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1 Preamble

1.1 About this package

This package is for people who need to solve differential equations using
Laplace transforms. It doesn’t contain a lot of theory. It isn’t really de-
signed for pure mathematicians who require a course discussing the exis-
tence, uniqueness and inversion of Laplace transforms. You will find that
you need a background knowledge of differentiation and integration in order
to get the most out of this package. You need to be familiar with the use
of partial fractions and to have some background knowledge about first and
second order differential equations. If you are a bit rusty, don’t worry - but
it would be sensible to do some revision either at the start or as the need
arises. Reasonable revision texts are given in the bibliography (Section 10).

If you complete the whole package you should be able to

� understand and reproduce the definition of the Laplace transform,

� obtain Laplace transforms of easy functions directly from the defini-
tion,

� obtain the Laplace transforms of first and second derivatives,

� invert transforms using tables in conjunction with algebraic manipu-
lations such as partial fractions and completing the square,

� use Laplace transforms to solve first and second order linear differential
equations with appropriate initial conditions,

� use Laplace transforms to solve simultaneous differential equations,

� deal with discontinuous input functions expressible in terms of the unit
step function and use the second shift theorem to obtain trans-
forms and their inverses,

� deal with problems involving the unit impulse “function” δ(t),

� deal with problems involving periodic input functions such as square
waves and sawtooths,

� solve integral and integral-differential equations using Laplace
transforms.

Depending on your own programme of study you may not need to cover
everything in this package. Your tutor will advise you what, if anything, can
be omitted.
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1.2 How to use this package

YouMUST do examples! Doing lots of examples for yourself is gen-
erally the most effective way of learning the contents of this package and
covering the objectives listed above. We recommend that you

� first read the theory - make your own notes where appropriate,

� then work through the worked examples - compare your solutions with
the ones in the notes,

� finally do similar examples yourself in a workbook.

The original printing of these notes leaves every other page blank. Use the
spare space for your own comments, notes and solutions. You will see certain
symbols appearing in the right hand margin from time to time:

⃝ denotes the end of a worked example,

2 denotes the end of a proof,

V denotes a reference to videos (see below for details),

EX highlights a point in the notes where you should try examples.

By the time you have reached a package like this one you will probably
have realised that learning mathematics rarely goes smoothly! When you get
stuck, use your accumulated wisdom and cunning to get around the problem.
You might try:

� re-reading the theory/worked examples,

� putting it down and coming back to it later,

� reading ahead to see if subsequent material sheds any light,

� talking to a fellow student,

� looking in a textbook (see the bibliography),

� watching the appropriate video (see the video summaries),

� raising the problem at a tutorial.
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1.3 Videos, tutorials and self-help

The videos cover the main points in the notes. The areas covered are indi-
cated in the notes, usually at the ends of sections and subsections. To resolve
a particular difficulty you may not need to watch a whole video (they are
each about 30 minutes long). They are broken up into sections prefaced with
titles which can be read on fast scan. In addition, a summary of the videos
associated with this package appears as an appendix to these notes.

Your tutor will tell you about the arrangements for viewing the videos.
Try the worked examples before watching the solution unfold on the screen.
Make notes of any points you cannot follow so that you can explain the diffi-
culty in a subsequent tutorial session. If you are viewing a video individually,
remember the rewind button! Unlike a lecture you can get instant and 100
percent accurate replay of what was said.

Your tutor will tell you about tutorial arrangements. These may be re-
lated to assessment arrangements. If attendance at tutorials is compulsory
then make sure you know the details! The tutorials provide you with indi-
vidual contact with a tutor. Use this time wisely - staff time is the most
expensive of all our resources.

You should come to tutorials in a prepared state. This means
that you should have read the notes and the worked examples. You should
have tried appropriate examples for yourself. If you have had difficulty with
a particular section then you should watch the corresponding video. If your
tutor finds that you haven’t done these things then s/he may refuse to help
you. Your tutor will find it easier to assist you if you can make any queries
as specific as possible.

Your fellow students are an excellent form of self-help. Discuss problems
with one another and compare solutions. Just be careful that

1. any assessed coursework submitted by you is yours alone,

2. you yourself do really understand solutions worked out jointly with
colleagues.

Familiarize yourself with the layout and contents of these notes; scan
them before reading them more carefully. The contents page will help you
find your way about - use it. The bibliography will point you to textbooks
covering the same material as these notes.

When you graduate, your future employer will be just as interested in
your capacity for learning as in what you already know. If you can learn
mathematics from this package and from textbooks then you will not only
have learnt a particular mathematical topic. You will also (and more impor-
tantly) have learnt how to learn mathematics.
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2 Introduction

Laplace transforms are used as a method of solution of differential equations.
In this section we shall define what we mean by a Laplace transform and
look at some easy examples. Basic properties will be examined in section 3.
The usefulness of these ideas will become apparent in section 4.

Definition 2.1
Suppose that the function f(t) is defined for t ≥ 0. The Laplace trans-

form of f(t) is defined to be the function F (s) given by

F (s) =

∫ ∞

0

e−stf(t)dt (1)

This definition only makes sense when the improper integral on the right-
hand side of (1) exists. Therefore, the function F (s) may not be defined for
all values of s. In all the practical examples which follow, we shall see that
the integral does converge provided that s is sufficiently large; thus F (s) will
be defined for all sufficiently large s.

Note that the transform of the function f(t) is another function F (s).
Strictly speaking it does not matter what we call the variables but t and
s are the letters used conventionally. Various notations exists for Laplace
transforms. The transform of f may be denoted by F , f̄ or L{f}. Sometimes
the variable is made explicit as in F (s), f̄(s) or L{f}(s).

It may be appropriate to remind you that an improper integral such as
that given in (1) is defined by a limiting process, namely∫ ∞

0

g(t)dt = lim
R→∞

∫ R

0

g(t)dt (2)

The left-hand side of (2) is said to exist or converge when the limit on the
right-hand side exists.

Laplace transforms can be determined directly from the definition (1) by
interpreting the improper integral as in (2). It is worth noting that for any
value of n,

xne−ax → 0 as x → ∞

provided only that a > 0. Bearing this in mind we shall now determine a
selection of Laplace transforms.

5



Example 2.1 If f(t) = 1 for all t then we get

L{1} =

∫ ∞

0

e−st.1.dt

Note that ∫ R

0

e−stdt =

[
e−st

−s

]R
0

= −e−Rs

s
+

1

s

but e−Rs → 0 as R → ∞ provided s > 0. Hence

⃝
L{1} =

1

s
(if s > 0)

Example 2.2

L{t} =

∫ ∞

0

e−sttdt

Note that integration by parts gives∫ R

0

e−sttdt =

[
e−stt

−s

]R
0

−
∫ R

0

e−st

−s
dt

= −Re−Rs

s
+

[
e−st

−s2

]R
0

= −Re−Rs

s
− e−Rs

s2
+

1

s2

→ 1

s2
as R → ∞ (provided s > 0)

Hence

⃝L{t} =
1

s2
(if s > 0)

Example 2.3

L{eat} =

∫ ∞

0

e−steatdt =

∫ ∞

0

e−(s−a)tdt

Note that∫ R

0

e−(s−a)tdt =

[
e−(s−a)t

−(s− a)

]R
0

= −e−(s−a)R

s− a
+

1

s− a

→ 1

s− a
as R → ∞ (provided s > a)
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Hence

⃝L{eat} =
1

s− a
(if s > a)

Example 2.4

L{sinωt} =

∫ ∞

0

e−st sinωtdt

With ℑ denoting the imaginary part, note that∫ R

0

e−st sinωtdt = ℑ
∫ R

0

e−steiωtdt

= ℑ
∫ R

0

e−(s−iω)tdt

= ℑ
[

e−(s−iω)t

−(s− iω)

]R
0

= ℑ
[
−e−(s−iω)R

s− iω
+

1

s− iω

]
Now provided s > 0,

e−(s−iω)R = e−sReiωR

= e−sR(cosωR + i sinωR)

→ 0 as R → ∞

Hence, provided s > 0,

L{sinωt} = ℑ 1

s− iω

= ℑ s+ iω

s2 + ω2

=
ω

s2 + ω2

In a similar way with ℜ denoting the real part,

⃝
L{cosωt} = ℜ s+ iω

s2 + ω2
=

s

s2 + ω2
(provided s > 0)
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Not all functions have a Laplace transform. For example, the function
et

2
grows so rapidly with t that the improper integral defining the transform

does not exist. In fact, if we consider∫ R

0

e−stet
2

dt =

∫ R

0

et(t−s)dt

clearly the integrand satisfies

et(t−s) ≥ e0 = 1 whenever t > s.

