ is clearly not the identity. Suppose that ¢ fixes the point co
(and no other point). Arguing as before we see that ¢ fixes co and contains (n—1)/2
disjoint transpositions. Suppose that three of these are (a; b1), (a2 b2) and (a3 bs).
Consider the edge a1b;. Since this edge is stabilized by ¢, it must appear midway
between two successive occurrences of co on the boundary of the large face. But the
edge asbo must also appear midway between the same two successive occurrences of
00, and the same is true of the edge a3bs. Since there are only two midway positions,
we have a contradiction. We conclude that ¢ preserves the direction around the large
face.

Finally, consider the cycle length. If ¢ has the form (a), then the cycle length
is necessarily odd. If ¢ has the form (b) and the cycle length is k, suppose that
k is even. Then ¢ = ¢*/2 is an automorphism which comprises a fixed point and
(n—1)/2 transpositions. If (a1 b1) is one of these transpositions, then ¢ will reverse
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the direction of the edge a1b; and so fails to preserve the direction around the large
face, a contradiction. Thus &£ must be odd. [
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By using arguments based on voltage graphs, more can be said in case (a) of
Theorem 8.3. The following result is given in [47].

Theorem 8.4 If ¢ is an automorphism of an orientable upper-embedding of an
STS(n), and if ¢ comprises a product of disjoint cycles of equal length k, then either
k =1 (in which case ¢ is the identity permutation) or k = 3 (in which case n = 3
(mod 6)).

Direct constructions using voltage graphs are then used in [47] to show that the
restrictions described in Theorems 8.3 and 8.4 are, in a sense, best possible. For
automorphisms without a fixed point, the following results are obtained.

Theorem 8.5 Ifn =3 (mod 6), then there exists an orientable upper-embedding of
an STS(n) having an automorphism that is a product of disjoint 3-cycles.

Theorem 8.6 Ifn =1 or 3 (mod 6) and n > 3, then every cyclic STS(n) has a
nonorientable upper-embedding with o cyclic automorphism. Consequently, if kn,
then every cyclic STS(n) has a nonorientable upper-embedding having an automor-
phism which is the product of disjoint k-cycles.

For automorphisms with a single fixed point, i.e. case (b) of Theorem 8.3, con-
structions given in [47] yield the following result.

Theorem 8.7 Let S be an STS(n) with an automorphism ¢ having a single fixed
point and | cycles each of length k, where k is odd and n = kl + 1. Then there
exist both an orientable and a nonorientable upper-embedding of S having ¢ as an
automorphism.

9 Hamiltonian embeddings

A Hamiltonian embedding of K, is an embedding of K, in a surface, which may
be orientable or nonorientable, in such a way that each face is a Hamiltonian cycle.
In a triangular embedding of a complete graph, each face is as small as possible.
At the opposite extreme, for every n there exists an embedding of K, having a
single face [32]. Around this single face every vertex appears n — 1 times. The
problem of constructing Hamiltonian embeddings of K, is intermediate between the
two extremes: the face lengths are as large as possible subject to the restriction that
no vertex is repeated on the boundary of any face. In design theory terminology,
if the embedding is face 2-colourable then the faces in each colour class form an n-
cycle system, in other words a decomposition of the edge set of K,, into Hamiltonian
cycles. Whether or not the embedding is face 2-colourable, the complete set of faces
forms a twofold n-cycle system.

In a Hamiltonian embedding of K,, the number of faces is n — 1. In the nonori-
entable case Euler’s formula gives the genus as v = (n—2)(n—3)/2. In the orientable
case the genus is g = (n — 2)(n — 3)/4, which implies that n = 2 or 3 (mod 4) is a
necessary condition for the embedding. Face 2-colourability requires n to be odd, so
that n = 1 or 3 (mod 4). The recent paper by Ellingham and Stephens [33] estab-
lished the existence of Hamiltonian embeddings in nonorientable surfaces for n = 4
and n > 6. We summarize their results in sufficient detail to give the flavour, giving
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a somewhat simpler construction in the case n = 3 (mod 4). We also present a
novel construction given by Sirdr and ourselves in [48] which produces Hamiltonian
embeddings of K,, from triangular embeddings of K.

Theorem 9.1 (Ellingham and Stephens) For n = 4 orn > 6, K,, has a Hamil-
tontan embedding in a nonorientable surface. Moreover, when n is odd, lhere is
such an embedding that is face 2-colourable. There is no orientable or nonorientable
Hamiltonian embedding of Ks.

Proof First consider the case n even and write n = 2k + 2. Take K,, to have
vertex set Zop 11 U {oo}. Let C; be the Hamiltonian cycle (co,4,i+ 1,1 — 1,4+ 2,i —
2,...,i+k,i—k). The cycle Cy is illustrated in Figure 9.1 and C; is obtained from
it by rotating 7 places clockwise.

2%k “\- 1

2k -1 ° 2

k+3 o k—2

kN‘ k-1

mk

Figure 9.1: The cycle Cp.

The set of 2k + 1 Hamiltonian cycles {C; : i =0,1,...,2k} may be sewn together
along common edges to produce a Hamiltonian embedding of Koy o. To verify this,
we compute the rotations at co and 4. These are as follows.

o : 0 k 2k k-1 2k—1 k-2 ... 2 k+2 1 k41
it 00 ¢+1 ¢+2 ¢+3 ¢+4 ¢+5 ... -4 -3 -2 1—1

Since each of these is a single cycle of length 2k + 1, it follows that the construction
produces a Hamiltonian embedding of Kop42. To see that the embedding is nonori-
entable for k > 1 , delete the point co and the edges incident with oo, and examine
the boundary of the resulting single face embedding of Ko ;. This has the form

C C"
o R} A
(0,1,26,2,2k —1,... k—1,k+2,kk+ 1, k+ 2,k k+3,...,0,1 ...... ...... ),
Crrs

where the bracings indicate the Hamiltonian cycles from which the sections are
derived. Since the edge 01 is encountered twice in the same direction, the embedding
cannot be orientable.
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Next consider the case n = 4s + 3, s > 1. Take Kys43 to have vertex set
{00, 00,01, ... ,02s,b0,01, ... ,b2s}. With subscript arithmetic modulo 2s -+ 1, let H;
be the Hamiltonian cycle

H; = (00a;bibas1i014i02s1ib11ib2s—14i02i025—11ib2ibas—21i - ..
e O 24ibs—14ibst14i0siCst14ibs i)

The cycle Hy is illustrated in Figure 9.2 and H; is obtained from it by rotating 24
places clockwise.
ag b()

bgs-?. a1

ags%

. ————

b1

As42 o bs—l

str1~//asv

as+lm'

Figure 9.2: The cycle Hp.

