
MULTIPLE INTEGRALS

M. J. Grannell. E. J. Halton.
D. A. Parker. 1

Department of Mathematics and Statistics,
The University of Central Lancashire.

Second Edition, March 1994.
(Reprinted 2022)

1The authors were supported by Enterprise funding.



Contents

1 Preamble 2
1.1 About this package . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 How to use this package . . . . . . . . . . . . . . . . . . . . . 3
1.3 Videos, tutorials and self-help . . . . . . . . . . . . . . . . . . 4

2 Double integrals 5

3 Evaluation of double integrals 10
3.1 Cartesian coordinates . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Change of order of integration . . . . . . . . . . . . . . . . . . 20
3.3 Polar coordinates . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Applications of double integrals 36

5 Triple integrals 41

6 Evaluation of triple integrals 43
6.1 Cartesian coordinates . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Cylindrical polar coordinates (w, ϕ, z) . . . . . . . . . . . . . . 47
6.3 Spherical polar coordinates (r, θ, ϕ) . . . . . . . . . . . . . . . 51

7 Applications of triple integrals 56

8 Jacobians 61

9 Summary 67

10 Bibliography 68

11 Appendix - Video Summaries 69

1



1 Preamble

1.1 About this package

This package is for people who need to be able to integrate functions of two
or three variables in various coordinate systems. It doesn’t contain a lot of
theory. It isn’t really designed for pure mathematicians who require a course
discussing conditions for the existence of double and triple integrals. You
will find that you need some knowledge of integration of a function of one
variable in order to get the most out of this package. In particular, you need
to be able to integrate using the methods of substitution and parts. You
will also find it helpful to have some familiarity with partial differentiation
for functions of several variables. If you are a bit rusty, don’t worry - but
it would be sensible to do some revision either at the start or as the need
arises. Reasonable revision texts are given in the bibliography (Section 10).

If you complete the whole package you should be able to

� understand what is meant by the double integral of a function of two
variables,

� interpret the double integral geometrically,

� evaluate double integrals in cartesian coordinates,

� interchange the order of integration in a double integral,

� evaluate double integrals in polar coordinates,

� apply double integrals to finding the mass, centre of mass and mo-
ments of inertia of a lamina,

� understand what is meant by the triple integral of a function of three
variables,

� evaluate triple integrals in cartesian coordinates,

� evaluate triple integrals in cylindrical polar coordinates,

� evaluate triple integrals in spherical polar coordinates,

� apply triple integrals to finding the mass, centre of mass and mo-
ments of inertia of a body,

� understand what is meant by the Jacobian of a transformation,

� use Jacobians to transform the variables in a double integral,
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Depending on your own programme of study you may not need to cover
everything in this package. Your tutor will advise you what, if anything, can
be omitted.

1.2 How to use this package

YouMUST do examples! Doing lots of examples for yourself is gen-
erally the most effective way of learning the contents of this package and
covering the objectives listed above. We recommend that you

� first read the theory - make your own notes where appropriate,

� then work through the worked examples - compare your solutions with
the ones in the notes,

� finally do similar examples yourself in a workbook.

The original printing of these notes leaves every other page blank. Use the
spare space for your own comments, notes and solutions. You will see certain
symbols appearing in the right hand margin from time to time:

⃝ denotes the end of a worked example,

V denotes a reference to videos (see below for details),

EX highlights a point in the notes where you should try examples.

By the time you have reached a package like this one you will probably
have realised that learning mathematics rarely goes smoothly! When you get
stuck, use your accumulated wisdom and cunning to get around the problem.
You might try:

� re-reading the theory/worked examples,

� putting it down and coming back to it later,

� reading ahead to see if subsequent material sheds any light,

� talking to a fellow student,

� looking in a textbook (see the bibliography),

� watching the appropriate video (see the video summaries),

� raising the problem at a tutorial.
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1.3 Videos, tutorials and self-help

The videos cover the main points in the notes. The areas covered are indi-
cated in the notes, usually at the ends of sections and subsections. To resolve
a particular difficulty you may not need to watch a whole video (they are
each about 30 minutes long). They are broken up into sections prefaced with
titles which can be read on fast scan. In addition, a summary of the videos
associated with this package appears as an appendix to these notes.

Your tutor will tell you about the arrangements for viewing the videos.
Try the worked examples before watching the solution unfold on the screen.
Make notes of any points you cannot follow so that you can explain the diffi-
culty in a subsequent tutorial session. If you are viewing a video individually,
remember the rewind button! Unlike a lecture you can get instant and 100
percent accurate replay of what was said.

Your tutor will tell you about tutorial arrangements. These may be re-
lated to assessment arrangements. If attendance at tutorials is compulsory
then make sure you know the details! The tutorials provide you with indi-
vidual contact with a tutor. Use this time wisely - staff time is the most
expensive of all our resources.

You should come to tutorials in a prepared state. This means
that you should have read the notes and the worked examples. You should
have tried appropriate examples for yourself. If you have had difficulty with
a particular section then you should watch the corresponding video. If your
tutor finds that you haven’t done these things then s/he may refuse to help
you. Your tutor will find it easier to assist you if you can make any queries
as specific as possible.

Your fellow students are an excellent form of self-help. Discuss problems
with one another and compare solutions. Just be careful that

1. any assessed coursework submitted by you is yours alone,

2. you yourself do really understand solutions worked out jointly with
colleagues.

Familiarize yourself with the layout and contents of these notes; scan
them before reading them more carefully. The contents page will help you
find your way about - use it. The bibliography will point you to textbooks
covering the same material as these notes.

When you graduate, your future employer will be just as interested in
your capacity for learning as in what you already know. If you can learn
mathematics from this package and from textbooks then you will not only
have learnt a particular mathematical topic. You will also (and more impor-
tantly) have learnt how to learn mathematics.
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2 Double integrals

Previously we have extended the idea of differentiation to functions of more
than one variable by introducing partial derivatives. Here we examine the
possibility of extending the concept of the definite integral to functions of
several variables.

Suppose we have a function of one variable, f(x), which is positive for

a ≤ x ≤ b. Then, geometrically,

∫ b

a

f(x)dx represents the area between the

curve y = f(x), the x-axis and the ordinates at x = a and x = b.

Figure 1: Area under y = f(x) between x = a and x = b.

To illustrate this we subdivide the interval [a, b] by choosing x0, x1, . . . , xn

such that (see Figure 1)

a = x0 < x1 < x2 < . . . < xn = b.

Now we choose

c1 ∈ [x0, x1], c2 ∈ [x1, x2], . . . , cn ∈ [xn−1, xn].
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Then f(ck)(xk − xk−1) is the area of a rectangle with base (xk − xk−1) and
height f(ck). This is an approximation to the area under the curve between
x = xk−1 and x = xk. An approximation for the total area under the curve
is

n∑
k=1

f(ck)(xk − xk−1).

Suppose that
△ = max

k=1,...,n
(xk − xk−1).

Then the definite integral of f(x) between x = a and x = b is defined
as ∫ b

a

f(x)dx = lim
△→0

n∑
k=1

f(ck)(xk − xk−1)

provided that the limit exists. This limit is exactly what we mean by the
area under the curve.

We now try to extend this idea to a function of two variables, u = f(x, y).
As we have already seen this equation defines a surface in a three-dimensional
space. We assume that f(x, y) is defined for all x and y in a certain region
of the xy- plane, denoted by R. The situation is illustrated in Figure 2.

Figure 2: The surface u = f(x, y).
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We assume for the time being that u > 0 for all (x, y) ∈ R. The region
R corresponds to the interval [a, b] in the one variable case. We now divide
R into n subregions in any manner and we let the areas of the subregions be
δAk, k = 1, . . . , n (see Figure 3).

Figure 3: Subdivisions of R.

Now choose a point (x′
k, y

′
k) in each subregion; i.e. we choose

(x′
1, y

′
1) ∈ δA1, (x′

2, y
′
2) ∈ δA2, . . . , (x′

n, y
′
n) ∈ δAn.

We form the product f(x′
k, y

′
k)δAk and this represents the volume of a column

of base area δAk and height f(x′
k, y

′
k). This is an approximation to the

volume under the surface u = f(x, y) over the subregion δAk. The sum
of all such products

n∑
k=1

f(x′
k, y

′
k)δAk (1)

is an approximation to the volume under the surface u = f(x, y) over R.
The equivalent geometrical problem for a function of two variables is that
of finding a volume under a surface rather than an area under a curve. We
now proceed to the limit in equation (1) as the size of the subregions tends
to zero. Let △ = max

k=1,...,n
δAk and define the double integral of f(x, y) over

R as

lim
△→0

n∑
k=1

f(x′
k, y

′
k)δAk

provided this limit exists. The double integral is denoted by

∫∫
R

f(x, y)dA
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and so, ∫∫
R

f(x, y)dA = lim
△→0

n∑
k=1

f(x′
k, y

′
k)δAk. (2)

The limit must be independent of the way in which R is subdivided and of
the particular choice of (x′

k, y
′
k) within each subregion. We shall assume that

these conditions hold for all the integrals with which we are dealing.
The double integral has some properties which are similar to those of

the ordinary (single) definite integral. The most important of these is the
linearity property. This states that given two functions of two variables,
f(x, y) and g(x, y), and two constants, a and b,

∫∫
R

{af(x, y) + bg(x, y)}dA = a

∫∫
R

f(x, y)dA+ b

∫∫
R

g(x, y)dA.