For any particular value of s therefore,∫ R

0

e−stet
2

dt → ∞ as R → ∞

None of the functions we examine below will have such a rapid rate of growth
as et

2
.

(The video covers the definition of the Laplace transform, notation, some
of the examples above and the use of tables. V

You should now try using the definition to determine the Laplace trans-
form of some easy functions. You should also familiarise yourself with the
tables (section 12) at the end of this set of notes.) EX

8



3 Basic properties

For our purposes these fall into two categories:
a) Those which enable us to obtain further Laplace transforms relatively
easily.
b) Those which are needed so that we can apply Laplace transforms to solve
differential equations.
The former are covered in subsections 3.1 and 3.2, the latter in 3.3. Here and
subsequently we shall assume that the rate of growth of f is sufficiently slow
to ensure that all the Laplace transforms involved exist for all appropriately
large values of s.

3.1 The First Shift Theorem

(This section is not covered in the videos.)

Theorem 3.1.
L{e−atf(t)} = f̄(s+ a)

(Here we are using f̄ to denote the Laplace transform of f(t).)

Proof

L{e−atf(t)} =

∫ ∞

0

e−ste−atf(t)dt =

∫ ∞

0

e−(s+a)tf(t)dt

But this latter integral is just the same as the integral defining the Laplace
transform of f except that the s in that integral has been replaced here by
(s+ a). Therefore our integral is simply f̄(s+ a). 2

Example 3.1 Because

L{cosωt} =
s

s2 + ω2

it follows that

⃝L{e−at cosωt} =
s+ a

(s+ a)2 + ω2

3.2 Multiplication by t

(This section is not covered in the videos.)

Theorem 3.2.

L{tf(t)} = − d

ds
{f̄(s)}
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Proof The right hand side is

− d

ds
{f̄(s)} = − d

ds

{∫ ∞

0

e−stf(t)dt

}
= −

∫ ∞

0

d

ds
{e−stf(t)}dt

assuming that the order of the two operations:
i) integration with respect to t
ii) differentiation with respect to s
can be interchanged. In fact this is legitimate here provided that f is “rea-
sonable” (such as only having a finite number of discontinuities in any finite
interval and growing no faster than eat for some constant a). Carrying out
the differentiation with respect to s gives

− d

ds
{f̄(s)} = −

∫ ∞

0

−te−stf(t)dt

=

∫ ∞

0

e−sttf(t)dt

= L{tf(t)}

as required. 2

Example 3.2 Because

L{eat} =
1

s− a

it follows that

⃝L{teat} = − d

ds

{
1

s− a

}
=

1

(s− a)2

Note that this result can be reapplied, e.g.

L{t2f(t)} =
d2

ds2
{f̄(s)}

In general

L{tnf(t)} = (−1)n
dn

dsn
{f̄(s)}

Roughly speaking, multiplying f(t) by tn corresponds to differentiating f̄(s)
n times. The next property shows that (again speaking roughly) the reverse
holds, i.e. differentiating f(t) n times corresponds to multiplying f̄(s) by
sn. It is this property which is so useful in solving differential equations.
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3.3 Laplace transforms of derivatives

Theorem 3.3.
L{f ′(t)} = sf̄(s)− f(0)

Proof

L{f ′(t)} =

∫ ∞

0

e−stf ′(t)dt

Note that integration by parts gives∫ R

0

e−stf ′(t)dt =
[
e−stf(t)

]R
0
−
∫ R

0

(−se−stf(t))dt

= e−sRf(R)− f(0) + s

∫ R

0

e−stf(t)dt

As R tends to infinity, the last term on the right-hand side approaches
sL{f(t)} = sf̄(s). Noting our assumption about the rate of growth of f
we have e−sRf(R) → 0 as R → 0 for all sufficiently large s. Hence

2
L{f ′(t)} = −f(0) + sf̄(s)

The result of the theorem can be reapplied to deal with L{f ′′} as follows

L{f ′′} = sL{f ′(t)} − f ′(0) (first application)

= s[sf̄(s)− f(0)]− f ′(0) (second application)

= s2f̄(s)− sf(0)− f ′(0)

In a similar way we can deduce that for any positive integer n,

L{f (n)(t)} = snf̄(s)− sn−1f(0)− · · · − f (n−1)(0)

It is well worth committing these result to memory - they are very important.
There is a variety of different notations e.g.

L{x′} = sx̄− x0

L{x′′} = s2x̄− sx0 − x′
0

Here the function f(t) has been replaced by x(t). Its transform is x̄ = x̄(s)

and x0, x′
0 denote the values of x and of x′ =

dx

dt
at t = 0.

(The video deals with the transforms of first and second derivatives.) V
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3.4 Linearity of Laplace transforms

Theorem 3.4. L{af(t)+bg(t)} = af̄(s)+bḡ(s) whenever a, b are constants.

Proof We have

L{af(t) + bg(t)} =

∫ ∞

0

e−st(af(t) + bg(t))dt

= a

∫ ∞

0

e−stf(t)dt+ b

∫ ∞

0

e−stg(t)dt

= af̄(s) + bḡ(s)

as required. 2

Of course this result relies on the linearity of the integration process
(i.e.

∫
(ap(t) + bq(t))dt = a

∫
p(t)dt + b

∫
q(t)dt). Although fairly trivial to

establish, it is very useful when dealing with linear differential equations.
Note that a similar result does NOT apply to products i.e. L{f(t)g(t)} ≠
f̄(s)ḡ(s). (Compare this with

∫
p(t)q(t)dt ̸=

(∫
p(t)dt

) (∫
q(t)dt

)
.)

(The video deals with the linearity property.) V

3.5 Inverse Laplace transforms

Given a Laplace transform f̄(s), the question arises: “can we find a function
f(t) whose transform is f̄(s)?” A slightly more awkward question is “could
we find two different functions f1(t), f2(t) both of whose transforms are the
same f̄(s)?”

The first question can be put into mathematical terms as requesting an
inverse transform for a given f̄(s). The second question askes if the in-
verse transform (where it exists at all) is unique. We shall determine inverse
Laplace transforms by inspection - in all the cases we examine the inverse
exists. The uniqueness question is trickier.