A second Hamiltonian decomposition may be formed from this one by applying the
mapping a; — a1 (j =0,1,...,2s). This produces Hamiltonian cycles G; which
may be written most conveniently with the cyclic order reversed as

Gi = (00bsti@siotitstitibstipibs—14i@si34i---
o D140 5bos ibia ).

The set of 4s + 2 Hamiltonian cycles {H;,G; : i = 0,1,...,2s} described above
may be sewn together along common edges to produce a Hamiltonian embedding
of K4s+3. To verify this, we compute the rotations at co,a; and b;. These are as
follows.

oo L Qg bs a1 bs+1 a9 bs+2 oo Qg bs—l
a; : oo b; a1y by aogs bayi ... @2syi bosys
bi 1 00 @1y basyi @ bas—1yi @254 ... bipi G2y

Since each of these is a single cycle of length 45+ 2, it follows that the construction
produces a Hamiltonian embedding of K4s13. Becauseeachof {H; : i =0,1,... ,2s}
and {G;: 1 =0,1,...,2s} is a Hamiltonian decomposition of Ky 3, it also follows
that the Hamiltonian embedding is face 2-colourable. To see that the embedding
is nonorientable for s > 1, delete the point co and the edges incident with oo, and
examine the boundary of the resulting single face embedding of K4s12. This has the
form

Hy Hy Hg He 1
—N— ——
(aobo PN bs as+2as+1bs+1 PN all ............... asbs PN bgs a1a0b0 PN asH‘ ...... ),

~ ~

Go Gs
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where the bracings again indicate the Hamiltonian cycles from which the sections
are derived. Since the edge agby is encountered twice in the same direction, the
embedding cannot be orientable.

For n = 4s + 1, Ellingham and Stephens take a similar Hamiltonian decom-
position of K,, into cycles H;, again apply a permutation of the vertices to give a
second Hamiltonian decomposition into cycles GG;, and then combine the two decom-
positions to produce the embedding. The permutation required is somewhat more
complicated than that given above for n = 4s + 3. By this method, the embedding
is certainly face 2-colourable, and it is again easily shown to be nonorientable. For
the details, we refer the reader to the original paper [33].

To see that K5 does not have a Hamiltonian embedding, suppose the contrary.
Take the vertices as 0,1,2,3,4, and delete the vertex 0 together with edges inci-
dent with it to obtain a single-face embedding of K, whose face boundary may
be taken, without loss of generality, as (1,a,b,2,¢,d,3,¢, f,4,9,h), where {a,b} =
{3,4}, {c,d} = {1,4},{e, f} = {1,2} and {g,h} = {2,3}. Since every edge of K,
must appear twice, it is easy to check that there are precisely four possibilities, all
of which lie in one isomorphism class. One of the possibilities for the face boundary
is (1,3,4,2,4,1,3,2,1,4,3,2). Consideration of the rotation at the vertex 2 shows
that this does not produce a surface embedding. O

We next show how Hamiltonian embeddings of K,, may be derived by surface
surgery from triangular embeddings of K,,. Such triangular embeddings exist for n =
0 or 1 (mod 3); whether the triangular embedding is in an orientable or nonorientable
surface is immaterial. To avoid trivial cases we assume that n > 4. This work comes
from our joint paper with Sirdn [48].

Construction 9.1

Take a triangular embedding of K, on the vertex set {oco,a1,0a2,... 0,1} and,
without loss of generality, take the rotation scheme to have the following form.

oo Loar ao as a4 cee Qp_2 Qp—1
a1 oo az b b1,2 coo bip—a Ap—1
ag oo a3 baa ba,2 cor bop—a a1
a; : 00 @41 bia bi,2 cor bip—a ;-1
p—1 @ 00 @1 bp_11 bu—12 ... bp—ip—a Gp2
where, for each ¢ = 1,2,...,n — 1, (bi1 bi2 ... bin—4) is some permutation of
{a1,02,... ,an_1} \ {a;-1, a;, a; 11}, with subscript arithmetic modulo n — 1.

From the n lines of the rotation scheme, create n — 1 Hamiltonian cycles by
discarding the first line and, for each ¢, replacing the line corresponding to a; by the
cycle A; = (006 11bi1bi2 ... bin_aa;—1). It is easy to see that these cycles form
a Hamiltonian decomposition of 2K,,. The Hamiltonian face corresponding to A;
is formed from the triangular faces that comprise the rotation at a; in the original
triangular embedding, with the triangle (co a; a;41) removed. It remains to show
that these Hamiltonian faces may be sewn together along common edges to produce
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a Hamiltonian embedding of K,,. In order to prove this, it is only necessary to
prove that the resulting rotation about any vertex comprises a single cycle of length
n — 1, rather than a set of shorter cycles with total length n — 1. This may be done
as in the proof of Theorem 9.1, and the details are given in [48]. To consider the
question of orientability, delete the point oo and the edges incident with co from
the embedding to obtain a single face embedding of K,,_;. It is then easy to show
that an orientable triangular embedding of K, will, by this construction, produce
a nonorientable Hamiltonian embedding of K,. Although it appears conceivable
that a nonorientable triangular embedding might produce an orientable Hamiltonian
embedding of K,, for n = 3,6,7 or 10 (mod 12), we have no examples of this and
examination of the boundary of the single face suggests that such situations are
likely to be rare. 0

An advantage of Construction 9.1 is that it produces a large number of noniso-
morphic Hamiltonian embeddings. The following result is proved in [48].

Theorem 9.2 If there exist M nonisomorphic triangular embeddings of K,,, n =0
or 1 (mod 3), then there exist at least M/4n%(n — 1) nonisomorphic Hamiltonian
embeddings of K.

Some easy consequences that follow from this and the results given in Section 4 are
as follows.

Corollary 9.3 Forn =0 or 1 (mod 3) there are at least 2/5=°") nonisomorphic
Hamiltonian embeddings of K,,.