The double integral is linear because the summation in equation (2) has the
linearity property.

The second property states that if R can be divided into two mutually
disjoint subregions, R1 and R2; i.e. such that R1 ∪ R2 = R and R1 and R2

do not overlap, then

∫∫
R

f(x, y)dA =

∫∫
R1

f(x, y)dA+

∫∫
R2

f(x, y)dA.

All that this really says is that the volume above the region R is the sum of
the volumes above R1 and R2.

Note that if f(x, y) = 1 for all (x, y) ∈ R, then

∫∫
R

f(x, y)dA =

∫∫
R

dA = area of R.

Geometrically, we are finding the volume of a cylinder whose cross-section is
R and whose height is unity. Numerically this is the same as the area of the
cross- section.

Finally also note that although we assumed that u > 0 for all (x, y) ∈ R,
the definition of the double integral is equally valid if this assumption is
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relaxed. Parts of the surface for which u < 0 will give a negative contribution
to the double integral and also to the volume under the surface.

(The video revises the definite integral, defines the double integral of a
function of two variables and discusses its properties) V
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3 Evaluation of double integrals

3.1 Cartesian coordinates

In section 2 we have introduced the definition and geometrical interpretation
of double integrals. In this section we examine some techniques of evaluating
them.

Since the subdivision of the region of integration, R, may be carried
out in any manner, we choose ways of subdividing it that are the most
convenient. The most important way is to employ a set of cartesian axes and
use rectangles bounded by straight lines parallel to the x- and y-axes. The
region R is then covered by a rectangular grid as shown in Figure 4

Figure 4: Subdivisions of R in cartesian coordinates.

The lines parallel to the x-axis have equation y = constant for different
values of the constant, whereas the lines parallel to the y-axis have equation
x = constant. Let a particular rectangle in R have sides δx and δy so that
δA = δxδy. Now the boundary of R is a curve in the xy-plane. We let the
lower boundary of R be given by y = y1(x) and the upper boundary of R
by y = y2(x). Then these two boundaries will intersect at x = a and x = b,
where a < b. Thus a and b are the minimum and maximum values of x
within R. The situation is shown in Figure 5.

We are thus making some simplifying assumptions about the nature of
the region, R, and its bounding curve. Regions which look like those in
Figure 6 are excluded.
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Figure 5: Boundaries of R.

Figure 6: Examples of regions excluded from definition.

Suppose we now have a function, u = f(x, y), defined for all (x, y) ∈ R
and we wish to evaluate ∫∫

R

f(x, y)dA.

We do this in two stages. Firstly, we hold x constant and integrate with
respect to y between y = y1(x) and y = y2(x). This results in a function of x
alone. This function of x is then integrated with respect to x between x = a
and x = b. We can express this process mathematically as

∫∫
R

f(x, y)dA =

∫ b

a

{∫ y2(x)

y1(x)

f(x, y)dy

}
dx. (3)

The integral on the right hand side is called a repeated integral or iterated
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integral, and is usually written without the brackets:∫ b

a

∫ y2(x)

y1(x)

f(x, y)dydx.

The order in which the differentials (dy and dx) is written is very important
because it shows the order in which the integration must be carried out. The
inner integral sign is associated with the first differential, dy and the outer
integral sign is associated with the second differential, dx.

Geometrically, equation (3) can be interpreted as follows. For convenience
we imagine f(x, y) is positive throughout R so that the surface u = f(x, y)
lies above the region R. The left-hand side of (3) represents the total volume
under the surface. It is the sum of the volumes of lots of small “matchsticks”.
(see Figure 7.)

Figure 7: A typical “matchstick”.

The volume of the “matchstick” is δV = f(x, y)δA. Working in Cartesian
coordinates we interpret δA as δyδx (see Figure 8).
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Figure 8: δA = δyδx.

Our “matchsticks” therefore have a rectangular cross-section δy by δx.
This ensure that they will fit together nicely. The inner integral in equation
(3) multiplied by δx, namely(∫ y2(x)

y1(x)

f(x, y)dy

)
δx

adds up these “matchsticks” in the y-direction to form a “slab” (see Figure 9).

Figure 9: “Matchsticks” assembled to form a “slab”.

In this inner integral the value of x is held fixed (see the view of the “slab”
from above). Also the value of y varies from the bottom curve y = y1(x) (of
course this value depends on x) to the upper curve y = y2(x) (again the value
will depend on x).

Having assembled the “matchsticks” into “slabs” we glue the slabs to-
gether (in the x-direction) to obtain the total volume. Here x varies from
the lowest value a to the greatest value b (see Figure 9 again). This finally
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produces ∫ b

a

(∫ y2(x)

y1(x)

f(x, y)dy

)
dx.

Example 3.1 Evaluate ∫ 3

1

∫ 3

2

(x2 − 2xy)dydx

and sketch the region over which the integral is taken.

Solution The order of the differentials in this repeated integral indicates
that we must integrate first with respect to y between y = 2 and y = 3 and
then with respect to x between x = 1 and x = 3. So∫ 3

1

∫ 3

2

(x2 − 2xy)dydx =

∫ 3

1

[
x2y − xy2

]3
2
dx

=

∫ 3

1

({3x2 − 9x} − {2x2 − 4x})dx

=

∫ 3

1

(x2 − 5x)dx

=

[
x3

3
− 5x2

2

]3
1

=

(
9− 45

2

)
−
(
1

3
− 5

2

)
= −11

1

3

Note that once the y integration has been performed and the limits put
in, the resulting integral is a definite integral of one variable, x.

The region of integration is defined by y = 2 and y = 3 and x = 1 and
x = 3. This region is the rectangle illustrated in Figure 10. ⃝

Since the answer is negative we can deduce that for the region R the
major part of the surface u = x2 − 2xy lies below the plane u = 0. In fact
since u = x(x − 2y) and x − 2y < 0 at all points of R, the whole surface
u = x2 − 2xy lies below the plane u = 0.

In this example, because the limits of integration are all constant the
region of integration is necessarily a rectangle. If the integrand can be written
as a product of a function of x alone and a function of y alone, the double
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Figure 10: Region of integration for

∫ 3

1

∫ 3

2

(x2 − 2xy)dydx.

integral over a rectangle can be expressed as a product of single integrals.
For ∫ b

a

∫ d

c

f(x)g(y)dydx =

∫ b

a

f(x)

∫ d

c

g(y)dydx

since f(x) is held constant for the y-integration. Now

∫ d

c

g(y)dy is a constant

and so ∫ b

a

∫ d

c

f(x)g(y)dydx =

(∫ b

a

f(x)dx

)(∫ d

c

g(y)dy

)
.

Example 3.2 Evaluate ∫ 1

0

∫ 2x

x

xeydydx

and sketch the region over which the integral is taken.

Solution We have∫ 1

0

∫ 2x

x

xeydydx =

∫ 1

0

[xey]2xx dx

=

∫ 1

0

(xe2x − xex)dx

=

∫ 1

0

x(e2x − ex)dx.

This is now a definite integral of one variable and may be integrated by
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parts. ∫ 1

0

∫ 2x

x

xeydydx =

[
x

(
e2x

2
− ex

)]1
0

−
∫ 1

0

(
e2x

2
− ex

)
dx

=
e2

2
− e−

[
e2x

4
− ex

]1
0

=
e2

2
− e−

{
e2

4
− e−

(
1

4
− 1

)}
=

e2

4
− 3

4
=

1

4
(e2 − 3)

The region of integration is the area between the lines y = x and y = 2x,
for which 0 ≤ x ≤ 1. The region is the triangle illustrated in Figure 11. ⃝

Figure 11: Region of integration for

∫ 1

0

∫ 2x

x

xeydydx.

In some problems the region over which the double integral is taken is
described by the equations of its boundaries. From these equations appro-
priate limits for the repeated integral must be chosen. To do this a sketch of
the region of integration should be drawn.

Example 3.3 Evaluate ∫∫
R

xydA

where R is the region bounded by y = 0, x = 2 and x2 = 4y.

16



Solution We first sketch the region R, by drawing the curves y = 0, x = 2
and x2 = 4y. (see Figure 12).

Figure 12: Region of integration bounded by y = 0, x = 2 and x2 = 4y.

Clearly the only region that is bounded (i.e. entirely enclosed) by the
three curves is the region denoted by R.

To select the limits for the integration consider an arbitrary, but fixed
value of x in 0 ≤ x ≤ 2. At this value of x draw a narrow strip parallel to the
y-axis. The lower limit for the y-integration will be the value of y in terms of
x where the strip meets the lower boundary of R; here it is y = 0. Similarly
the upper limit for the y-integration is the value of y in terms of x where the

strip meets the upper boundary of R; here this is y =
x2

4
.

The limits for the second integral are the extreme values of x in R; i.e.
x = 0 and x = 2. So

∫∫
R

xydA =

∫ 2

0

∫ x2/4

0

xydydx.
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The repeated integral is now easy to evaluate in the usual way.