Firstly, the Laplace transform of f(t) only depends on the values of f(t)
for t ≥ 0; the inverse transform of f̄(s) can therefore only be defined for
t ≥ 0. Secondly, if we alter the values of f(t) at a number of isolated points
we will not affect the value of the integral

∫∞
0

e−stf(t)dt; consequently f̄(s) is
unaltered. It follows from this second observation that, given f̄(s), f(t) is not
uniquely determined. We can in fact get around this problem by regarding
two functions f1(t) and f2(t) (defined for t ≥ 0) as being equivalent if they
only differ in value at isolated points. The functions f(t) which we consider
will be continuous except possibly at isolated points. In such cases it can be
shown that f̄(s) determines f(t) (for t ≥ 0) uniquely apart from its values
at the discontinuities.
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In practice, obtaining inverse transforms is relatively mechanical and you
do not need to be overly concerned with questions of existence and unique-
ness. There are indeed formulae for inverting the Laplace transform but these
involve knowledge of complex variable theory.

The notation employed for the inverse transform is L−1. Thus if

L{f} = f̄

we write
f = L−1{f̄}

Example 3.3 Determine

L−1

{
3s− 2

s2 + 6s+ 25

}
Solution Examples like this rely on the use of tables of transforms. A table
is attached as an appendix at the end of these notes. (Section 12.) You will
see (to your disappointment) that the ratio (3s− 2)/(s2 + 6s+ 25) does not
appear in the table. It is necessary to carry out some manipulation:

3s− 2

s2 + 6s+ 25
=

3s− 2

(s+ 3)2 + 16
(completing the square)

=
3(s+ 3)− 11

(s+ 3)2 + 42
(rewriting top and bottom)

= 3.
(s+ 3)

(s+ 3)2 + 42
− 11

4
.

4

(s+ 3)2 + 42

The purpose of writing the expression in this form is that both

(s+ 3)

(s+ 3)2 + 42
and

4

(s+ 3)2 + 42

do appear in the table of transforms. The former is the transform of
e−3t cos 4t, the latter is the transform of e−3t sin 4t. Hence

⃝
L−1

{
3s− 2

s2 + 6s+ 25

}
= 3e−3t cos 4t− 11

4
e−3t sin 4t

For anyone who is a little puzzled about the algebra involved in the above
example we revise below in section 3.6 the technique known as completing
the square. The other algebraic manipulations frequently required involve
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the use of partial fractions. The example below shows how these can be
useful. We shall also revise these in section 3.6.
Example 3.4 Determine

L−1

{
2

s(s+ 1)(s2 + 1)

}
Solution We put the expression in { } into partial fractions by requiring
constants A, B, C, D such that

2

s(s+ 1)(s2 + 1)
≡ A

s
+

B

s+ 1
+

Cs+D

s2 + 1

≡ A(s+ 1)(s2 + 1) +Bs(s2 + 1) + (Cs+D)s(s+ 1)

s(s+ 1)(s2 + 1)

Hence
2 ≡ A(s+ 1)(s2 + 1) +Bs(s2 + 1) + (Cs+D)s(s+ 1) (3)

If this holds for s = 0 then
2 = A

Likewise, putting s = −1 gives

2 = −2B

and so B = −1. Comparing coefficients of s3 in equation (3) gives

0 = A+B + C

Hence C = −1. Finally, comparing coefficients of s2 in equation (3) gives

0 = A+ C +D

and so D = −1. It follows that

L−1

{
2

s(s+ 1)(s2 + 1)

}
= L−1

{
2

s
− 1

s+ 1
− s+ 1

s2 + 1

}
The expression (s+ 1)/(s2 + 1) can be split to form

s

s2 + 1
+

1

s2 + 1

Thus we require

L−1

{
2

s
− 1

s+ 1
− s

s2 + 1
− 1

s2 + 1

}
14



all the components of which appear in the Laplace transform tables. We
obtain the inverse transform as

⃝2− e−t − cos t− sin t

(The video covers the existence and uniqueness of the inverse Laplace
transform, and both the examples in the preceding section. V

You should now try inverting some Laplace transforms. If you have trou-
ble with the partial fractions, completing the square or other algebraic ma-
nipulations, then the following section should provide some help.) EX

3.6 Revision of completing the square and partial frac-
tions

(This section is not covered in the videos.)

3.6.1 Completing the square

Given a quadratic expression in s:

as2 + bs+ c

with a, b, c as constants and a ̸= 0 (so that it really is a quadratic) we can
re-write it as follows:

as2 + bs+ c = a

(
s2 +

b

a
s+

c

a

)
= a

([
s+

b

2a

]2
+

[
c

a
− b2

4a2

])

Note that the term
[
s+ b

2a

]2
is the only term containing s and that it is

a square. The expression b
2a

added to s in this term is precisely half the

coefficient of s on the previous line. The other term
[
c
a
− b2

4a2

]
may be positive

or negative. If it is positive we can write

as2 + bs+ c = a

[s+ b

2a

]2
+

[√
c

a
− b2

4a2

]2
If it is negative we can write

as2 + bs+ c = a

[s+ b

2a

]2
−

[√
b2

4a2
− c

a

]2
15



Thus the original quadratic can be written as

as2 + bs+ c = a× [the sum or difference of two squares, the first of which

contains all the s terms and the second is constant]

There is no point in remembering the formula, it is easy to deal with
particular cases as they arise.
Example 3.5

s2 + s+ 1 =

[
s+

1

2

]2
± something

= s2 + s+
1

4
± something

so the ± something is +3
4
, i.e.

⃝
s2 + s+ 1 =

[
s+

1

2

]2
+

3

4
=

[
s+

1

2

]2
+

[√
3

4

]2
Example 3.6

s2 − 4s+ 1 = [s− 2]2 ± something

= s2 − 4s+ 4± something

so the ± something is −3, i.e.

⃝
s2 − 4s+ 1 = [s− 2]2 − 3 = [s− 2]2 −

[√
3
]2

Example 3.7

2s2 + s− 3 = 2

(
s2 +

s

2
− 3

2

)
= 2

([
s+

1

4

]2
± something

)

= 2

(
s2 +

s

2
+

1

16
± something

)
so the ± something is − 1

16
− 3

2
= −25

16
, i.e.

⃝
2s2 + s− 3 = 2

([
s+

1

4

]2
− 25

16

)
= 2

([
s+

1

4

]2
−
[
5

4

]2)
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Looking back to example 3.3 you will see that we had not only to complete
the square, we also had to re-write the numerator thus

3s− 2 = 3(s+ 3)− 11

This type of manipulation is commonly required. In general

ds+ e = d(s+ f) + (e− df)

for any constants d, e, f . For examples:

5s+ 11 = 5(s+ 2) + 1

and
5s+ 11 = 5(s− 3) + 26

3.6.2 Partial fractions

Our aim is to take an expression such as

s+ 11

(s+ 3)(s− 1)

and to write it in the form

A

s+ 3
+

B

s− 1

for suitably chosen constants A and B. In fact we can determine A and B
by expressing the latter form over the common denominator (s+3)(s−1) as

A(s− 1) +B(s+ 3)

(s+ 3)(s− 1)

For this to equal the original expression we require

s+ 11 ≡ A(s− 1) +B(s+ 3)

(≡ means that the two expressions are identical for all values of s).
We can evaluate A, B by choosing “convenient” values of s or by com-

paring coefficients or by a combination of the two methods. Here there are
two convenient values of s, namely s = 1 which gives

1 + 11 = A.0 +B.(1 + 3), and so B =
12

4
= 3
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and s = −3 which gives

−3 + 11 = A.(−3− 1) +B.0, and so A = −8

4
= −2

If we chose to compare coefficients we would first write

s+ 11 ≡ A(s− 1) +B(s+ 3) ≡ (A+B)s+ (−A+ 3B)

Comparing the coefficients of s on the extreme left-hand side and the extreme
right-hand side we see that 1 = A + B. Similarly, comparing constants we
get 11 = −A + 3B. Solving these two equations for A, B gives (again)
A = −2, B = 3.