Proof For n =0 or 1 (mod 3), Korzhik and Voss [67] established that there are
at least 27/6=°(") nonisomorphic triangular embeddings of K,. The result follows
immediately from this and Theorem 9.2. O

Corollary 9.4 Forn=1,3,7 or 9 (mod 18) there are at least on?/54—o(n?) pomiso-
morphic Hamiltonian embeddings of K,,.

Corollary 9.5 The constant 1/54 that appears in the exponent in the preceding
corollary may be improved to 2/81 for n=1,3,7,9,19,21,25 or 27 (mod 54).

Finally in this section, we mention a further result of Ellingham and Stephens
[34] that gives a recursive construction for orientable Hamiltonian embeddings of
K,.

Theorem 9.6 Suppose that s > 1 and that Kys1o has an orientable Hamillonian
embedding. Then Kgsiro also has an orientable Hamiltonian embedding.

With the aid of an orientable Hamiltonian embedding of Kjg found by a com-
puter search, this facilitates the construction of an infinite family of such embed-
dings. Apart from rumours of an orientable Hamiltonian embedding of K3g, and the
resulting infinite series, we know of no other orientable cases.
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10 Latin squares

The constructions of Section 4 and their generalizations rely on face 2-colourable
triangular embeddings of complete tripartite graphs K, ,, ». It is therefore of interest
to investigate these. Note that the faces in each colour class form a decomposition
of K, nn into triples and hence a TD(3,n) transversal design or, equivalently, a
Latin square of side n. If we adopt a similar definition of biembeddability for Latin
squares to that given for Steiner triple systems in Section 2, then a face 2-colourable
triangular embedding of K, , , may be regarded as a biembedding of two Latin
squares of side n. We may reasonably enquire about existence of these for each n,
the number of biembeddings for each n, whether every Latin square is biembeddable,
and whether every pair of Latin squares of the same size is biembeddable. Much
of the material in this Section is taken from our joint papers with Knor and Sirdi
[46, 39, 40, 42].

The first result, taken from [40], is the equivalence of face 2-colourability and
orientability.

Theorem 10.1 A triangular embedding of K, nn is orientable if and only if it is
face 2-colourable.

Proof Suppose that K, ,, », has tripartition {4, B, C'}. If an orientable embedding
is given, then triangles with clockwise orientation (A, B,C) may be coloured black
and those with clockwise orientation (A, C, B) may be coloured white. Conversely,
suppose that a face 2-colourable triangular embedding is given. If a black triangle
of the embedding with vertices a € A, b € B, ¢ € C is oriented, say clockwise,
as (4, B, (), then all black triangles incident with a also have clockwise orientation
(4, B, (), while the white triangles incident with a have orientation (A4, C, B). Since
the vertices of these triangles span BUC all remaining black triangles have clockwise
orientation (A, B,C) and all remaining white triangles have clockwise orientation
(A,C, B). It follows that the rotation scheme for the embedding satisfies Ringel’s
Rule A* (see Section 2) and therefore represents an orientable embedding. O

The existence of orientable triangular embeddings of K, ,, for every n was
established by Ringel and Youngs in [79], and a proof using a voltage graph based
on a dipole with n parallel edges embedded in a sphere is indicated by Stahl and
White [80]. Generalizing this voltage graph slightly to the one shown in Figure 10.1
gives Construction 10.1.

Construction 10.1

Suppose that {ag,a1,... ,an—1} ={0,1,... ,n — 1} and that for 0 <i <n — 1, the
differences a; —a;_1 are coprime with n, where subscripts are taken modulo n. Then
the lift of the embedding M shown in Figure 10.1, with voltages as shown in the
group Z,, gives an embedding of the complete bipartite graph K, , in an orientable
surface in which every face is bounded by a Hamiltonian cycle. If, for each %, a new
vertex w; is placed into that face obtained by lifting the 2-gon with voltages a; and
—a;—1, and this new vertex is joined by non-intersecting edges to all the vertices
lying on the boundary of that cycle, then a triangular embedding of K, . in an
orientable surface is formed. O
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[¢0] Gn—1

Figure 10.1: Dipole embedded in a sphere.

A careful analysis of possible isomorphisms between embeddings obtained from
this construction yields the following growth estimate.

Theorem 10.2 Ifn is prime then there are at least ("6_”2)! nonisomorphic orientable

triangular embeddings of the complete tripartite graph Ky, p.

For a proof see [42] where results are also given for the case when n is not prime.

The particular case of Construction 10.1 when a; = i for 0 < i <n —1 results in
one colour class of triangular faces containing all triangles of the form (u;v;xws)
and the other containing all triangles of the form (ujv;_g1wg) for 0 < 5,k <n—1.
The corresponding Latin squares are both copies of the cyclic square

0 1 2 ... n—1
1 23 ... 0
c,—| 2 34 ... 1
n—10 1 ... n—2

Thus, Construction 10.1 asserts, inter alia, that for each n the cyclic Latin square C,,
is biembeddable with a copy of itself. In fact, as is shown in [42], this embedding is
the unique regular triangular embedding of K, ,, ,, in an orientable surface. By saying
that an orientable embedding M of a graph G is regular, we mean that for every two
flags, that is ordered triples (vi,e1, f1) and (v, €2, f2), where e; is an edge incident
to vertex v; and face f;, 1 <4 < 2, there exists an automorphism of M which maps
v1 to v, €1 to es, and f; to fo. Note that this definition requires automorphisms
which reverse the global orientation of the surface. A regular embedding has the
greatest possible number of automorphisms because the image of any one flag under
an automorphism is sufficient to determine the automorphism completely. Thus
the total number of automorphisms in a regular orientable triangular embedding of
Kpnn is just the number of flags, which is easily seen to be 12n?. Conversely, an
orientable triangular embedding M of K, , ,, having 12n2 automorphisms must be
regular.
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This regular embedding may be constructed directly from the Latin square C,,
and an isomorphic copy C!. Index rows and columns of these squares by the group
Zy, so that the entry in row 4, column j of C), is C,,(4,5) = i+ j, and then define C/,
by C/(i,j) =i+ j—1.