∫∫
R

xydA =

∫ 2

0

[
xy2

2

]x2/4

0

dx

=

∫ 2

0

x

2

(
x2

4

)2

dx

=

∫ 2

0

x5

32
dx

=

[
x6

6× 32

]2
0

=
1

3 ⃝

Example 3.4 Evaluate

∫∫
R

xdA over the smaller segment of the circle

x2 + y2 = 4, cut off by the line x = 1.

Solution We first sketch the curve x2 + y2 = 4 and the line x = 1.

Figure 13: Region of integration bounded by x2 + y2 = 4 and x = 1.

Selecting a fixed value of x in 1 ≤ x ≤ 2, we draw a narrow strip in the
y- direction. We can see from Figure 13 that the limits for the y integration
are both determined by the equation of the circle.

Since
x2 + y2 = 4,
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y2 = 4− x2

and y = ±
√
4− x2

Thus the lower limit for the y-integration is y = −
√
4− x2 and the upper

limit is y =
√
4− x2. The limits for the x-integration are x = 1 and x = 2.

So

∫∫
R

xdA =

∫ 2

1

∫ √
4−x2

−
√
4−x2

xdydx

=

∫ 2

1

[xy]
√
4−x2

−
√
4−x2 dx

=

∫ 2

1

{x
√
4− x2 − (−x

√
4− x2)}dx

= 2

∫ 2

1

x
√
4− x2dx

Use the substitution u = 4 − x2, so that
du

dx
= −2x. Then, when x = 1,

u = 3 and when x = 2, u = 0. So

∫∫
R

xdA = 2

∫ 0

3

u1/2

(
du

−2

)

=

∫ 3

0

u1/2du

=

[
2

3
u3/2

]3
0

= 2
√
3. ⃝

(The video discusses how to evaluate double integrals in cartesian coordi-
nates and explains several examples. V

At this point you should try several examples of evaluating double integrals

in cartesian coordinates. Note that in the evaluation of

∫∫
R

f(x, y)dydx,

the y-integration is performed first. Thus the limits on the inner integral
may involve x [but cannot involve y]. The limits on the outer integral are
constants [i.e. they cannot involve x or y].) EX
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3.2 Change of order of integration

In all the previous examples the repeated integral has been evaluated by
doing the y-integration first followed by the x-integration. However, we can
also express double integrals over suitable regions, R, as repeated integrals
involving an x- integration followed by a y-integration. To see how to do this
we examine Figure 14 which is a redrawing of Figure 5.

Figure 14: Region of integration R.

This time the boundary of R is divided into a left hand boundary, x =
x1(y) and a right hand boundary, x = x2(y). These two boundaries intersect
at y = c and y = d where c < d.

To evaluate the double integral we first hold y constant and integrate with
respect to x between x = x1(y) and x = x2(y). This results in a function of
y alone, which is then integrated between y = c and y = d. Thus

∫∫
R

f(x, y)dA =

∫ d

c

{∫ x2(y)

x1(y)

f(x, y)dx

}
dy.

(Note that the limits on the inner integral may now involve y [but cannot
involve x]. The limits on the outer integral are again constants [i.e. they don’t
involve x or y].) If you look at Examples 3.3 and 3.4, instead of drawing
strips in the y-direction all we are really doing here is drawing strips in the
x-direction.

Since the value of a double integral is independent of the way in which it
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is evaluated, it follows that∫ d

c

∫ x2(y)

x1(y)

f(x, y)dxdy =

∫ b

a

∫ y2(x)

y1(x)

f(x, y)dydx.

We can verify this in a particular case by reworking Example 3.3 by carrying
out the x-integration first.

Example 3.3 (Again!) Evaluate

∫∫
R

xydA

where R is the region bounded by y = 0, x = 2 and x2 = 4y.

Solution Referring to Figure 12, to determine the limits for the x-integration
we consider a fixed value of y in R, and draw a strip parallel to the x-axis.
The left hand boundary of the strip is given by the parabola, x2 = 4y and so
x =

√
4y. The right hand boundary is x = 2. The limits for the y-integration

are the extreme values of y in R. These are y = 0 and y = 1 (since when
x = 2, y = x2/4 = 1). So

∫∫
R

xydA =

∫ 1

0

∫ 2

√
4y

xydxdy

=

∫ 1

0

[
x2y

2

]2
√
4y

dy

=

∫ 1

0

{2y − 2y2}dy

=

[
y2 − 2

3
y3
]1
0

=
1

3

Clearly there is no point in evaluating double integrals by both routes. How-

⃝

ever, for some integrals one route may be much easier than the other. Indeed,
for some integrals it may not be possible to find an indefinite integral (in
terms of the usual elementary functions) by one of the routes. For example
if we try to evaluate ∫ 1

0

∫ 1

x

x2e−y2dydx
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we would not be able to find the integral of e−y2 . By swapping the order of
integration and integrating x2 first we can do this integral. When changing
the order of integration we have to be extremely careful with the limits.
ALWAYS draw a diagram!

Example 3.5 By interchanging the order of integration evaluate∫ 1

0

∫ 1

x

x2e−y2dydx.

Solution We start by drawing a sketch of the region of integration, R. From
the limits R is defined by

x ≤ y ≤ 1 and 0 ≤ x ≤ 1.

So we draw the lines y = x and y = 1 in Figure 15.

Figure 15: Region of integration R.

R is between y = x and y = 1, with 0 ≤ x ≤ 1; so it is the triangular
region shown on Figure 15. To select the limits for the x-integration first, we
pick an arbitrary y in R and consider the strip parallel to the x-axis. The
end points are x = 0 and x = y. The extreme values of y are y = 0 and
y = 1. So ∫ 1

0

∫ 1

x

x2e−y2dydx =

∫ 1

0

∫ y

0

x2e−y2dxdy

=

∫ 1

0

[
x3

3
e−y2

]y
0

dy

=

∫ 1

0

y3

3
e−y2dy.

22



Although this integral may not look easy, it is much easier than trying to

integrate e−y2 . If we put u = y2 we obtain
du

dy
= 2y, together with u = 0

when y = 0 and u = 1 when y = 1. Then∫ 1

0

y3

3
e−y2dy =

∫ 1

0

u

6
e−udu

=
1

6

{
[−ue−u]10 +

∫ 1

0

e−udu

}
=

1

6

{
−e−1 + [−e−u]10

}
=

1

6

{
−e−1 − e−1 + 1

}
=

1

6

(
1− 2

e

)
⃝

Example 3.6 Interchange the order of integration for∫ 1

0

∫ 2−y

y

f(x, y)dxdy.

Solution Here the region R is defined by

y ≤ x ≤ 2− y and 0 ≤ x ≤ 1.

So we draw the lines x = y and x = 2− y.

Figure 16: Region of integration R.

R is between x = y and x = 2− y, with 0 ≤ x ≤ 1; so it is the triangular
shaded region shown in Figure 16. To interchange the order of integration

23



we need to draw strips parallel to the y-axis. The difficulty that arises here
is that the upper bounding curve of R has a different equation depending
whether 0 ≤ x ≤ 1 or 1 ≤ x ≤ 2. To overcome this difficulty we divide R
into two subregions R1 and R2 as shown in Figure 17.

Figure 17: Regions of integration, R1 and R2.

Then using one of the properties of double integrals from Section 2

∫∫
R

f(x, y)dA =

∫∫
R1

f(x, y)dA+

∫∫
R2

f(x, y)dA.

The limits for R1 are from y = 0 to y = x and from x = 0 to x = 1. The
limits for R2 are from y = 0 to y = 2− x and from x = 1 to x = 2. Thus∫ 1

0

∫ 2−y

y

f(x, y)dxdy =

∫ 1

0

∫ x

0

f(x, y)dydx+

∫ 2

1

∫ 2−x

0

f(x, y)dydx. ⃝

(The video discusses how to change the order of integration in a double
integral and solves the examples of this subsection. V

Now you should try some examples involving changing the order of inte-
gration.) EX

3.3 Polar coordinates

For some problems, particularly where the region of integration is partially
bounded by arcs of circles, it is more convenient to use polar coordinates
than cartesian coordinates.
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Figure 18: Polar coordinates.

In Figure 18 the polar coordinates of P are the distance of P from the
origin, r, and the angle that OP makes with the x-axis, θ. These are related
to cartesian coordinates by

r =
√

x2 + y2 and tan θ =
y

x

where r ≥ 0 and −π < θ ≤ π. Care must be taken when selecting θ since
the principal value of the inverse tan function is not always the correct value.
e.g. for the point with cartesian coordinates (−1, 1), tan θ = −1, but the

correct value of θ is
3π

4
and not the prinicipal value, −π

4
. The point (1,−1)

also gives tan θ = −1 but here θ = −π

4
; θ must be selected so that the point

lies in the correct quadrant. To change from polar coordinates to cartesians
we use

x = r cos θ, y = r sin θ.

In polar coordinates we subdivide the region R in a similar manner to the
way we did it in cartesian coordinates. We draw the lines r = constant and
θ = constant for different values of the constant. The lines r = constant are
circles centred on the origin, whereas the lines θ = constant are radii from
the origin. We obtain the grid illustrated in Figure 19.