Whichever method is used for determining A, B, we obtain

s+ 11

(s+ 3)(s− 1)
=

−2

s+ 3
+

3

s− 1

In general we proceed as follows.
An expression such as

r(s) =
p(s)

q(s)

where p, q are polynomials in s is called a rational function of s. If the
degree of p(s) is strictly less than the degree of q(s) then the expression is
said to be a proper fraction. Otherwise it is said to be an improper fraction.
Easy examples are:

a)
2s+ 7

s(s+ 1)
=

2s+ 7

s2 + s
(a proper fraction)

b)
2s3 + 3s+ 2

(s− 1)(s+ 2)
=

2s3 + 3s+ 2

s2 + s− 2
(an improper fraction)

c)
s2

s2 + 1
(an improper fraction-just!)

Example a) is proper because the degree of the numerator is 1 whilst that
of the denominator is 2 (and 1 < 2). Example b) is improper because the
numerator has degree 3 and the denominator degree 2 (and 3 ̸< 2). Example
c) is also improper because 2 ̸< 2.

We shall only deal with proper fractions.
For such expressions we firstly factorize the denominator. We shall assume
that this has been done and has resulted in a denominator containing some
or all of the following:
a) unrepeated linear factors as+ b,
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b) repeated linear factors (cs+ d)r, (r > 1),
c) unrepeated quadratic factors es2 + fs+ g,
d) repeated quadratic factors (hs2 + is+ j)t, (t > 1).
For example, the denominator might be

(3s+ 7)(2s− 3)3(s2 + s+ 1)(s2 + 4)2

This contains the unrepeated linear factor 3s + 7, the (3 times) repeated
linear factor 2s − 3, the unrepeated quadratic factor s2 + s + 1, and the (2
times) repeated quadratic factor s2 + 4.

We then apply the following rules:
a) Each unrepeated linear factor as+ b gives rise to a partial fraction of the
form

A

as+ b
(where A is a constant).

b) Each repeated linear factor (cs + d)r, (r > 1) gives rise to r partial
fractions of the form

B1

cs+ d
+

B2

(cs+ d)2
+ · · ·+ Br

(cs+ d)r

(where B1, B2, · · · , Br are constants).
c) Each unrepeated quadratic factor es2+fs+g gives rise to a partial fraction
of the form

Cs+D

es2 + fs+ g
(where C, D are constants).

d) Each repeated quadratic factor (hs2 + is + j)t, (t > 1) gives rise to t
partial factions of the form

E1s+ F1

hs2 + is+ j
+

E2s+ F2

(hs2 + is+ j)2
+ · · ·+ Ets+ Ft

(hs2 + is+ j)t

(where E1, E2, · · · , Et and F1, F2, · · · , Ft are constants).
As an example, let us consider the following expression. (You would not

be expected to handle anything as awful as this in practice.)
Example 3.8 The form of the partial fractions for

3s7 + 1

(3s+ 7)(2s− 3)3(s2 + s+ 1)(s2 + 4)2
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is

A

3s+ 7︸ ︷︷ ︸
unrepeated linear

+
B

2s− 3
+

C

(2s− 3)2
+

D

(2s− 3)3︸ ︷︷ ︸
3-times repeated linear

+
Es+ F

s2 + s+ 1︸ ︷︷ ︸
unrepeated quadratic

+
Gs+H

s2 + 4
+

Is+ J

(s2 + 4)2︸ ︷︷ ︸
twice repeated quadratic

The constants A, B, · · · , J can be determined by expressing the partial
fractions over the common denominator

(3s+ 7)(2s− 3)3(s2 + s+ 1)(s2 + 4)2

and then equating numerators. Note that this denominator is NOT simply
the product of all the denominators of the partial fractions - this would con-
tain (2s− 3)6 and (s2 + 4)3. The denominator quoted is the lowest common
denominator for the partial fractions; it is the same as the original denomi-
nator. ⃝
Example 3.9 Determine partial fractions for

2s+ 1

s2(s2 + 1)

Solution Here s2 is a repeated linear factor and s2 + 1 an unrepeated
quadratic. We write

2s+ 1

s2(s2 + 1)
≡ A

s
+

B

s2
+

Cs+D

s2 + 1

≡ As(s2 + 1) +B(s2 + 1) + (Cs+D)s2

s2(s2 + 1)

Hence
2s+ 1 ≡ As(s2 + 1) +B(s2 + 1) + (Cs+D)s2

The “convenient” value s = 0 gives 1 = B.
Equating s terms gives 2 = A.
Equating s2 terms gives 0 = B +D, so D = −B = −1.
Equating s3 terms gives 0 = A+ C, so C = −A = −2.
Hence

⃝
2s+ 1

s2(s2 + 1)
≡ 2

s
+

1

s2
+

−2s− 1

s2 + 1

(If you haven’t already done so, now try examples on the inversion of
Laplace transforms.) EX

20



4 Solution of differential equations

The basic method is as follows:
i) take the Laplace transform of each term in the differential equation,
ii) solve the transformed equation (which is an algebraic equation),
iii) determine the inverse transform.

The method can be applied to linear constant-coefficient differential equa-
tions. The results of subsections 3.3 and 3.4 are particularly important we
recap them here:

L{y′} = sȳ − y0

L{y′′} = s2ȳ − sy0 − y′0
L{af + bg} = af̄ + bḡ (linearity)

where y0 = y(0), y′0 = y′(0) and a, b are constants.
Example 4.1 Solve the differential equation

y′′ + 3y′ + 2y = 6

using Laplace transforms, given that y(0) = 0 and y′(0) = 2.
Solution Taking Laplace transforms and using the linearity property

L{y′′}+ 3L{y′}+ 2L{y} = 6L{1}

Therefore

s2ȳ − sy0 − y′0 + 3 [sȳ − y0] + 2ȳ =
6

s

(We have obtained L{1} =
1

s
from the tables of transforms in the appendix.)

Substituting the values y0 = 0 and y′0 = 2 and collecting the ȳ terms together
gives

(s2 + 3s+ 2)ȳ − 2 =
6

s

and so

(s2 + 3s+ 2)ȳ = 2 +
6

s
=

2s+ 6

s

It should be noted that the bracketed expression (s2+3s+2) multiplying
ȳ bears a strong resemblance to the left hand side of the original differential
equation (y′′+3y′+2y). This is not coincidental and it is relatively easy to see
that this will happen for any linear constant-coefficient differential equation
- it is always worth checking at this point for obvious numerical slips. Those
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of you familiar with the method of complementary functions and particular
integrals for solving differential equations will notice that a similar expression
arises in the auxiliary equation which here is m2 + 3m+ 2 = 0.