To see how these squares are combined to produce the embedding, consider the
case n = 3, so that

Cp =

N = O

12 2
2 0 Cl =10
0 1 1

N = O

1
2
0

Then take the nine points of K333 to be 0,,1,2;,0¢, 1, 2¢, Oc, 1e, 2. Black triangles
with clockwise orientation (r,¢,e), are read from the first square so that, for exam-
ple, the (0,2) entry 2 gives the triangle (0,2.2.). White triangles with clockwise
orientation (r,e,c) are read from the second. The resulting rotation scheme is

Or: 0c 0. 1o 1o 2. 2.
1,0 0. 1o 1. 2. 2. O
2,0 0 2 1. 0. 2. 1¢
Oc: 0 O 2, 2, 1. 1,
le: 0 2, 2. 1, 1. O,
2.1 0 1, 2, 0, 1o 2,
Oc: 0, O, 1, 2, 2, 1.
le: 0, 1. 1, 0. 2, 2
2 0, 2, 1, 1. 2, O

¢}
-~
[+)

Returning to the general case, this biembedding has n? automorphisms of the
form ¢apg 1 (ir,je, ke) — (0 + &)p, (J + Bes (B + @ + B)e), and these all preserve
the colour classes, the orientation, and the rows, columns and entries. In addi-
tion, the mapping x : (ir, je, ke) — (ic; —Je, —kr) gives an automorphism of order
3 which permutes rows, columns and entries, but preserves the colour classes and
the orientation. The mapping p : (iy, je, ke) — (ic, jr, ke) gives an automorphism of
order 2 which preserves the colour classes but reverses orientation, and the mapping
v (i, Jey ke) — (=i, —jr, (—k — 1)) gives an automorphism of order 2 which re-
verses the colour classes but preserves the orientation. It follows that the group of
automorphisms generated by these mappings has order at least 12n2. Since this is
the maximum possible order, we deduce that this group is the full automorphism
group of the biembedding and that the biembedding is regular.

A useful feature of the cyclic Latin square is that for odd values of n it contains
a transversal and hence any associated biembedding contains a parallel class of
triangles in the corresponding colour class. In particular, for odd n, the regular
biembedding has a parallel class of triangles in each colour. A parallel class in
one colour is required for the K333 bridges used in the recursive constructions for
biembeddings of Steiner triple systems in Section 4, and for the K, ,, ,, bridges used
in generalizations of these constructions. There is a similar recursive construction
for Latin squares first given in [46] which we now present and which enables us to
give lower bounds on the numbers of biembeddings of Latin squares in certain cases.
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Construction 10.2

Take any biembedding of two Latin squares of side n in a (necessarily orientable)
surface S. Next take m copies of the given biembedding on m disjoint surfaces
50,81, ..., 8™ 1. We use superscripts in a similar way to identify corresponding
points on these surfaces. We attempt to join these surfaces together to produce
a biembedding of Latin squares of side mn. To do this we will use as bridges
biembeddings of Latin squares of side m. So let T' denote the bridging surface
supporting such an embedding, say M, and assume that the graph K, ,, m embedded
in T has vertex parts {a’}, {b'} and {¢‘} and that the embedding has black faces
(a*c*t?) for i = 0,1,... ,m — 1. Note this requires M to have a parallel class of black
triangles.

For each white triangular face (uvw) in S we bridge S°,S1,...,5™ ! using a
copy of M, obtained by renaming a,b* and ¢t as u,v* and w* respectively. The
black face (u*wiv?) from the copy of M is glued to the white face (ufviw?) in S°.

It is now routine to check that the resulting embedding represents a biembedding
of two Latin squares of side mn, that is a triangular embedding of K,y mn,mn in an
orientable surface. O

As with the constructions of Section 4, certain generalizations are possible. We
may use alternative bridges provided they all have a common parallel class of black
triangles having the same orientation. Likewise, we may vary the embeddings in the
surfaces S* provided that they all have the same white triangles with the same ori-
entations. Reapplication of the construction may also be possible in certain circum-
stances. For reasons of space we cannot present all the ramifications here. However
the following points are worthy of remark as they produce large lower bounds for
the number of biembeddings in many cases. For further details see [46].

Remark Take Construction 10.2 with m = 3, and use as bridges the two differently
labelled K333 embeddings given in Section 4. Since a face 2-colourable triangular
embedding of K, ,, has n? white faces, varying the bridges gives on’ differently
labelled embeddings of K3y, 3,.3,. Replacing 3n by n, we may express this by saying
that there are at least 27°/ differently labelled orientable triangular embeddings of
Ky pn for n =0 (mod 3). Since the maximum possible size of an isomorphism class
is 6(n!)3, this gives a lower bound of 27°/9=°("*) for the number of nonisomorphic
biembeddings of Latin squares when n =0 (mod 3).

Remark In view of the previous remark, it is clearly useful to have a large sup-
ply of differently labelled orientable triangular embeddings of Ky, s, all having a
common oriented parallel class of triangular faces in one of the two colour classes.
So, on the assumption that one such embedding, say M, exists, apply to it all per-
mutations which fix this parallel class, including its orientation, and which preserve
the tripartition. There are 3(m!) such permutations. Suppose that 7 is one of these
permutations and that =7 is also an automorphism of M. Since 7 preserves the ori-
entation, the parallel class and the tripartition, 7 is determined by the image of any
single vertex. Consequently, there are at most 3m such permutations «. It follows
that, provided one such embedding exists, there are at least 3(m!)/3m = (m — 1)!
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differently labelled orientable triangular embeddings of K, . all having a com-
mon oriented parallel class of triangular faces in one of the two colour classes. Hence
for m odd there are at least ((m — 1)!)"2 differently labelled orientable triangular
embeddings of Ky mmn,mn-

The same bound also holds for those even values of m for which there exists a
biembedding of two Latin squares of side m, at least one of which has a transversal.
Such biembeddings do not exist for m = 2 and m = 4, but they do exist for m = 6
and m = & and, in the light of the computational results described below, it would
be surprising if they did not exist for all even m > 10.

The failure of the construction method for m = 2 and m = 4 is not quite the end
of the story. We have one more construction which is new but similar to Construction
10.2. Tt takes a biembedding of Latin squares of side n and produces a biembedding
of Latin squares of side 2n. The notation is similar to the previous case.