The grid divides R into subregions of which a typical one is PQRS (see
Figure 20). Let it have area δA and let P have polar coordinates (r, θ).
Then since Q lies on the same θ = constant line as does P , Q will have polar
coordinates (r + δr, θ) where PQ = δr. Similarly since S lies on the same
r = constant curve as does P , S will have polar coordinates (r, θ+ δθ) where
SÔP = δθ. Now in the subregion PQRS, PQ is of length δr and PS is the
arc of a circle of radius r which subtends and angle δθ at its centre. Hence
the length of PS is rδθ. (Note that δθ must be in radians!) Hence the area
of PQRS is approximately

δA ≈ (δr)(rδθ) = rδθδr.
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Figure 19: Subdivisions of R in polar coordinates.

Although PQRS is not, in fact, a rectangle, it is near enough for our purposes
here, as long as δr and δθ are sufficiently small.

Figure 20: An element of area in polar coordinates.

Thus when we are evaluating double integrals in polar coordinates we use

dA = rdθdr.

The approximation involved can be justified rigorously as δr and δθ → 0.
The limits for the integration are determined in a similar way to that used

for cartesian coordinates. If we are doing the r-integration first the limits
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will be from r = r1(θ) to r = r2(θ) where r = r1(θ) is the equation of curve
C1, and r = r2(θ) is the equation of curve C2. (see Figure 21). The limits
for θ will be θ1 and θ2, the minimum and maximum values of θ in R and the
intersections of the curves C1 and C2. Again R is assumed to be a suitable
region such that these points may be defined.

Figure 21: Boundaries of R in polar coordinates.

Then

∫∫
R

f(x, y)dA =

∫ θ2

θ1

∫ r2(θ)

r1(θ)

f(r cos θ, r sin θ)rdrdθ.

Alternatively if we do the θ-integration first the limits are θ = θ1(r) to
θ = θ2(r) where θ = θ1(r) is the equation of curve C3 and θ = θ2(r) is the
equation of curve C4 (see Figure 22).

The limits for r are r1 and r2, the minimum and maximum values of r in
R and the intersections of the curves C3 and C4.

In this case

∫∫
R

f(x, y)dA =

∫ r2

r1

∫ θ2(r)

θ1(r)

f(r cos θ, r sin θ)rdθdr.
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Figure 22: Boundaries of R in polar coordinates.

Example 3.7 By transforming to polar coordinates evaluate the double
integral ∫∫

R

√
x2 + y2dA

where R is the region in the first quadrant bounded by the curves x2+y2 = a2,
y = x and x = 0, and a is a constant.

Solution We first sketch the region R.
This problem is particularly suited to polar coordinates since the region

of integration is a sector of a circle (see Figure 23). To determine the limits
of integration we draw a small radial strip across R. The ends of the strip
are r = 0 and r = a, so these are limits for the r-integration. The extreme

values of θ in R are
π

4
and

π

2
(remembering to use radians).
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Figure 23: Sketch of the region R.

Also, converting the integrand to polar coordinates,
√

x2 + y2 = r. So

∫∫
R

√
x2 + y2dA =

∫ π
2

π
4

∫ a

0

r(rdrdθ)

=

∫ π
2

π
4

∫ a

0

r2drdθ

=

∫ π
2

π
4

[
1

3
r3
]a
0

dθ

=

∫ π
2

π
4

1

3
a3dθ

=

[
1

3
a3θ

]π
2

π
4

=
πa3

12
. ⃝

Example 3.8 Show, using double integration, that the volume of a sphere

really is
4

3
πa3.

Solution Let the sphere be x2 + y2 + z2 = a2. One eighth of the volume of
the sphere will lie in the first quadrant.(See Figure 24).
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Figure 24: One eighth of the sphere x2 + y2 + z2 = a2.

To find the volume of the sphere we need to find eight times the volume
under the surface z =

√
a2 − y2 − x2 above the plane z = 0 and for which

x, y ≥ 0. Therefore

V = 8

∫∫
R

√
a2 − y2 − x2dA

where R is the region shaded in Figure 24. In polar coordinates the limits

for R are r = 0 to r = a and θ = 0 to θ =
π

2
. So

V = 8

∫ π
2

0

∫ a

0

(a2 − r2)1/2rdrdθ.

To evaluate the inner integral, let u = a2 − r2. Then

du

dr
= −2r, so rdr =

(
−du

2

)
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Also u = a2 when r = 0 and u = 0 when r = a2. So

V = 8

∫ π
2

0

∫ 0

a2
u1/2

(
−du

2

)
dθ

= 4

∫ π
2

0

[
2

3
u3/2

]a2
0

dθ

=
8

3

∫ π
2

0

a3dθ

=
8a3

3
[θ]

π
2
0

=
4

3
πa3 ⃝

Example 3.9 By converting to polar coordinates evaluate

∫∫
R

e−x2−y2dA

where R is the whole of the first quadrant. Hence deduce that∫ ∞

−∞
e−x2

dx =
√
π.

Solution Note in this example that it is not possible to obtain an indefinite
integral of either e−x2

or e−y2 (at any rate, not in terms of the usual elemen-
tary functions). The region of integration here is not bounded by a closed
curve. Nevertheless we can describe the region in terms of polar coordinates
and evaluate the integral. The limits are r = 0 to r = ∞ and θ = 0 to θ = π

2
.

(see Figure 25).
So ∫∫

R

e−x2−y2dA =

∫ π
2

0

∫ ∞

0

e−r2rdrdθ.

Let u = r2, and then
du

dr
= 2r, and so rdr =

du

2
. When r = 0, u = 0 and
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Figure 25: The region of integration R.

when r → ∞, u → ∞. Hence we have

∫∫
R

e−x2−y2dA =

∫ π
2

0

∫ ∞

0

e−udu

2
dθ

=
1

2

∫ π
2

0

[
−e−u

]∞
0
dθ

=
1

2

∫ π
2

0

{0− (−1)}dθ

=
1

2

∫ π
2

0

dθ

=
π

4
. (4)

If we express the integral in Cartesian coordinates we have

∫∫
R

e−x2−y2dA =

∫ ∞

0

∫ ∞

0

(
e−x2

)(
e−y2

)
dxdy

=

(∫ ∞

0

e−x2

dx

)(∫ ∞

0

e−y2dy

)
=

π

4
(from equation 4).

But

∫ ∞

0

e−x2

dx =

∫ ∞

0

e−y2dy, since x and y are just dummy variables.
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Hence (∫ ∞

0

e−x2

dx

)2

=
π

4
.

i.e. ∫ ∞

0

e−x2

dx =

√
π

2
.

But e−x2

is an even function. Hence

⃝
∫ ∞

−∞
e−x2

dx = 2

∫ ∞

0

e−x2

dx =
√
π

The integrand in this question is related to the normal distribution func-
tion in statistics:

p(x) =
1

σ
√
2π

exp

{
−1

2

(x−m)2

σ2

}
where m and σ are the mean and standard deviation of the distribution. We
can now prove that ∫ ∞

−∞
p(x)dx = 1.

Let z =
x−m√

2σ
and then

dz

dx
=

1√
2σ

. When x → ±∞, z → ±∞. So∫ ∞

−∞
p(x)dx =

1

σ
√
2π

∫ ∞

−∞
exp(−z2)(

√
2σ)dz

=
1√
π

∫ ∞

−∞
e−z2dz = 1.

Example 3.10 Sketch the cardioid r = a(1 + sin θ). Use a double integral
to find the area which is inside the cardioid and outside the circle r = a.

Solution We tabulate the function r = a(1 + sin θ) for θ in 0 ≤ θ ≤ 2π.

θ 0
π

4

π

2

3π

4
π

r a a

(
1 +

√
2

2

)
2a a

(
1 +

√
2

2

)
a

θ
5π

4

3π

2

7π

4
2π

r a

(
1−

√
2

2

)
0 a

(
1−

√
2

2

)
a
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Figure 26: The cardioid r = a(1 + sin θ).

We can now sketch the curve. (see Figure 26)
The limits for the region R in polar coordinates are r = a to

r = a(1 + sin θ) and from θ = 0 to θ = π. To express an area as a double
integral we need to choose the integrand to be 1 (see section 2). If A denotes
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the area required then

A =

∫ π

0

∫ a(1+sin θ)

a

rdrdθ

=

∫ π

0

[
r2

2

]a(1+sin θ)

a

dθ

=
a2

2

∫ π

0

{(1 + sin θ)2 − 1}dθ

=
a2

2

∫ π

0

(2 sin θ + sin2 θ)dθ

=
a2

2

∫ π

0

(2 sin θ +
1

2
(1− cos 2θ))dθ

=
a2

2

[
−2 cos θ +

θ

2
− sin 2θ

4

]π
0

=
a2

2

{(
−2 cosπ +

π

2

)
− (−2 cos 0)

}
=

a2

2

(
4 +

π

2

)
= a2(2 + π/4). ⃝

(The video explains how to use polar coordinates to evaluate appropriate
double integrals and solves some of the examples of this subsection. V

At this point you should try some examples which involve the use of polar
coordinates.) EX
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4 Applications of double integrals

(This section is not covered in the videos).
We have already seen that we can use double integrals to find areas of

regions in the xy-plane and volumes under the surface u = f(x, y) over a
given region in the xy-plane. We can also apply double integrals to finding
various physical properties of thin plates or laminae.

Consider a plate of negligible thickness which occupies a region R of the
xy- plane. Such a thin plate is called a planar lamina. Let the density of
the plate be ρ(x, y) units of mass per unit area. Note that this density is a
mass per unit area, since we are dealing with a plate of negligible thickness.
Also ρ(x, y) is not assumed to be constant. It is a function of position within
the sheet.