Solving the equation for ȳ gives

ȳ =
2s+ 6

s(s2 + 3s+ 2)

=
2s+ 6

s(s+ 1)(s+ 2)

=
A

s
+

B

s+ 1
+

C

s+ 2

in partial fractions where

2s+ 6 ≡ A(s+ 1)(s+ 2) +Bs(s+ 2) + Cs(s+ 1)

Here s = 0 gives 6 = 2A, s = −1 gives 4 = −B and s = −2 gives 2 = 2C.
Hence A = 3, B = −4, C = 1. Therefore we can write ȳ in the form

ȳ =
3

s
− 4

s+ 1
+

1

s+ 2

Taking inverse transforms we obtain

y(t) = 3− 4e−t + e−2t

As this is our first example of solving a differential equation using Laplace
transforms we shall check that our solution really does satisfy the differential
equation and the initial conditions. Firstly, when t = 0 our solution takes
the value y(0) = 3 − 4e0 + e0 = 0, as required. Differentiating our formula
for y(t) gives

y′(t) = 4e−t − 2e−2t

and this gives y′(0) = 4 − 2 = 2, as required. Differentiating a second time
we obtain

y′′(t) = −4e−t + 4e−2t

Combining our expressions for y, y′, y′′ gives

y′′ + 3y′ + 2y = −4e−t + 4e−2t + 3(4e−t − 2e−2t) + 2(3− 4e−t + e−2t) = 6

as required. Thus our solution really does satisfy the initial conditions and
the original differential equation. In future examples we will not bother to
verify the solution. ⃝
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Example 4.2 Solve the differential equation

y′′ + 9y = cos 3t

given that y(0) = 1 and y′(0) = −1.
Solution Taking Laplace transforms

s2ȳ − sy0 − y′0 + 9ȳ =
s

s2 + 9

Therefore (s2 + 9)ȳ =
s

s2 + 9
+ sy0 + y′0

=
s

s2 + 9
+ s− 1

Hence ȳ =
s

(s2 + 9)2
+

s

s2 + 9
− 1

s2 + 9

=
1

6
.

6s

(s2 + 32)2
+

s

s2 + 32
− 1

3
.

3

s2 + 32

Using the transform tables we see that

⃝
y(t) =

1

6
t sin 3t+ cos 3t− 1

3
sin 3t

The Laplace transform method can be used to reduce systems of linear
differential equations to systems of ordinary algebraic linear equations.
Example 4.3 Solve the simultaneous differential equations

dx

dt
= 2x+ y,

dy

dt
= 3x+ 4y

given that x(0) = 1, y(0) = 0.
Solution Taking Laplace transforms we obtain

sx̄− x0 = 2x̄+ ȳ, sȳ − y0 = 3x̄+ 4ȳ

Substituting the values x0 = 1 and y0 = 0 and grouping together the x̄ and
ȳ terms in each of these two equations gives

(s− 2)x̄− ȳ = 1, 3x̄− (s− 4)ȳ = 0

Elimination of, say, x̄ between these two equations can be achieved by mul-
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tiplying the former by 3, the latter by (s− 2) and subtracting. This gives

[−3 + (s− 2)(s− 4)]ȳ = 3

i.e. (s2 − 6s+ 5)ȳ = 3

Therefore ȳ =
3

s2 − 6s+ 5

=
3

(s− 1)(s− 5)

=
A

s− 1
+

B

s− 5

in partial fractions, where

3 ≡ A(s− 5) +B(s− 1)

Putting s = 1 gives 3 = −4A, so A = −3
4
. Putting s = 5 gives 3 = 4B, so

B = 3
4
. Hence

ȳ = −3

4
.

1

s− 1
+

3

4
.

1

s− 5

Inverting gives

y(t) = −3

4
et +

3

4
e5t

To complete the problem we must also find x(t). There are various ways
of doing this. We could return to the simultaneous linear equations for x̄
and ȳ, eliminate ȳ, solve for x̄ and invert to obtain x. In many problems
(including this one) an easier alternative is to use our solution for y with one
or other of the original differential equations to determine x. In this case the
second of the two original differential equations can be re-written as

x =
1

3

(
dy

dt
− 4y

)
We know

y(t) = −3

4
et +

3

4
e5t

and so
dy

dt
= −3

4
et +

15

4
e5t

Therefore

x(t) =
1

3

(
−3

4
et +

15

4
e5t +

12

4
et − 12

4
e5t
)

=
1

3

(
9

4
et +

3

4
e5t
)
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and finally this gives

⃝x(t) =
3

4
et +

1

4
e5t

(The video covers the method of solution of differential equations using
Laplace transforms and two of the above examples. V

You should now try solving some differential equations by this method,
including some sets of simultaneous equations.) EX
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5 The unit step function

In this section we look at differential equations which involve the unit step
function. This function, u(t), is defined by

u(t) =

{
0 if t < 0
1 if t > 0

We will not be concerned by the value of u(t) at t = 0. The graph of u(t) is
shown below (figure 1).

Figure 1: The unit step function u(t).

The function is sometimes called Heaviside’s unit step function and de-
noted by H(t).

This type of function occurs very commonly in the practical world - it
corresponds to a switch being turned on. Since the switch may be turned
on at times other than t = 0 it is worth looking at u(t − a), where a is a
constant. From the definition of u(t),

u(t− a) =

{
0 if t− a < 0 ( i.e. t < a)
1 if t− a > 0 ( i.e. t > a)

The graph of u(t− a) is shown below (figure 2).
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Figure 2: The unit step function u(t− a).

This corresponds to a switch being turned on at time t = a.
The input after the switch is turned on may not be a constant of size 1

and it is worth looking at the product of u(t− a) with an arbitrary function
f(t). Since u(t − a) is zero for t < a, f(t)u(t − a) is also zero for t < a.
For t > a, u(t − a) has the value 1 and so f(t)u(t − a) has the value f(t).
Therefore

f(t)u(t− a) =

{
0 if t < a
f(t) if t > a

The graphs of a “typical” function f(t) and the resulting product f(t)u(t−a)
are shown below (figure 3).

Figure 3: A “typical” f(t) and the product f(t)u(t− a).

By combining products of the above type we can generally express func-
tions defined in a piecewise manner. Take, for example,

g(t) =


0 if t < 1
4 if 1 < t < 2
0 if t > 2
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The graph of g(t) is shown below (figure 4).

Figure 4: The function g(t).

We can build up g(t) by working from left to right across the graph.
Initially (for t < 1) g(t) = 0. If we wrote g(t) = 0 (for all t) we would be
correct for t < 1 but incorrect for t > 1. At t = 1 we want to add in (switch
on) a step of height 4. We can do this by adding 4u(t−1) so that our formula
now reads g(t) = 0+4u(t− 1). This formula is still correct for t < 1 because
here u(t−1) = 0 and it is also correct for 1 < t < 2 because here u(t−1) = 1.
The formula is incorrect for t > 2 because it provides no step down at t = 2.
We can allow for this by subtracting 4u(t− 2) (switching off a step of height
4 at t = 2). The formula now reads

g(t) = 0 + 4u(t− 1)− 4u(t− 2)

= 4u(t− 1)− 4u(t− 2)

Example 5.1 With h(t) defined by

h(t) =


0 if t < 0
t if 0 < t < 1
1 if t > 1

find an expression for h(t) involving the unit step function.
Solution The graph of h(t) is shown below (figure 5). Working from left to
right across the graph we have h(t) initially at 0. At t = 0 we switch on t
using tu(t). At t = 1 we switch off t using −tu(t− 1) and switch on 1 using
u(t− 1). The resulting expression for h(t) is

h(t) = 0 + tu(t)− tu(t− 1) + u(t− 1) = tu(t)− (t− 1)u(t− 1)
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Figure 5: The function h(t).

⃝
There is no real necessity to sketch the graph.

Example 5.2 If

g(t) =


3 if t < 2
−3 if 2 < t < 4
e−t if t > 4

then we can represent g(t) as follows. Initially g(t) is 3. At t = 2 this is
switched off using −3u(t− 2) and −3 is switched on using (−3)u(t− 2). At
t = 4 this is switched off using −(−3)u(t − 4) and e−t is switched on using
e−tu(t− 4). Therefore

g(t) = 3− 3u(t− 2) + (−3)u(t− 2)− (−3)u(t− 4) + e−tu(t− 4)

which reduces to g(t) = 3− 6u(t− 2) + (3 + e−t)u(t− 4). ⃝

In order to solve differential equations involving the unit step function we
shall look at the transform of u(t − a) and at the transform of f(t)u(t − a)
(both for a > 0).