Construction 10.3

Take any biembedding of two Latin squares of side n in a surface S. Next take
two copies of the given biembedding on disjoint surfaces S° and S' with the colour

classes on S! reversed so that a white triangle (u®v°uw?) in S° corresponds to a black

triangle (ulv'w!) in ST, The bridges are formed from copies of a face 2-colourable
embedding M of K292 in a sphere having vertex parts {a%, al}, {6°, 61}, {®, ¢}, a
black face (a°c°t°) and a white face (a'c!b!). For each white triangular face (uvw)
in S we bridge S° and S! using a copy of M, obtained by renaming af,b* and c*
as u’,v* and w® respectively. The black (respectively white) face (u‘w'v®) from the
copy of M is glued to the white (respectively black) face (ufviw?) in S°.

Again it is now routine to check that the resulting embedding represents a biem-
bedding of two Latin squares of side 2n. O

We next turn our attention to some computational results. Again for reasons of
space, we must merely summarize these, pointing out what appear to be interesting
features. Fuller details are given in [40]. When we speak of the number of Latin
squares of side n, we refer to the number of main classes, that is the number of
nonisomorphic TD(3,n) designs. A representative of each main class for n = 4,5,6
and 7 is given in [24].

Firstly, for each of n = 1,2 and 3 there is only one Latin square of side n and
one biembedding. For n = 4 there are two Latin squares of side n, but only one
biembedding which, from above, is the regular biembedding of the cyclic square with
a copy of itself. The other Latin square of side 4 is the Cayley table of the Klein
4-group. This is not biembeddable, either with itself or the cyclic square as can be
easily shown. Let the Latin square be given by

4 5 6 7|
08 9 X Y
Li= |19 8 YV X
21X Y 8 9
3y X 9 8
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For clarity we represent the rows, columns and entries by different symbols. Without
loss of generality it can be assumed that the rotation about the point 8 is

8: 041352637

This determines the coordinates of the entry 8 in the Latin square, say Lo, with
which we are attempting to biembed L;, namely (row, column) = (0, 7), (1, 4), (2,
5) and (3, 6). Now the only way of completing row 0 and column 4 of the Latin
square Lo without the rotation about either the point 0 or the point 4 not being a
complete cycle is as follows.

4 5 6 7]

0fX Y 9 8
Lo= |1| 8

21y 8

3] 9 8

But now it is impossible to place any entry in the (3, 5) position.

There are two Latin squares of side 5 and three biembeddings, but these biem-
beddings all involve two copies of the cyclic square, and the other square is not
biembeddable. For n = 6 there are 12 Latin squares and 29 biembeddings. The
Latin squares of side 6 numbered 3, 4, 7 and 10 in the listing of [24] do not feature
in any of the 29 biembeddings, but the remaining eight squares each have a biem-
bedding with a copy of themselves. For n = 7 there are 147 Latin squares and 23,664
biembeddings of which 4,761 are biembeddings of a Latin square with itself. How-
ever, although every Latin square of side 7 features in some biembedding, several
do not biembed with themselves. But perhaps the most interesting feature of these
biembeddings is that it is possible to partition the set of 147 squares into 16 subsets,
of cardinalities 1, 1, 1, 2, 3, 3, 3, 6, 6, 8, 8, 9, 18, 19, 26 and 33 respectively, so that
within each subset most squares biembed with most squares, and no two squares
from different subsets biembed. More details of this partition appear in [40]. This
bizarre partitioning, which also occurs for the Latin squares of side 6 although in
not such a startling fashion, is wholly unexplained. It may just be a feature for
small values of n but it may be more general and have a deeper significance. It also
suggests that some form of surface trade may be involved.

From the previous paragraph it will be seen that there are six Latin squares, one
each of sides 4 and 5, and four of side 6, that do not feature in any biembeddings.
These include, as well as the Cayley table of the Klein 4-group, that of the non-
Abelian group of order 6, #7 in the listing of [24]. It is an interesting question
whether these squares are the only ones with this property. In an attempt to answer
this question, with Martin Knor we have looked at those Latin squares of side 8 that
come from the Cayley tables of the five groups of order 8. One of these groups is
Zo X Zo X Zs and another is Z4 x Zo, both of which might be considered as close
relatives of the Klein 4-group (= Zs X Zs). The two non-Abelian groups of order
8, namely the dihedral group D4 and the quaternion group @ are also of interest.
However, we have found that each of the resulting five Latin squares biembeds and
we know of no further cases of non-biembeddable Latin squares. In examining the
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biembeddings of these five squares of side 8 we find that, apart from the cyclic
square, these biembeddings never contain two copies of the same square.

11 Symmetric configurations

The term “configuration” is nowadays used rather loosely; it has come to refer
to any fixed small number of blocks which form part of a design. In this section we
revert to the original meaning and define an (n,., b,) configuration to be an incidence
structure of n points and b lines such that

1. each line contains k£ points,
2. each point lies on 7 lines,
3. two different points are connected by at most one line.

If b = n, and therefore r = k, the configuration is said to be symmetric and
denoted by ng. Our interest, in the case where k = 3, is in the problem of biembed-
ding a pair of symmetric configurations of triples in a closed surface. The embedded
graph is the incidence graph of each of the two configurations, where two vertices
are joined by an edge if they occur together in some triple. This graph is 6-regular
and, by Euler’s formula, the supporting surface must be either the torus or the Klein
bottle. Examples of symmetric configurations are the Fano plane or STS(7), which
is the unique 73 configuration, and the Pappus and Desargues configurations which
are 93 and 103 configurations respectively. Already in the nineteenth century enu-
meration results of ns configurations were available for small values of n. Kantor
[59] showed that there is one 83, three 93 and ten 103 configurations and Martinetti
[71] extended this catalogue by enumerating all 31 113 configurations.

We now have a sequence of questions concerning biembeddings of nz configu-
rations which are analogous to those asked at the end of Section 2 in relation to
Steiner triple systems.

1. Given an ng configuration, does it have a biembedding with some other ns
configuration in the torus, the Klein bottle or both? In particular for each
n > 7, is there an n3 configuration which has such a biembedding in one or
the other or both of the surfaces?