Figure 27: Planar lamina.

A small element of area, δA (see Figure 27) will have an approximate
mass of ρ(x′, y′)δA where (x′, y′) is a point in δA. The total mass, M , of the
lamina is obtained by summing the individual contributions ρ(x′, y′)δA and
then taking the limit as δA → 0. Hence

M =

∫∫
R

ρ(x, y)dA.

If ρ(x, y) is a constant, say ρ0, then this reduces to

M = ρ0

∫∫
R

dA = ρ0 × area of R
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as expected. The first moment of the element of area about an axis is the
product of its mass and its perpendicular distance from that axis. Thus the
first moment of δA about the x-axis is approximately (ρ(x′, y′)δA)y′ where
(x′, y′) is a point in δA. The first moment of the lamina about the x-axis
is

Mx =

∫∫
R

yρ(x, y)dA.

Similarly the first moment of the lamina about the y-axis is

My =

∫∫
R

xρ(x, y)dA.

The centre of mass of the lamina is the point (x̄, ȳ) where

x̄ =
My

M
and ȳ =

Mx

M

The centre of mass is a very important point in the lamina since in many
dynamical applications the lamina can be treated as though its mass were
concentrated at this point. The centre of mass can be thought of as the point
of balance of the lamina.

In a similar way, the second moments or moments of inertia of the
lamina about the x-axis and the y-axis may be defined:-

Ix =

∫∫
R

y2ρ(x, y)dA,

Iy =

∫∫
R

x2ρ(x, y)dA.

The moment of inertia is a measure of the resistance of the lamina to ro-
tational motion. We can also define the moment of inertia about an axis
through the origin perpendicular to both x- and y-axes. This is the polar
moment of inertia,

I0 =

∫∫
R

(x2 + y2)ρ(x, y)dA = Ix + Iy.
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Example 4.1 Find the centre of mass and moment of inertia about the x-
axis of a thin plate bounded by the curves x = y2 and x = 2y − y2 if the
density, ρ(x, y) = y + 1.

Solution The curves x = y2 and x = 2y − y2 are parabolas. They intersect
when y2 = 2y − y2. i.e. when

2y2 − 2y = 0

y(y − 1) = 0

y = 0 or y = 1.

Thus they intersect at (0, 0) and (1, 1). We next sketch a diagram of the thin
plate. This is shown in Figure 28.

Figure 28: Thin plate bounded by x = y2 and x = 2y − y2.
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If the mass of the plate is M , then

M =

∫ 1

0

∫ 2y−y2

y2
ρ(x, y)dxdy

=

∫ 1

0

∫ 2y−y2

y2
(y + 1)dxdy

=

∫ 1

0

[(y + 1)x]2y−y2

y2 dy

=

∫ 1

0

(y + 1)(2y − 2y2)dy

= 2

∫ 1

0

(y − y3)dy

= 2

[
y2

2
− y4

4

]1
0

=
1

2

Also

Mx =

∫∫
R

yρ(x, y)dA

=

∫ 1

0

∫ 2y−y2

y2
(y + 1)ydxdy

= 2

∫ 1

0

(y2 − y4)dy

= 2

[
y3

3
− y5

5

]1
0

=
4

15
.

So

ȳ =
Mx

M
=

8

15
.
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Similarly

My =

∫∫
R

xρ(x, y)dA

=

∫ 1

0

∫ 2y−y2

y2
(y + 1)xdxdy

=

∫ 1

0

[
(y + 1)x2

2

]2y−y2

y2
dy

=
1

2

∫ 1

0

(y + 1){(2y − y2)2 − y4}dy

= 2

∫ 1

0

(y + 1)(y2 − y3)dy

=
4

15
.

So

x̄ =
My

M
=

8

15
.

Hence the centre of mass is

(
8

15
,
8

15

)
.

Now

Ix =

∫∫
R

y2ρ(x, y)dA

=

∫ 1

0

∫ 2y−y2

y2
(y + 1)y2dxdy

=

∫ 1

0

(y + 1)y2(2y − 2y2)dy

= 2

∫ 1

0

(y3 − y5)dy

= 2

[
y4

4
− y6

6

]1
0

=
1

6
. ⃝

(Now you should try some examples involving applications of double in-
tegrals to thin plates.) EX
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5 Triple integrals

A triple or volume integral may be defined in a similar way to double
integrals although a direct geometrical interpretation is not possible. When
the integrand is positive we can however regard a triple integral as determin-
ing the mass of a volume of variable density (the density being given by the
integrand). This is described in more details in section 7

Let f(x, y, z) be a function of 3 independent variables, x, y and z which
is defined for all x, y and z within a volume V . Clearly we cannot represent
the function u = f(x, y, z) graphically since we would require 4 mutually
perpendicular axes to do so. However, we can construct the triple integral
mathematically by the process described in section 2 of this package.

We divide V into n subregions in any manner and let the volumes of
the subregions be δVk, k = 1, 2, . . . , n. Choose a point (x′

k, y
′
k, z

′
k) in each

subregion. Then the triple or volume integral of f(x, y, z) over V is defined
as ∫∫∫

V

f(x, y, z)dV = lim
∆→0

n∑
k=1

f(x′
k, y

′
k, z

′
k)δVk

(where ∆ = max{δVk, k = 1, 2, . . . , n}), provided the limit exists.
Again the limit must be independent of the way in which V is subdivided

and the particular choice of (x′
k, y

′
k, z

′
k) within each subregion. We assume

these conditions to be true for all the integrals with which we shall be dealing.
As mentioned above, the triple integral can be interpreted as giving the

mass of a material of varying density, f(x, y, z), occupying the volume V . In
the particular case when f(x, y, z) = 1 for all (x, y, z) in V ,

∫∫∫
V

f(x, y, z)dV =

∫∫∫
V

dV = the volume of V .

The volume integral also satisfies the linearity property:

∫∫∫
V

{af(x, y, z)+bg(x, y, z)}dV = a

∫∫∫
V

f(x, y, z)dV+b

∫∫∫
V

g(x, y, z)dV
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and if V is divided into two mutually disjoint subregions, V1 and V2 then

∫∫∫
V

f(x, y, z)dV =

∫∫∫
V1

f(x, y, z)dV +

∫∫∫
V2

f(x, y, z)dV

(The video introduces triple integrals and discusses the properties associ-
ated with them). V
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6 Evaluation of triple integrals

6.1 Cartesian coordinates

By drawing the planes x = constant, y = constant, z = constant, V is sub-
divided into cuboids with edges parallel to the coordinates axis (Figure 29).

Figure 29: V subdivided into cuboids.

From Figure 29, δV = δzδyδx. Consider performing the z-integration
first. Fix x and y and consider a rectangular column extending through the
volume (a lift-shaft?). The integration must be carried out between the lower
surface of V (say z = z1(x, y)) and the upper surface of V (say z = z2(x, y)).
These two surfaces will meet in a curve around V ; this curve is not necessarily
in a plane parallel to the xy-plane. We now need to consider the contributions
of all the columns. Let R be the projection of V in the xy-plane; i.e. R is
the set of all points (x, y, 0) for which (x, y, z) is in V . Then each column in
V is projected onto a rectangle in R. We need to sum the contributions of
each column by performing a double integral over R.

i.e.

∫∫∫
V

f(x, y, z)dV =

∫∫
R

{∫ z2(x,y)

z1(x,y)

f(x, y, z)dz

}
dA

=

∫ b

a

∫ y2(x)

y1(x)

∫ z2(x,y)

z1(x,y)

f(x, y, z)dzdydx
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where the limits y = y1(x) to y = y2(x) and x = a to x = b are chosen to
define R.

Example 6.1 Evaluate

∫∫∫
V

xzdV where V is the region bounded by the

surfaces x = 0, y = 0, y = 6, z = x2 and z = 4, which lies in the first octant.

Solution The first octant is defined by x ≥ 0, y ≥ 0, z ≥ 0. We first sketch
a diagram of V (Figure 30). The equation z = x2 defines a parabola at any
fixed value of y.

Figure 30: The volume V .

From Figure 30 the limits for z are z = x2 to z = 4. The projection of V
on the xy-plane is the rectangle bounded by x = 0, y = 0, x = 2 and y = 6.
The limits for y and x are therefore y = 0 to y = 6 and x = 0 to x = 2. So
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∫∫∫
V

xzdV =

∫ 2

0

∫ 6

0

∫ 4

x2

xzdzdydx

=

∫ 2

0

∫ 6

0

[
xz2

2

]4
x2

dydx

=
1

2

∫ 2

0

∫ 6

0

(16x− x5)dydx

=
1

2

∫ 2

0

[
(16x− x5)y

]6
0
dx

= 3

[
8x2 − x6

6

]2
0

= 3× 25
(
1− 1

3

)
= 26 = 64

⃝

Example 6.2 Evaluate

∫∫∫
V

45x2ydV where V is the closed region

bounded by 4x+ 2y + z = 8, x = 0, y = 0 and z = 0.

Solution The equation 4x+ 2y + z = 8 defines a plane which intersects the
axes at (2,0,0), (0,4,0) and (0,0,8) (see Figure 31).