For a > 0 we have

L{u(t− a)} =

∫ ∞

0

e−stu(t− a)dt (definition)

=

∫ a

0

e−stu(t− a)dt+

∫ ∞

a

e−stu(t− a)dt

We can split any integral at any point in the range of integration - here
we choose to make the split at a. We do this because if 0 < t < a then
u(t− a) = 0 and so the first integral is zero. If t > a then u(t− a) = 1 and
so the second integral is just∫ ∞

a

e−stdt =

[
e−st

−s

]∞
0

=
e−sa

s
(s > 0)
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(The upper limit is to be interpreted as lim
R→∞

e−sR

−s
= 0 for s > 0.) Hence

L{u(t− a)} =
e−sa

s

You will see that this appears in the table of Laplace transforms in the
appendix. A slightly more complicated argument allows us to deal with
L{g(t)u(t− a)}. The result is known as the second shift theorem.

Theorem 5.1. (The Second Shift Theorem) For a > 0

L{g(t)u(t− a)} = e−asL{g(t+ a)}

Proof For a > 0 we have

L{g(t)u(t− a)} =

∫ ∞

0

e−stg(t)u(t− a)dt (definition)

=

∫ a

0

e−stg(t)u(t− a)dt+

∫ ∞

a

e−stg(t)u(t− a)dt

Here, as before, we have split the range of integration into two parts. In the
former part the integrand is zero (because u(t−a) = 0 if t < a) whilst in the
latter part the integrand is e−stg(t) (because u(t− a) = 1 if t > a). Hence

L{g(t)u(t− a)} =

∫ ∞

a

e−stg(t)dt

We now change the integration variable from t to w = t − a. Note that
when t = a (the lower integration limit) w = 0, whilst as t tends to infinity
(the upper limit) we also have w tending to infinity. If w = t − a then
t = w + a and dt = dw. Therefore

L{g(t)u(t− a)} =

∫ ∞

0

e−s(w+a)g(w + a)dw

=

∫ ∞

0

e−swe−sag(w + a)dw

= e−sa

∫ ∞

0

e−swg(w + a)dw

In the latter integral, the variable w is just a “dummy” variable - we can
replace it by any other symbol we choose - for example by t. All we are
saying here is that∫ ∞

0

e−swg(w + a)dw =

∫ ∞

0

e−stg(t+ a)dt
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in the same way that we might say∫ 1

0

w3dw =

∫ 1

0

t3dt

Hence

L{g(t)u(t− a)} = e−sa

∫ ∞

0

e−stg(t+ a)dt

We can now identify the latter integral as a Laplace transform, namely that
of g(t+ a). Therefore

2
L{g(t)u(t− a)} = e−asL{g(t+ a)}

If we replace g(t) in the above result by f(t − a), so that g(t + a) =
f(t+ a− a) = f(t) we can write the result as

L{f(t− a)u(t− a)} = e−asL{f(t)} = e−asf̄(s)

Both forms are useful; the original version is generally of greatest use in
determining the Laplace transform of a combination whilst the latter is gen-
erally of greatest use in inverting a given transform. We summarize them
here for future reference.

Second shift theorem

L{g(t)u(t− a)} = e−asL{g(t+ a)}
L{f(t− a)u(t− a)} = e−asf̄(s)

We use the result to obtain Laplace transforms as shown in the following
examples.
Example 5.3

L{t2u(t− 3)} = e−3sL{(t+ 3)2}
= e−3sL{t2 + 6t+ 9}

= e−3s

[
2

s3
+

6

s2
+

9

s

]
(the terms in the [ ] brackets being obtained from tables.) ⃝
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Example 5.4

L{e3tu(t− 2)} = e−2sL{e3(t+2)}
= e−2sL{e3t+6}
= e−2se6L{e3t}

= e−2s.e6.
1

s− 3
(from tables)

=
e6−2s

s− 3 ⃝

We use the result to obtain inverse transforms as shown in the following
examples.

Example 5.5 Obtain L−1

{
e−2s

s2 + 1

}
Solution We note that the factor e−2s in the transform corresponds to
a factor u(t − 2) in the original function of t. For the other component

L−1{ 1

s2 + 1
} = sin t. Using the second version of the shift theorem we have

L{sin(t− 2)u(t− 2)} = e−2sL{sin t}

Hence

L−1

{
e−2s

s2 + 1

}
= sin(t− 2)u(t− 2)

In effect what we have done is to replace e−2s by u(t−2), and to replace 1
s2+1

by its inverse sin t but with t “shifted” to t− 2. ⃝

Example 5.6 Obtain L−1

{
e−3s

(s+ 2)2

}
Solution e−3s corresponds to u(t− 3).

For the other component L−1{ 1

(s+ 2)2
} = te−2t. Hence

L−1

{
e−3s

(s+ 2)2

}
= (t− 3)e−2(t−3)u(t− 3)

⃝

We now try solving some differential equations involving the unit step
function.
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Example 5.7 Solve the differential equation

y′′ + y = f(t)

subject to y(0) = 1, y′(0) = 0 where

f(t) =


0 if t < 1
4 if 1 < t < 2
0 if t > 2

Solution f(t) can be expressed as

f(t) = 0 + 4u(t− 1)− 4u(t− 2)

= 4u(t− 1)− 4u(t− 2)

Hence

f̄(s) =
4e−s

s
− 4e−2s

s

Taking the transform of the differential equation gives

s2ȳ − sy0 − y′0 + ȳ = f̄(s)

Substituting for f̄(s) and putting y0 = 1, y′0 = 0 this gives

(s2 + 1)ȳ = s+
4e−s

s
− 4e−2s

s

Hence

ȳ =
s

s2 + 1
+

4

s(s2 + 1)
e−s − 4

s(s2 + 1)
e−2s

Before proceeding further we resolve
1

s(s2 + 1)
into partial fractions. Put

1

s(s2 + 1)
≡ A

s
+

Bs+ C

s2 + 1
≡ A(s2 + 1) + (Bs+ C)s

s(s2 + 1)

Hence
1 ≡ A(s2 + 1) + (Bs+ C)s

Then s = 0 gives 1 = A. Equating s2 terms gives 0 = A+ B, so B = −A =
−1. Equating s terms gives 0 = C. Therefore

1

s(s2 + 1)
=

1

s
− s

s2 + 1
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It follows that ȳ can be expressed as

ȳ =
s

s2 + 1
+ 4

[(
1

s
− s

(s2 + 1)

)
e−s −

(
1

s
− s

(s2 + 1)

)
e−2s

]
We have

L−1

{
s

s2 + 1

}
= cos t and L−1

{
1

s
− s

s2 + 1

}
= 1− cos t

therefore

L−1

{(
1

s
− s

s2 + 1

)
e−s

}
= u(t− 1) [1− cos(t− 1)]

and

L−1

{(
1

s
− s

s2 + 1

)
e−2s

}
= u(t− 2) [1− cos(t− 2)]

Hence

⃝
y(t) = cos t+ 4u(t− 1) [1− cos(t− 1)]− 4u(t− 2) [1− cos(t− 2)]

Example 5.8 The function g(t) is given by

g(t) =


0 if t < 0
t if 0 < t < 1
0 if t > 1

Solve the differential equation

d2x

dt2
+ 3

dx

dt
+ 2x = g(t)

given that x(0) = x′(0) = 0.
Solution The function g(t) can be expressed by

g(t) = 0 + tu(t)− tu(t− 1)