2. Given a pair of n3 configurations do they have a biembedding in the torus, the
Klein bottle or both?

3. If such biembeddings exist, how many are there?

An answer to these questions in the case of the torus was provided by Altshuler
[4] and then for both the torus and the Klein bottle by Negami [74, 75]. But all
three papers are written from a different viewpoint; the term “configuration” is not
mentioned at all. In each case, the problem of biembedding symmetric configurations
is related to the classification of which 6-regular graphs have a triangulation in the
torus or the Klein bottle (or both). Negami refers to these as 6-regular toroidal
graphs and 6-regular Klein bottlal graphs respectively, but for the latter we use the
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term Klein bottleable graphs. The simpler terms “torus graph” and “Klein bottle
graph” might be thought preferable, but these are used by Negami to describe
embeddings rather than graphs and it would be confusing for us to use them for a
different purpose. In the main, our account and notation follows that given in [74].

Considering first triangulations of the torus, we define the standard 6-reqular
triangulation T'(p, q,r) of the torus. To do this consider the triangulation, shown in
Figure 11.1, of the domain

{(z,y) eR?: 0<z<r, 0<y<p},

where p and r are positive integers.

0 1 2 . . . r
Figure 11.1: Triangulation of {(z,y) € R?: 0 <z <r, 0<y<p}.

In order to convert this into a triangulation of the torus, first identify the upper
and lower sides of the rectangle in the usual way to form an open-ended cylinder.
The embedded graph of this triangulation we denote by HY and we make use of
this again when considering embeddability in the Klein bottle. Now glue one of the
boundaries of the cylinder to the other so that the point (0,y), 0 <y < p coincides
with the point (r,9/), 0 < ¢ < pif y — 4y = ¢ (mod p), where ¢ is an integer
satisfying 0 < g < p. Informally we make a “twist” in the cylinder before gluing the
two boundaries. This procedure defines the standard triangulation T'(p, ¢, 7). Note
that T'(p, q,r) is face 2-colourable and that a rotation of the diagram by 7 gives an
isomorphism between the face sets of the two colour classes. For our purposes, the
main result in both [4] and [74] is the following theorem.

Theorem 11.1 If G is a 6-regular Loroidal graph and M is an embedding of G in
the torus, then M is isomorphic to some standard triangulation T(p,q,r).

We remark that different ordered triples (p,q,7) and (p’,¢’,r") can lead to iso-
morphic triangulations. For example, as shown in [74], T'(p,q,r) is isomorphic to
T(p,q,r)if ¢ = —(¢+r) (mod p). Also, the embedded graph of T'(p, ¢, r) need not
be simple, although Negami identifies those which are not. He also goes on to prove
that if G is a simple 6-regular toroidal graph, then the embedding is unique up to
isomorphism.

To determine if an ng configuration has a biembedding in the torus, it therefore
suffices to decide if its incidence graph is isomorphic to the embedded graph of some
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T(p,q,r). If this is the case, then the biembedding exists. If it is not the case, then
the configuration has no biembedding in the torus. When the biembedding exists,
it is unique and the two biembedded configurations are isomorphic.

Also in [74], Negami lists the isomorphism classes for standard triangulations
T(p,q,r) on fewer than 15 vertices. For 11 vertices or less, those with simple em-
bedded graphs comprise T'(n,2,1), 7 < n < 11 together with 7'(3,0,3). In general,
T(n,2,1) is the biembedding of the cyclic symmetric configuration on the base set
{0,1,2,... ,n — 1} generated from the triple {0,2,3} under the action of the map-
ping z — z-+1 (mod n), and the two colour classes that result are isomorphic under
z +— —z (mod n). The particular case T'(3,0,3) is the biembedding of the Pappus
configuration with a copy of itself. It follows that the unique 73 and 83 configura-
tions, two of the three 95 configurations and one of each of the ten 103 and 31 113
configurations are biembeddable in the torus, and that the remaining configurations
on 11 vertices or less are not. Further analysis shows that for the 123, 133 and 143
configurations respectively, four of 229, two of 2,036 and two of 21,399 are biembed-
dable in the torus, and the remainder are not. The classification also implies that
any connected cyclic symmetric configuration nz has a unique biembedding with an
isomorphic copy of itself in the torus. (Here “connected” means that the incidence
graph is connected.) This is because the incidence graph of such a configuration
is isomorphic to the embedded graph of T'(p,q,r) for some values of p,q,r. An
alternative and purely combinatorial proof of this result appears in [41].

Turning now to biembeddings of symmetric configurations ns in the Klein bottle,
the classification of which 6-regular graphs have triangulations in this surface is given
in [75]. This paper is a preprint and seems not to have been published in a journal.
But the results are both important and interesting and deserve to be better known.
We describe the relevant graphs beginning with HE defined above. This has p(r+1)
vertices, those vertices with coordinates (0, 5) or (r,j) for 0 < j < p—1 have degree
4, but all other vertices have degree 6. From the graph HF and its cylindrical
embedding, two families of triangulations of the Klein bottle may be constructed.

The first of these is achieved by identifying, for each y, 0 < y < p, the points
with coordinates (0,y) and (r,p —y). These embeddings are called Klein bottle
triangulations of handle type and denoted by Kh(p,r).

The construction of the second family of triangulations depends on the parity of
p. Again referring to HY, if p = 2m is even, identify the point (0,y) with (0,y +m)
and the point (r,y) with (r,y +m), 0 <y <m. If p=2m + 1 is odd, use the graph
H? | and join the point (0,y) to (0,y+m) and the point (r —1,y) to (r — 1,y +m),
0<y< p, with arithmetic on the second coordinate modulo p. In this second case,
when p is odd, the Klein bottle is formed by placing the additional joins across two
crosscaps. The resulting triangulations, for p even or odd, are called Klein bottle
triangulations of crosscap type and denoted by Kc(p,r).

In both Kh(p,r) and Kc(p,r) the number of vertices is pr and the two families of
triangulations are distinct. The classification theorem given in [75] is now as follows.

Theorem 11.2 If G is a 6-reqular Klein boltleable graph and M is an embedding of
G in the Klein bottle, then M is isomorphic to precisely one of Kh(p,r), p > 3,7 >3
or Ke(p,r), p>5,r > 2.
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As with the toroidal graphs, Negami proves that the triangular embedding of any
6-regular Klein bottleable graph is unique. In fact, the triangulations Kh(p,r) are
face 2-colourable while the triangulations Kc¢(p, r) are not. So, in seeking the answer
to the question of biembeddability of an ns configuration in the Klein bottle, it is
only necessary to determine whether or not its incidence graph is isomorphic to the
embedded graph of some Kh(p,r). As in the toroidal case, there is an isomorphism
between the face sets of the two colour classes of Kh(p,r). It remains to consider
the question of whether any symmetric configuration can be biembedded in both
the torus and the Klein bottle. This is not so and follows from the fact that none of
the embedded graphs of T'(p, ¢,r) triangulations are isomorphic to any of those of
Kh(p,r) triangulations. An alternative and perhaps simpler proof, which does not
rely on the above classification, is given in [69].