The limits for the z-integration are z = 0 and z = 8 − 4x − 2y. The
projection of V in the xy-plane is the triangular region R, bounded by x = 0,
y = 0 and 4x + 2y = 8. The limits are y = 0 to y = 4 − 2x and x = 0 to
x = 2.
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Figure 31: The volume V .

So ∫∫∫
V

45x2ydV =

∫ 2

0

∫ 4−2x

0

∫ 8−4x−2y

0

45x2ydzdydx

= 45

∫ 2

0

∫ 4−2x

0

x2y(8− 4x− 2y)dydx

= 90

∫ 2

0

∫ 4−2x

0

{x2(4− 2x)y − x2y2}dydx

= 90

∫ 2

0

[
x2(4− 2x)y2

2
− x2y3

3

]4−2x

0

dx

= 90

∫ 2

0

{
x2(4− 2x)3

2
− x2(4− 2x)3

3

}
dx.

The integrand may be combined into a single term since x2(4 − 2x)3 is a
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common factor.

Thus

∫∫∫
V

45x2ydV = 15

∫ 2

0

x2(4− 2x)3dx

Rather than multiply this out, we can integrate by parts twice to give

∫∫∫
V

45x2ydV = 15

{[
x2(4− 2x)4

4× (−2)

]2
0

−
∫ 2

0

2x(4− 2x)4

4× (−2)
dx

}

=
15

4

∫ 2

0

x(4− 2x)4dx

=
15

4

{[
x(4− 2x)5

5× (−2)

]2
0

−
∫ 2

0

(4− 2x)5

5× (−2)
dx

}

=
3

8

∫ 2

0

(4− 2x)5dx

=
3

8

[
(4− 2x)6

6× (−2)

]2
0

=
3× 46

16× 6
= 128.

⃝
(The video shows how to evaluate triple integrals in cartesian coordinates

and covers the examples in this subsection. V
At this point you should try some examples of evaluating triple integrals

in cartesian coordinates. You will find drawing the diagrams difficult. Most
of us have to draw several rough sketches before we produce a useful picture.
Practice is the answer!) EX

6.2 Cylindrical polar coordinates (w, ϕ, z)

The cylindrical polar coordinates (w, ϕ, z) of a point in a 3-dimensional
space are related to its cartersian coordinates (x, y, z) by the equations

x = w cosϕ, y = w sinϕ, z = z.

Thus z is the same coordinate in both systems; w and ϕ are defined in a
similar way to the plane polar coordinates (r, θ) defined in section 3.3. We
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use a different notation because r and θ are reserved for spherical polar
coordinates (see section 6.3). The cylindrical polar coordinates (w, ϕ, z) are
given by

w =
√
x2 + y2, tanϕ =

y

x
, z = z

where w ≥ 0 and −π < ϕ ≤ π. The same careful considerations for choosing
the appropriate value of ϕ need to be employed here as for θ in plane polars.
Note that for points on the z-axis, ϕ is undefined. This does not usually cause
any difficulty in practice. Figure 32 illustrates cylindrical polar coordinates.

Figure 32: Cylindrical polar coordinates.

In cylindrical polar coordinates we subdivide a volume V by drawing the
surfaces, w = constant, ϕ = constant, and z = constant. This will produce
elements of volume whose shape is shown in Figure 33.

Consider the point P with cylindrical polar coordinates (w, ϕ, z). Then
the point Q will have coordinates (w+δw, ϕ, z) where PQ = δw. The point R
will have coordinates (w, ϕ+δϕ, z) and S will have coordinates (w, ϕ, z+δz).
Thus the volume of the element is approximately δV = PQ × PR × PS.
But PQ = δw, PS = δz and since PR is an arc of a circle of radius w,
PR = wδϕ. Therefore

δV ≈ δw(wδϕ)(δz) = wδwδϕδz

Note there will also be higher order terms as with plane polar coordinates,
but these can be neglected as δV → 0. Thus in cylindrical polar coordinates:

dV = wdwdϕdz

48



Figure 33: A volume element in cylindrical polars.

We carry out triple integrals in cylindrical polar coordinates in a similar
manner to cartesians by doing the z-integration first between the lower and
upper surfaces of V (say from z = z1(w, ϕ) to z = z2(w, ϕ)). We then
integrate over the projection of V in the xy-plane, treating w, ϕ as plane
polar coordinates. So

∫∫∫
V

f(x, y, z)dV =

∫ ϕ2

ϕ1

∫ w2(ϕ)

w1(ϕ)

∫ z2(w,ϕ)

z1(w,ϕ)

F (w, ϕ, z)wdzdwdϕ

where F (w, ϕ, z) = f(x, y, z). In other words F (w, ϕ, z) is the function of w, ϕ
and z obtained when x and y are replaced by w cosϕ and w sinϕ respectively.
Example 6.3 Use cylindrical polar coordinates to evaluate

∫∫∫
V

√
x2 + y2dV

where V is the region bounded by the surfaces z = x2+y2 and z = 8−(x2+y2).

Solution The surface z = x2 + y2 is a paraboloid. Cross-sections at x =
constant or y = constant are parabolas, whereas cross-sections at z =
constant (> 0) are circles. Note that z ≥ 0 for all x, y. Similarly z =
8 − (x2 + y2) is also a paraboloid, but z ≤ 8. Figure 34 shows the two
paraboloids and V is the volume contained between them.
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Figure 34: The volume V .

The paraboloids intersect when 8− (x2 + y2) = x2 + y2, i.e. x2 + y2 = 4,
and this gives z = 4. The projection of V on the xy-plane is thus the interior
of the circle x2 + y2 = 4.

In cylindrical polars, the integration limits are

z = w2 to z = 8− w2

w = 0 to w = 2

ϕ = −π to ϕ = π

Therefore

∫∫∫
V

√
x2 + y2 =

∫ π

−π

∫ 2

0

∫ 8−w2

w2

w.wdzdwdϕ

=

∫ π

−π

∫ 2

0

[
w2z

]8−w2

w2 dwdϕ

=

∫ π

−π

∫ 2

0

{w2(8− w2)− w4}dwdϕ

=

∫ π

−π

[
8w3

3
− 2w5

5

]2
0

dϕ

=

∫ π

−π

27

15
dϕ =

28π

15
=

256π

15
.

⃝
(The video shows how to use cylindrical polar coordinates to evaluate ap-

propriate triple integrals and covers the example in this subsection. V
You should now try to evaluate some triple integrals using cylindrical

polars). EX
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6.3 Spherical polar coordinates (r, θ, ϕ)

The spherical polar coordinates, (r, θ, ϕ) of a point in a 3-dimensional
space are related to its cartesian coordinates (x, y, z) by

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ.

The coordinate r is the radial distance of a point, P , from the origin, O; θ
is the angle that OP makes with the positive z-axis and ϕ is the angle that
ON makes with the positive x-axis, where N is the foot of the perpendicular
from P to the xy-plane. See Figure 35 for an illustration.

Figure 35: Spherical polar coordinates.

Note that r ≥ 0, 0 ≤ θ ≤ π and −π < ϕ ≤ π. The angle θ is called the
polar angle and ϕ is called the azimuthal angle. The azimuthal angle ϕ
is the same one that occurs in cylindrical polars.

Expressions giving r, θ and ϕ in terms of x, y and z are

r =
√

x2 + y2 + z2, θ = cos−1

{
z√

x2 + y2 + z2

}
, tanϕ =

y

x

where the appropriate value of ϕ must be chosen.
In spherical polar coordinates a volume V is subdivided by drawing the

surfaces r = constant, θ = constant and ϕ = constant. The surfaces r =
constant are concentric spheres centred on the origin; θ = constant generates
conical surfaces with the z-axis as the axis of symmetry and ϕ = constant
generates planes perpendicular to the xy-plane. This will produce elements
of volume whose shape is shown in Figure 36.
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Figure 36: A volume element in spherical polars.

Consider the point P with spherical polar coordinates (r, θ, ϕ). Then the
point Q will have coordinates (r + δr, θ, ϕ), R will have coordinates (r, θ +
δθ, ϕ) and S will have coordinates (r, θ, ϕ+ δϕ). Note that PQ = δr, PR =
rδθ and, because PS is an arc of a circle of radius r sin θ, PS = r sin θδϕ.
Thus the volume of the element is approximately

δV ≈ PQ× PR× PS

= δr(rδθ)(r sin θδϕ)

= r2 sin θδrδθδϕ

There will also be higher order terms in an exact expression for δV , but these
may be neglected as δV → 0. Thus in spherical polar coordinates

dV = r2 sin θdrdθdϕ

Triple integrals in spherical polars are normally carried out by integrating
firstly with respect to r between the inner surface, r = r1(θ, ϕ) and the outer
surface r = r2(θ, ϕ). (See Figure 37). We then integrate with respect to θ
from θ = θ1(ϕ) to θ = θ2(ϕ) and finally we integrate with respect to ϕ from
ϕ = ϕ1 to ϕ = ϕ2.

So

∫∫∫
V

f(x, y, z)dV =

∫ ϕ2

ϕ1

∫ θ2(ϕ)

θ1(ϕ)

∫ r2(θ,ϕ)

r1(θ,ϕ)

F (r, θ, ϕ)r2 sin θdrdθdϕ

where F (r, θ, ϕ) = f(x, y, z). Spherical polar coordinates are most useful for
integrating over spheres or parts of spheres. The limits are then usually much
easier than the very general ones given above.
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Figure 37: Integration in spherical polars.