Its Laplace transform is therefore

ḡ(s) =
1

s2
− e−sL{(t+ 1)}

=
1

s2
− e−s

[
1

s2
+

1

s

]
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Taking the transform of the equation we obtain

s2x̄− sx0 − x′
0 + 3(sx̄− x0) + 2x̄ = ḡ(s)

Substituting for ḡ(s) and the values x0 = x′
0 = 0 gives

(s2 + 3s+ 2)x̄ =
1

s2
− e−s

[
1

s2
+

1

s

]
Hence, noting (s2 + 3s+ 2) = (s+ 1)(s+ 2),

x̄ =
1

s2(s+ 1)(s+ 2)
− e−s

[
1

s2(s+ 1)(s+ 2)
+

1

s(s+ 1)(s+ 2)

]

The form of the partial fractions for
1

s2(s+ 1)(s+ 2)
is

A

s
+

B

s2
+

C

s+ 1
+

D

s+ 2

and that for
1

s(s+ 1)(s+ 2)
is

E

s
+

F

s+ 1
+

G

s+ 2

We will not evaluate A, B, C, D, E, F, G here [you can do it if you like!].
Whatever these values turn out to be, we have

x(t) = A+Bt+ Ce−t +De−2t

− u(t− 1)
[
A+B(t− 1) + Ce−(t−1) +De−2(t−1)

+E + Fe−(t−1) +Ge−2(t−1)
]

⃝

(The video covers most of the material in this section. V
You should do some examples to ensure that you understand how to rep-

resent piecewise continuous functions using the unit step function and how to
use the second shift theorem to obtain their Laplace transforms. You should
then try solving differential equations which involve the unit step function
and the use of the second shift theorem to invert the resulting transforms.) EX
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6 The unit impulse “function”

In the physical world an object can be set in motion by applying a modest
force over a period of time, or by applying a sharp blow at an instant of
time. The unit impulse “function” is a mathematical model of the sharp
blow applied at an instant of time. You will note we have described it as a
“function” rather than as a function. This is because it is not really a function
although it has many characteristics in common with functions. Sometimes
it is called the Dirac delta function; generally it is denoted by δ(t). To
give a proper rigorous account of this object is well beyond the scope of these
notes. In broad terms δ(t) is defined by its effect on other functions and we
give below a very informal treatment. Fortunately it has a Laplace transform
which is a perfectly respectable function.

Let ϵ be a small positive quantity. We define the function δϵ(t) by

δϵ(t) =

{ 1

ϵ
if 0 < t < ϵ

0 otherwise

The graph of δϵ(t) is sketched below (figure 6).

Figure 6: The function δϵ(t).

The important features to note are that δϵ(t) is zero for most values of t

but that near to t = 0 the value is so large (
1

ϵ
) that the area under the graph

is precisely 1 unit.
Informally you can think of the unit impulse “function” as being the

result of letting ϵ tend to zero in δϵ(t). You will obtain a “function” which is
zero everywhere except at one point (t = 0) and at that point it is so large
that the area under the graph is one unit. [Of course if you really do let ϵ
tend to zero then δϵ(t) → 0 if t ̸= 0, and δϵ(0) → +∞]
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The “unit impulse” referred to in the title is the unit area under the
graph. In δϵ(t) this is located near to t = 0. It is useful to be able to locate
the unit impulse at other times (i.e. at other values of t). For this reason we
consider the translate δϵ(t− a).

δϵ(t− a) =

{ 1

ϵ
if 0 < t− a < ϵ i.e. a < t < a+ ϵ

0 otherwise

The graph of δϵ(t− a) is sketched below (figure 7).

Figure 7: The function δϵ(t− a).

In the same way that δ(t) is regarded as a limiting case of δϵ(t), we can
think of the limiting case of δϵ(t− a) (as ϵ tends to zero) as defining δ(t− a).

We said that the unit impulse “function” is really defined by its effect on
other functions. To see what we mean by this, take any continuous function
f(t) defined for t ≥ 0 and consider (for a > 0) the integral∫ ∞

0

δϵ(t− a)f(t)dt

We can split the integral into three parts, namely∫ a

0

+

∫ a+ϵ

a

+

∫ ∞

a+ϵ

In the first and third of these integrals δϵ(t − a) has the value zero. In the
second it has the value 1

ϵ
. Consequently∫ ∞

0

δϵ(t− a)f(t)dt = 0 +
1

ϵ

∫ a+ϵ

a

f(t)dt+ 0 =
1

ϵ

∫ a+ϵ

a

f(t)dt
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We examine this latter integral, bearing in mind that we are interested
in small values of ϵ. Consider the diagram below (figure 8).

Figure 8: The integral
∫ a+ϵ

a
f(t)dt.

The shaded area represents
∫ a+ϵ

a
f(t)dt. If ϵ is small this will be approx-

imately equal to f(a)× ϵ (and the approximation will improve as ϵ tends to
zero). Hence ∫ ∞

0

δϵ(t− a)f(t)dt ≈ 1

ϵ
.f(a).ϵ = f(a)

i.e. ∫ ∞

0

δϵ(t− a)f(t)dt → f(a) as ϵ → 0

We therefore feel justified in writing∫ ∞

0

δ(t− a)f(t)dt = f(a) (provided a > 0)

In effect, δ(t− a) is so large at t = a that it picks out the value of f at a
from the range of integration.
If we apply the result to f(t) = 1 (for all t), we get (for a > 0)∫ ∞

0

δ(t− a)dt = 1

(i.e. the delta function has unit area under its graph).
If f(t) is zero at t = a then irrespective of its value elsewhere∫ ∞

0

δ(t− a)f(t)dt = 0
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(i.e. the delta function δ(t− a) is zero except at t = a).
Applying the result with f(t) = e−st gives the Laplace transform:

L{δ(t− a)} =

∫ ∞

0

δ(t− a)e−stdt = e−sa

Bearing this in mind we can now solve differential equations involving the
unit impulse “function”.
Example 6.1 Solve the differential equation

y′′ + 2y′ + y = δ(t− 1)

given that y(0) = 0, y′(0) = 1.
Solution Before obtaining the solution it is probably worth considering what
to expect. The system represented by the left-hand side of the equation is in
some state initially (i.e. from t = 0 to t = 1) determined by the conditions
y(0) = 0 and y′(0) = 1. At time t = 1, a unit impulse is delivered. This will
cause an abrupt change in the system. Thus the solution for y is likely to
have a step at time t = 1 (i.e. it will probably involve u(t− 1)).

Taking Laplace transforms we obtain

s2ȳ − sy0 − y′0 + 2(sȳ − y0) + ȳ = e−s

Putting y0 = 0 and y′0 = 1 gives

(s2 + 2s+ 1)ȳ = 1 + e−s

Noting s2 + 2s+ 1 = (s+ 1)2 we obtain

ȳ =
1

(s+ 1)2
+

e−s

(s+ 1)2

Now L−1

{
1

(s+ 1)2

}
= te−t. Hence, from the second shift theorem,

L−1

{
e−s

(s+ 1)2

}
= u(t− 1)(t− 1)e−(t−1). Therefore

y(t) = te−t + u(t− 1)(t− 1)e−(t−1)

The first term (te−t) represents the solution to

y′′ + 2y′ + y = 0, given y(0) = 0, y′(0) = 1.