Combining the results for the torus and the Klein bottle, we have the following
theorem.

Theorem 11.3 A symmetric configuration ng is biembeddable in the torus if and
only if its incidence graph is isomorphic to the embedded graph of some T'(p,q,r). It
s biembeddable in the Klein bottle if and only if its incidence graph is isomorphic to
the embedded graph of some Kh(p,r), p > 3,7 > 3. Any such biembedding is unique
and the two ns configurations that appear in the biembedding are isomorphic. No ns
configuration has a biembedding in both the torus and the Klein botlle.

The third 93 configuration which is not biembeddable in the torus corresponds to
Kh(3,3) and is therefore biembeddable in the Klein bottle.

Perhaps some readers may feel it is somewhat unsatisfactory that the answer to
the question of the biembeddability of symmetric configurations is given in terms of
whether their incidence graphs are isomorphic to any of the embedded graphs from
T(p,q,r) or Kh(p,r). But this is a situation in which a design-theoretic problem can
be successfully attacked by methods of topological graph theory. This is in contrast
to Section 3, where the existence of an orientable triangulation of the complete graph
Ky, n =3 (mod 12), was determined by exclusively design-theoretic methods and
shows the interplay between the two areas.

Finally in this section we mention the work of White and in particular the papers
[37, 82]. As the titles imply the emphasis here is on finding topological models of
configurations on appropriate surfaces. The biembedding of the Pappus configura-
tion with itself in the torus appears explicitly in these papers as well as an embedding
of the Desargues configuration in the double torus.

12 Concluding remarks

In this final section, we review some open problems and briefly discuss other
work in this area. We begin with the questions 2 to 4 posed at the end of Section
2, which we consider in reverse order.

The results given in Section 6 show that not every pair of Steiner triple systems
of order n = 15 has an orientable biembedding, and it seems possible that similar
nonexistence results may apply to all n = 3 or 7 (mod 12) with » > 15. However,
for n = 15, the situation regarding nonorientable biembeddings is, as we described,
quite different, with every pair of STS(15)s having at least one biembedding. This
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led us to make Conjecture 6.1 that every pair of STS(n)s, n =1 or 3 (mod 6) and
n > 9, has at least one nonorientable biembedding. A proof of this conjecture would
represent a major step forward.

Confining our attention to the orientable case, we know that the STS(7) and all
80 STS(15)s have minimum genus embeddings. Does every ST'S(n), n =3 or 7 (mod
12) have such an embedding, necessarily a biembedding? We think that the answer
is likely to be in the affirmative though it may be a very difficult result to prove.
But we did show in Section 8 that every STS(n) has a maximum genus embedding
in which the black faces are triangles corresponding to the triples of the STS(n)
and there is just one white face. An intermediate result where the black faces are
triangles and there are (n — 1)/2 white faces, all of which are Hamiltonian cycles,
might be of interest.

The theorems of Section 4 give, for n lying in certain residue classes, a lower
bound of the form 29" for the number of biembeddings of STS(n)s in both orientable
and nonorientable surfaces. What is the true order of magnitude of this number?
We can obtain a crude upper estimate by using the known upper bound for the
number of labelled Steiner triple systems of order n, namely (e=2/2n)7*/6 [83]. Tt
follows easily from this fact that, in both the orientable and nonorientable cases, the
number of nonisomorphic biembeddings is less than n’/3,

If it were the case that each pair of STS(n)s has a biembedding, then we could
obtain a lower bound for the number of nonisomorphic biembeddings in a similar
fashion, since the number of such pairs is at least pn’/3=on?), So, if the rate of
growth of the number of nonisomorphic biembeddings were really of the order gan’
then this would imply that almost all STS(n)s are not biembeddable either orientably
or nonorientably. Conjecture 6.1, based on the STS(15) data, therefore constrains
us to the view that the correct rate of growth in the number of biembeddings is
n™/ 3_0("2), at least in the nonorientable case.

Whatever the true rate of growth for biembeddings (that is, face 2-colourable
triangulations of K,), one would expect to see similar and related growth estimates
for the number of minimum genus embeddings of K,, for all residue classes.

Turning now to other problems associated with biembeddings of pairs of STS(n)s,
we showed in Section 3 how certain Steiner triple systems obtained from the Bose
construction can be biembedded. Specifically, the groups used are cyclic. In the
orientable (respectively nonorientable) cases can the result be generalized to any
Abelian group of order 4s + 1 (respectively 2s + 1)7 The Bose construction itself
has a number of generalizations. In the version given in Section 3, the group G is
used to construct a commutative idempotent quasigroup with operation * defined
by i % j = (i + j)/2. But there are many other such quasigroups. Some of these
generalizations may have topological implications.

With regard to the cyclic biembeddings described in Section 5, it seems likely
that infinitely many pairs of cyclic STS(12s -+ 7)s do not biembed cyclically in an
orientable surface. Indeed, there may be infinitely many cyclic STS(12s + 7)s that
do not appear in any orientable cyclic biembedding. It seems somewhat more likely
that, possibly with finitely many exceptions, each such pair biembeds cyclically in
a nonorientable surface.

Most of the work surveyed in this paper has been concerned with embeddings
of various kinds of triple system. An exception is Section 9 where embeddings of
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the complete graph K, in which each face is a Hamiltonian cycle are considered.
Theorem 9.1 gives a complete solution to the existence of such embeddings in the case
of a nonorientable surface. However, the existence question for orientable surfaces
is far from settled. But more generally, one could consider embeddings of K, in
which all the faces are cycles of any constant length. The logical place to begin
would be with quadrangulations. The necessary condition for a quadrangulation of
the complete graph K, in a nonorientable surface is n = 0 or 1 (mod 4) and in an
orientable surface is n = 0 or 5 (mod 8). In two papers [55, 56|, Hartsfield and Ringel
construct such embeddings for n = 1 (mod 4) in the former case and n = 5 (mod
8) in the latter. The necessary and sufficient condition for a 4-cycle system, that is
a decomposition of K, into 4-cycles, is n = 1 (mod 8). Thus any biembedding of a
pair of 4-cycle systems would necessarily be in a nonorientable surface.