Example 6.4 Integrate xyz over the volume in the first octant bounded by
the coordinate planes and the sphere x2 + y2 + z2 = 1.

Solution The volume here is just one eighth of the volume of the unit sphere.
It is illustrated in Figure 38.

Figure 38: The volume V .
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The limits in spherical polar coordinates are easy. They are

r = 0 to r = 1

θ = 0 to θ =
π

2

ϕ = 0 to ϕ =
π

2
.

So

∫∫∫
V

xyzdV

=

∫ π/2

0

∫ π/2

0

∫ 1

0

(r sin θ cosϕ)(r sin θ sinϕ)(r cos θ)× r2 sin θdrdθdϕ

=

∫ π/2

0

∫ π/2

0

∫ 1

0

r5 sin3 θ cos θ sinϕ cosϕdrdθdϕ

=

(∫ π/2

0

sinϕ cosϕdϕ

)(∫ π/2

0

sin3 θ cos θdθ

)(∫ 1

0

r5dr

)

=

[
sin2 ϕ

2

]π/2
0

[
sin4 θ

4

]π/2
0

[
r6

6

]1
0

=
1

2
× 1

4
× 1

6
=

1

48
.

⃝

Example 6.5 Find the volume of the region, V , bounded by the surface
r = 1 + cos θ and the sphere r = 2.

Solution For any fixed value of ϕ, the equation r = 1 + cos θ, (0 ≤ θ ≤ π),
generates half of a cardioid. Rotating this around the z-axis produces the
solid shown in Figure 39.

This shape lies wholly inside the sphere r = 2 (just touching it at the top
where θ = 0). The limits in spherical polar coordinates are therefore:

r = 1 + cos θ to r = 2

θ = 0 to θ = π

ϕ = −π to ϕ = π
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Figure 39: The surface r = 1 + cos θ.

So V =

∫∫∫
V

dV

=

∫ π

−π

∫ π

0

∫ 2

1+cos θ

r2 sin θdrdθdϕ

=
1

3

∫ π

−π

∫ π

0

[
r3 sin θ

]2
1+cos θ

dθdϕ

=
1

3

∫ π

−π

∫ π

0

{8− (1 + cos θ)3} sin θdθdϕ

=

(
1

3

∫ π

−π

dϕ

)(∫ π

0

{8− (1 + cos θ)3} sin θdθ
)

=
2π

3

[
−8 cos θ +

(1 + cos θ)4

4

]π
0

=
2π

3

{
8− {−8 +

24

4
}
}

=
2π

3
{16− 4} = 8π.

⃝
(The video explains how to use spherical polar coordinates to evaluate

certain triple integrals and covers the first example in this subsection. V
You should now try some examples using spherical polars to evaluate triple

integrals.) EX
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7 Applications of triple integrals

We have already seen that we can use triple integrals to find the volumes of
regions in a 3-dimensional space. Just as with double integrals we can use
triple integrals to find physical properties of materials. Consider a material
whose density is ρ(x, y, z), occupying a volume V in a 3-dimensional space.
The density here is a mass per unit volume. We do not assume that ρ(x, y, z)
is constant, but that it is a function of position in space. Physically we
might have a gas occupying V . A small element of volume will have a mass
ρ(x′, y′, z′)δV where (x′, y′, z′) is a point in δV . The total mass within V is
therefore

M =

∫∫∫
V

ρ(x, y, z)dV

If ρ(x, y, z) is a constant, say ρ0, then this reduces to

M = ρ0

∫∫∫
V

dV = ρ0 × (the volume of V)

i.e. mass = density × volume, as expected.

The centre of mass of the material within V is the point (x̄, ȳ, z̄) where

x̄ =
1

M

∫∫∫
V

xρ(x, y, z)dV, ȳ =
1

M

∫∫∫
V

yρ(x, y, z)dV,

and z̄ =
1

M

∫∫∫
V

zρ(x, y, z)dV.

The moment of inertia of the material within V about a given axis is

I =

∫∫∫
V

ρ(x, y, z){d(x, y, z)}2dV

where d(x, y, z) is the perpendicular distance of a point (x, y, z) of the ma-
terial from the given axis (see Figure 40).
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Figure 40: Calculating the moment of inertia about an axis.

Example 7.1 The density of a right circular cone of height h, and base

radius r, at a point at distance w from its axis of symmetry is ρ =
ρ0w

a
.

Calculate

(i) its mass,

(ii) the position of its centre of mass, and

(iii) its moment of inertia about the axis of symmetry.

Solution

Figure 41: The cone positioned with vertex at the origin and axis vertical.

(i) Because of the axial symmetry it is natural to use cylindrical polar
coordinates for this problem (see figure 41). We need to determine the correct

57



limits to describe the cone. If we perform the z-integration first, the lower
limit will be determined by the curved surface of the cone. Figure 42 shows
how to calculate this lower limit for z in terms of the distance, w from the
axis, of a point on the surface of the cone.

Figure 42: Calculation of the lower limit for z in terms of w.

By similar triangles in Figure 42

z

w
=

h

a

so z = hw/a. The limits are therefore:

z =
hw

a
to z = h

w = 0 to w = a

ϕ = −π to ϕ = π

Hence

M =

∫ π

−π

∫ a

0

∫ h

hw/a

ρ0w

a
.wdzdwdϕ

=
ρ0
a

∫ π

−π

∫ a

0

[
w2z

]h
hw/a

dwdϕ

=
ρ0h

a

∫ π

−π

∫ a

0

{
w2 − w3

a

}
dwdϕ

=
ρ0h

a

∫ π

−π

[
w3

3
− w4

4a

]a
0

dϕ

=
ρ0h

a

∫ π

−π

a3

12
dϕ =

πρ0ha
2

6
.

(ii) By symmetry the centre of mass will be located on the axis of the cone,
i.e. at (0, 0, z̄) where
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z̄ =
1

M

∫∫∫
V

zρ(x, y, z)dV

=
1

M

∫ π

−π

∫ a

0

∫ h

hw/a

z.
ρ0w

a
.wdzdwdϕ

=
ρ0
Ma

∫ π

−π

∫ a

0

[
w2z2

2

]h
hw/a

dwdϕ

=
ρ0h

2

2Ma

∫ π

−π

∫ a

0

{
w2 − w4

a2

}
dwdϕ

=
ρ0h

2

2Ma

∫ π

−π

[
w3

3
− w5

5a2

]a
0

dϕ

=
ρ0h

2

2Ma

∫ π

−π

2a3

15
dϕ

=
2πρ0h

2a2

15M

=
2πρ0h

2a2

15
.

6

πρ0ha2
=

4h

5
.

Hence the centre of mass is at (0, 0, 4h/5).
(iii) The perpendicular distance of a point inside the cone from its axis of
symmetry is the cylindrical polar coordinate w. So the required moment of
inertia is

I =

∫ π

−π

∫ a

0

∫ h

hw/a

ρ0w

a
.w2.wdzdwdϕ

=
ρ0
a

∫ π

−π

∫ a

0

[
w4z

]h
hw/a

dwdϕ

=
ρ0h

a

∫ π

−π

∫ a

0

{
w4 − w5

a

}
dwdϕ

=
ρ0h

a

∫ π

−π

[
w5

5
− w6

6a

]a
0

dϕ

=
ρ0h

a

∫ π

−π

a5

30
dϕ

=
πρ0ha

4

15

(
=

6Ma2

15
=

2

5
Ma2

)
⃝
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(The video shows the application of triple integrals to mass, centre of mass
and moments of inertia and covers the example of this section. V

At this point you should try some examples involving the applications of
triple integrals.) EX
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8 Jacobians

(This section is not covered in the videos).

So far we have evaluated double and triple integrals in both cartesian and
polar coordinate systems. We have examined the elementary area or volume
to determine δA and δV in each case. However, there are rules which will
automatically generate δA and δV in general coordinate systems.

Suppose we wish to transform a double integral from (x, y) coordinates
to (u, v) coordinates. We consider the elementary area formed by drawing
the curves u = constant and v = constant (Figure 43).

Figure 43: An element of area in uv-coordinates.

If P has (cartesian) coordinates (x, y), then Q will have coordinates

(x + δx, y + δy) ≈ (x +
∂x

∂u
δu, y +

∂y

∂u
δu), since v is a constant along PQ.

Similarly S will have coordinates (x+
∂x

∂v
δv, y+

∂y

∂v
δv) approximately, since

u is a constant along PS. The element of area, PQRS, is approximately a
parallelogram with sides PQ and PS. We require an expression for the area
of a parallelogram and make use of the following result.

Consider a parallelogram with vertices at (0, 0), (a1, b1), (a2, b2), and (a1+
a2, b1 + b2). (See Figure 44.)

The area of the parallelogram is |a1b2 − a2b1|. The modulus signs are
required since we attach no meaning to the sign of the area. This result can
be proved using coordinate geometry, but the proof is not included here.
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Figure 44: The area of a parallelogram.

To apply this result to PQRS we need to translate P to the origin. Then

Q is shifted to the point with coordinates (
∂x

∂u
δu,

∂y

∂u
δu) and S to the point

with coordinates (
∂x

∂v
δv,

∂y

∂v
δv). Thus

δA =

∣∣∣∣(∂x

∂u
δu

)(
∂y

∂v
δv

)
−
(
∂y

∂u
δu

)(
∂x

∂v
δv

)∣∣∣∣
=

∣∣∣∣∂x∂u ∂y

∂v
− ∂y

∂u

∂x

∂v

∣∣∣∣ δuδv
= |J |δuδv

where J is the determinant,

J =

∣∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣∣
J is called the Jacobian of the transformation and is alternatively written

J =
∂(x, y)

∂(u, v)

to emphasise the variables involved.
Note that for the transformation from cartesians to polars,

x = r cos θ, y = r sin θ
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so J =
∂(x, y)

∂(r, θ)
=

∣∣∣∣ cos θ −r sin θ
sin θ r cos θ

∣∣∣∣
= r, as expected.

Thus the rule for changing from (x, y) to (u, v) coordinates is to replace
dA by |J |dudv where J is the Jacobian of the transformation.

A similar result applies to triple integrals. To change from (x, y, z) to
(u, v, w) coordinates replace dV by |J |dudvdw where

J =
∂(x, y, z)

∂(u, v, w)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v

∂x

∂w

∂y

∂u

∂y

∂v

∂y

∂w

∂z

∂u

∂z

∂v

∂z

∂w

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Example 8.1 By the change of variables

u =
x− y

x+ y
(5)

v = x+ y (6)

evaluate

∫∫
R

e−(x−y)/(x+y)dA where R is the region in the first quadrant

bounded by the lines x+ y = 3, x+ y = 2, y = 0 and y = x/3.

Solution First we need to work out the Jacobian of the transformation from
(x, y) to (u, v).

Since u =
x− y

x+ y
and v = x+ y we have x− y = uv and x+ y = v giving

x =
1

2
v(u+ 1) and y =

1

2
v(1− u)

So
∂x

∂u
=

1

2
v,

∂x

∂v
=

1

2
(u+ 1),

∂y

∂u
= −1

2
v,

∂y

∂v
=

1

2
(1− u)
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These give

∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣∣∣∣
1

2
v

1

2
(u+ 1)

−1

2
v

1

2
(1− u)

∣∣∣∣∣∣∣∣∣
=

1

4
v(1− u) +

1

4
v(u+ 1) =

1

2
v.

We now need to describe the region R in terms of u and v. The region is
as shown in Figure 45.

Figure 45: The region R.

Consider each of the boundaries of R in turn.
On boundary (A), y = 0 and 2 ≤ x ≤ 3. Using y = 0, equation (5) gives
u = (x − 0)/(x + 0) = 1 and equation (6) gives v = x. Thus boundary (A)
is described by u = 1 and 2 ≤ v ≤ 3.
On boundary (B), x+y = 3 and x increases from the intersection of x+y = 3
with y = x/3 up to x = 3. The point of intersection is given by x+(x/3) = 3,
i.e. x = 9/4. So on boundary (B), x + y = 3 and (9/4) ≤ x ≤ 3. Using
equations (5) and (6) these give v = 3 and u = [x− (3− x)]/3 = (2x− 3)/3.
As x varies from 9/4 to 3, u increases from 1/2 to 1, i.e. boundary (B) is
described by v = 3 and (1/2) ≤ u ≤ 1.
On boundary (C), y = x/3 and x increases from the intersection of x+y = 2
with y = x/3 up to x = 9/4. The point of intersection is given by x+(x/3) =
2, i.e. x = 3/2. So on boundary (C), y = x/3 and (3/2) ≤ x ≤ (9/4). Using
equations (5) and (6) these give u = (x − (x/3))/(x + (x/3)) = 1/2 and
v = 4x/3. As x increases from 3/2 to 9/4, v increases from 2 to 3. Thus
boundary (C) is described by u = 1/2 and 2 ≤ v ≤ 3.
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Finally on boundary (D), x + y = 2 and (3/2) ≤ x ≤ 2. Equations (5) and
(6) then give v = 2 and u = [x− (2− x)]/2 = x− 1. As x increases from 3/2
to 2, u increases from 1/2 to 1. Hence boundary (D) is described by v = 2
and (1/2) ≤ u ≤ 1.
Thus the new limits when the integral is transformed to variables u and v
become

u =
1

2
to u = 1

v = 2 to v = 3.

Figure 46 shows the region R in terms of u and v.

Figure 46: The region R.

We have now done all the hard work for this problem and are in a position
to evaluate the integral.

∫∫
R

e−(x−y)/(x+y)dA =

∫ 3

2

∫ 1

1/2

e−u

(
1

2
v

)
dudv

=
1

2

(∫ 3

2

vdv

)(∫ 1

1/2

e−udu

)
=

1

2

[
1

2
v2
]3
2

[
−e−u

]1
1/2

=
1

4
(32 − 22)(−e−1 + e−1/2)

=
5

4

(
1√
e
− 1

e

)
.

⃝
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(Now you should try some double integrals that involve changing the vari-
ables by means of Jacobians). EX
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9 Summary

When you have completed this package you should be able to do the things
listed below:

1. understand what is meant by the double integral of a function of two
variables,

2. interpret the double integral geometrically,

3. evaluate double integrals in cartesian coordinates,

4. interchange the order of integration in a double integral,

5. evaluate double integrals in polar coordinates,

6. apply double integrals to finding the mass, centre of mass and mo-
ments of inertia of a lamina,

7. understand what is meant by the triple integral of a function of three
variables,

8. evaluate triple integrals in cartesian coordinates,

9. evaluate triple integrals in cylindrical polar coordinates,

10. evaluate triple integrals in spherical polar coordinates,

11. apply triple integrals to finding the mass, centre of mass and mo-
ments of inertia of a body,

12. understand what is meant by the Jacobian of a transformation,

13. use Jacobians to transform the variables in a double integral,
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11 Appendix - Video Summaries

There are six videos associated with the topic of multiple integrals. The pre-
senter is Dave Parker from the Department of Mathematics at the University
of Central Lancashire. We recommend that you read the preamble to these
notes which makes some suggestions about how you should approach viewing
the videos.

Video title: Multiple Integrals (part 1). (37 minutes)

Summary

1. Revision of the definite integral as the limit of a sum.

2. Double integrals: Definition of the double integral and its geometric
interpretation. Properties of double integrals.

3. Evaluation of double integrals in Cartesian coordinates. Geometric
interpretation. Determination of limits.

4. The examples ∫ 3

1

∫ 3

2

(x2 − 2xy)dydx,

∫ π

0

∫ x

0

x sin ydydx

and ∫∫
R

xydA

where R is bounded by y = 0, x = 2 and x2 = 4y.
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Video title: Multiple Integrals (part 2). (38 minutes)

Summary

1. Change of order in a double integral in cartesian coordinates.

2. The examples ∫ 1

0

∫ 1

x

x2e−y2dydx

and ∫ 1

0

∫ 2−y

y

f(x, y)dxdy.

3. Definition of polar cordinates. Element of area in polar coordinates.
Evaluation of double integrals in polar coordinates.

4. The example ∫∫
R

√
x2 + y2dA

where R is the region in the first quadrant bounded by x2 + y2 = a2,
y = x and x = 0.

5. The example: Use a double integral to find the area which is inside the
cardioid r = a(1 + sin θ) and outside the circle r = a.

Video title: Multiple Integrals (part 3). (28 minutes)

Summary

1. Definition of the triple integral. Properties of triple integrals.

2. Evaluation of triple integrals in cartesian coordinates. Geometric
interpretation. Determination of limits.

3. The example ∫∫∫
V

xzdV

where V is the region bounded by x = 0, y = 0, y = 6, z = x2 and
z = 4 which lies in the first octant.
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4. The example ∫∫∫
V

45x2ydV

where V is the region bounded by 4x + 2y + z = 8, x = 0, y = 0 and
z = 0.

Video title: Multiple Integrals (part 4). (21 minutes)

Summary

1. Definition of cylindrical polar coordinates. Element of volume in
cylindrical polar coordinates.

2. Evaluation of integrals in cylindrical polar coordinates. Determination
of limits.

3. The example ∫∫∫
V

√
x2 + y2dV,

where V is the region bounded by z = x2 + y2 and z = 8− (x2 + y2).
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Video title: Multiple Integrals (part 5). (28 minutes)

Summary

1. Definition of spherical polar coordinates. Element of volume in
spherical polar coordinates.

2. Evaluation of integrals in spherical polar coordinates. Determination
of limits.

3. The example ∫∫∫
V

1

(x2 + y2 + z2)1/2
dV

where V is the region between the spheres x2 + y2 + z2 = a2 and
x2 + y2 + z2 = b2 where a > b > 0.

4. The example ∫∫∫
V

xyzdV

where V is the volume in the first octant bounded by the coordinate
planes and the sphere x2 + y2 + z2 = 1.

Video title: Multiple Integrals (part 6). (19 minutes)

Summary

1. Application of triple integrals to determining the mass of a body.

2. Application of triple integrals to determining the centre of mass and
moments of inertia of a body.

3. The example: Determine the mass, centre of mass and moment of
inertia about the axis of symmetry of a cone of height h and base radius
a, whose density at a point at distance w from its axis of symmetry is

ρ =
ρ0w

a
.
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