In the case of Latin square biembeddings, face 2-colourability is equivalent to
orientability. The results given in Section 10 show that not every pair has a biembed-
ding, and it seems likely that there are infinitely many such pairs. However, it may
be the case that all but a finite number of Latin squares appear in some biembed-
ding. In fact, we may already have identified all the exceptional non-biembeddable
Latin squares; one each of side 4 and side 5 and four of side 6. But again it may
be difficult to prove that every Latin square, apart from these six exceptions, has a
biembedding. However we do know that every Latin square which is the Cayley ta-
ble of a cyclic group is biembeddable. Does this result extend to the Cayley table of
any group, apart from K4 and D3? Our computational results concerning groups of
order 8 suggest that it might, though these Latin squares do not have biembeddings
with isomorphic copies of themselves, unlike the situation with the cyclic groups.
Other classes of Latin square which would be of particular interest are the composi-
tion tables of Steiner quasigroups and Steiner loops, defined respectively as follows.
Let (V,B) be an STS(n). Define on V' an operation * by x x2 = x, 2 € V and
xxy =z if {z,y,2} € B. Then (V, x) is a Steiner quasigroup or squag. Alternatively
define on V U {e} an operation o by xox =¢, eox =xo0e =2, 2 € VU{e} and
xoy =z if {z,y,2} € B. Then (V,0) is a Steiner loop or sloop. Does the Latin
square composition table of every squag or sloop have a biembedding? Finally one
can make estimates and conjectures concerning the growth rate for the number of
biembeddings of Latin squares and these have similar forms to those described above
for Steiner triple systems.

Concerning symmetric configurations, we know that an nz configuration can only
biembed with itself and that if it does then the biembedding is unique. But relatively
few symmetric configurations seem to have such minimum genus embeddings in the
torus or the Klein bottle. Possibly other higher genus embeddings such as the one
mentioned of the Desargues configuration in the double torus would be interesting.

Our survey has been concerned with embeddings, usually triangulations, of
graphs in surfaces. But some of the ideas can be extended to pseudosurfaces. We
follow [81] in making the definitions. A pseudosurface is the topological space which
results when finitely many identifications of finitely many points each, are made on a
given surface. More precisely, distinct points {p; ; : ¢ =1,2,... ,k, j =0,1,... ,m;}
on a given surface are identified to form points p; = {p;; : j = 0,1,... ,m;}, © =
1,2,... ,k called singular points or pinch points. The number m; is the mulliplicity
of the pinch point p;. It is at these pinch points that a pseudosurface fails to be a
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2-manifold. A generalized pseudosurface is the connected topological space which
results when finitely many identifications of finitely many points each, are made
on a topological space of finitely many components each of which is a pseudosur-
face. The points subject to such identifications are also called pinch points and their
multiplicities are defined in the obvious way.

The relationship between twofold triple systems and generalized pseudosurfaces
is given in [3]; there is a one-to-one correspondence between TTS(n)s and trian-
gular embeddings of the complete graph K, in generalized pseudosurfaces. The
correspondence is explored in greater depth in [68], where details of the generalized
pseudosurfaces associated with twofold triple systems on 10 or less points can be
found. Many of the generalized pseudosurfaces have an irregular structure but cer-
tain twofold triple systems correspond to more regular generalized pseudosurfaces.
The simplest of these, for n = 1 or 3 (mod 6), is a TTS(n) obtained by combin-
ing the block sets of two identical STS(n)s. FEach pair of repeated blocks gives a
triangle embedded in a sphere. By identifying points which have the same label, a
generalized pseudosurface is obtained which is the union of s = n(n — 1)/6 spheres
and has n pinch points all of the same multiplicity m = (n — 1)/2. Other gener-
alized pseudosurfaces having a similar structure are obtained as follows. A Steiner
system S(2, 4, n) is a pair (V,B) where V is an n-element and B is a collection of
4-element subsets (the blocks) of V' such that each 2-element subset of V is con-
tained in exactly one block of B. Such systems exist if and only if n = 1 or 4 (mod
12) [54]. Each block corresponds to an embedding of a tetrahedron in the sphere.
Again by identifying points which have the same label, a generalized pseudosurface
is obtained which is the union of $ = n(n — 1)/12 spheres and has n pinch points
all of multiplicity m = (n—1)/3. A generalized pseudosurface which is the union of
s =n(n—1)/24 (respectively n(n—1)/60) spheres and has n pinch points all of mul-
tiplicity m = (n—1)/4 (respectively (n—1)/5) arises from the decomposition of the
complete graph K,, into octahedra (respectively icosahedra). The former problem
is solved, the spectrum is n = 1 or 9 (mod 24) [50, 1] and is equivalent to the exact
decomposition of the blocks of an STS(n) into Pasch configurations, see Section 7.
The necessary condition for the latter problem is n = 1, 16, 21 or 36 (mod 60) but
only the case n = 1 (mod 60) is resolved [2].

But probably a more interesting problem concerning pseudosurfaces is the fol-
lowing. The necessary and sufficient condition for the biembedding of two STS(n)s
in an orientable surface is n = 3 or 7 (mod 12). But as Emch’s example given below
shows, there does exist a face 2-colourable triangular embedding of the complete
graph Ky in a pseudosurface formed from an orientable surface, in fact the torus,
with three pinch points of multiplicity 1.
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Figure 12.1 Pseudosurface biembedding of STS(9)s

In [78], a rotation scheme is given for an embedding of the complete graph Ky in the
double torus having 16 triangular faces and 2 quadrangular faces, the vertices of the
quadrangular faces comprising all 8 points of the embedding. By placing two new
points, say x and y, one in each quadrangle, inserting edges joining each point to the
vertices of the corresponding quadrangle, and then identifying the two points z and
1, we obtain a triangular embedding of the complete graph Ky in a pseudosurface
having just one pinch point of multiplicity 1. But this embedding is not face 2-
colourable. These two examples naturally lead to the question of determining the
pseudosurface having the least number of pinch points and/or pinch points having
the least multiplicities obtained from an orientable surface for a biembedding of two
STS(n)s when n =1 or 9 (mod 12).
More research work is needed!
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