The second term (u(t− 1)(t− 1)e−(t−1)) is the response of the system to the
unit impulse at t = 1. Note that this second term is, as expected, zero for
t < 1. ⃝
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Example 6.2 Solve the differential equation

y′′ + 3y′ + 3y = δ(t− 1)t2

given that y(0) = y′(0) = 0.
Solution The term t2 multiplying δ(t− 1) is a bit of a fraud. Since δ(t− 1)
is zero everywhere except at t = 1, it is only the value of t2 at t = 1 which
matters. We might as well replace δ(t − 1).t2 by δ(t − 1).12. Thus the
transform of the right-hand side of the equation is simply L{δ(t− 1)} = e−s.
If you find this distasteful, note in general

L{δ(t− a)f(t)} =

∫ ∞

0

δ(t− a)f(t)e−stdt = f(a)e−sa = f(a)L{δ(t− a)}

Taking the transform of the equation gives

s2ȳ − sy0 − y′0 + 3(sȳ − y0) + 3ȳ = e−s

Putting y0 = y′0 = 0 then gives

(s2 + 3s+ 3)ȳ = e−s

and so

ȳ =
1

s2 + 3s+ 3
.e−s

To invert this, note that completing the square gives

s2 + 3s+ 3 =

(
s+

3

2

)2

+
3

4
=

(
s+

3

2

)2

+

(√
3

2

)2

Hence
1

s2 + 3s+ 3
=

√
3
2

(s+ 3
2
)2 + (

√
3
2
)2
.
2√
3

Here we have introduced a factor
√
3
2

on the top because the table of trans-
forms contains the entry

L{e−αt sinωt} =
ω

(s+ α)2 + ω2

We have of course immediately corrected for this additional factor
√
3
2

by
multiplying the whole expression by 2√

3
. It follows that

L−1

{
1

s2 + 3s+ 3

}
=

2√
3
e−

3
2
t sin

(√
3

2
t

)

40



Hence by the second shift theorem

L−1

{
e−s

s2 + 3s+ 3

}
=

2√
3
u(t− 1)e−

3
2
(t−1) sin

(√
3

2
(t− 1)

)
i.e.

y(t) =
2√
3
u(t− 1)e−

3
2
(t−1) sin

(√
3

2
(t− 1)

)
In this case the value of y was zero until the impulse was received at time
t = 1. ⃝

We conclude this section by mentioning the concept of Transfer Func-
tions. Consider the differential equation

y′′ + ay′ + by = f(t) given y(0) = y′(0) = 0

where a, b are constants and f(t) is a function of t. Taking Laplace trans-
forms gives

s2ȳ + asȳ + bȳ = f̄(s)

and so

ȳ =
1

s2 + as+ b
f̄(s)

= p(s)f̄(s), say.

The function p(s) =
1

s2 + as+ b
is called the Transfer Function of the

system described by the differential equation. If we consider the case when
f(t) = δ(t) then f̄(s) = 1 and so ȳ = p(s). Thus the transfer function of the
system is just the Laplace transform of the response y of the system to the
unit impulse at t = 0. (This response is called the impulse response).

Schematically we can represent the physical system by means of the dia-
gram below.

(The video covers most of the material in this section and it includes an
on-location session in the student union. V

You should now try some examples of differential equations which involve
the unit impulse function.) EX
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7 Periodic functions

(This section is not covered in the videos.)
A function f is said to have period p if f(t+ p) = f(t) for all values of t.

Geometrically this means that the graph of f repeats in blocks of length p.
Many functions which arise in practice are periodic - the leading examples are
probably the sine and cosine functions - but digital equipment often generates
other periodic functions such as sawtooths and square wares. Calculation of
the Laplace transforms of such functions is simplified by the following result.

Theorem 7.1. If f is periodic with period p then

f̄(s) =
1

1− e−sp

∫ p

0

f(t)e−stdt

Proof From the definition of the Laplace transform

f̄(s) =

∫ ∞

0

f(t)e−stdt

=

∫ p

0

f(t)e−stdt+

∫ ∞

p

f(t)e−stdt

In the latter integral we make the substitution u = t− p (so that t = u + p
and dt = dp). Note that the limit t = p corresponds to u = 0 and that
u → ∞ as t → ∞. Hence

f̄(s) =

∫ p

0

f(t)e−stdt+

∫ ∞

0

f(u+ p)e−s(u+p)du

But f(u + p) = f(u) because f is periodic with period p, and e−s(u+p) =
e−sue−sp. Hence

f̄(s) =

∫ p

0

f(t)e−stdt+ e−sp

∫ ∞

0

f(u)e−sudu

The latter integral is just the same as∫ ∞

0

f(t)e−stdt

i.e. it is simply f̄(s). Hence we have

f̄(s) =

∫ p

0

f(t)e−stdt+ e−spf̄(s)
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Therefore

f̄(s)− e−spf̄(s) =

∫ p

0

f(t)e−stdt

i.e.

(1− e−sp)f̄(s) =

∫ p

0

f(t)e−stdt

Hence

2f̄(s) =
1

1− e−sp

∫ p

0

f(t)e−stdt

We now use the result to produce Laplace transforms for some simple
periodic functions.
Example 7.1 Determine the Laplace transform of the square wave of period
2a given by

f(t) =

{
1 if 0 ≤ t < a
0 if a ≤ t < 2a

Solution The graph of f(t) has the following form (figure 9).

Figure 9: The squarewave f(t).

Using the result of theorem 7.1 with p = 2a we get

f̄(s) =
1

1− e−2as

∫ 2a

0

f(t)e−stdt

We can split the integral into∫ a

0

+

∫ 2a

a
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In the former integral f(t) = 1, whilst in the latter integral f(t) = 0 (and so
the integral is zero). Therefore in this case

f̄(s) =
1

1− e−2as

∫ a

0

e−stdt

=
1

1− e−2as

[
e−st

−s

]a
0

=
1

1− e−2as

[
1− e−as

s

]
=

1

s
.
1− e−as

1− e−2as

In fact this can be simplified because 1 − e−2as = (1 − e−as)(1 + e−as)
(difference of two squares formula). Hence

⃝
f̄(s) =

1

s
.

1− e−as

(1− e−as)(1 + e−as)
=

1

s
.

1

1 + e−as

Example 7.2 Determine the Laplace transform of the sawtooth wave of
period a given by

f(t) =
t

a
if 0 ≤ t < a

Solution The graph of f(t) has the following form (figure 10).

Figure 10: The sawtooth f(t).

Applying theorem 7.1 with p = a gives

f̄(s) =
1

1− e−as

∫ a

0

f(t)e−stdt

=
1

1− e−as

∫ a

0

t

a
e−stdt

=
1

a
.

1

1− e−as

∫ a

0

te−stdt
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Integration by parts gives∫ a

0

te−stdt =

[
t

(
e−st

−s

)
−
∫ (

e−st

−s

)
dt

]a
0

= −ae−as

s
−
[
e−st

s2

]a
0

= −ae−as

s
+

1

s2
− e−as

s2

=
1

s2
(1− e−as)− a

s
e−as

Hence

⃝
f̄(s) =

1

a
.

1

1− e−as

[
1

s2
(1− e−as)− a

s
e−as

]
=

1

as2
− e−as

s(1− e−as)

Example 7.3 Determine the Laplace transform of the full-wave rectification
of the sine wave sin(ωt), i.e. f(t) = | sin(ωt)| (period π

ω
).

Solution The graph of f(t) has the following form (figure 11).

Figure 11: The rectified sine wave | sin(ωt)|.

Applying theorem 7.1 with p = π
ω
gives

f̄(s) =
1

1− e−πs/ω

∫ π/ω

0

f(t)e−stdt

=
1

1− e−πs/ω

∫ π/ω

0

sin(ωt)e−stdt

because f(t) = sin(ωt) for 0 ≤ t ≤ π
ω
. To evaluate the integral substitute

u = ωt so that the integral becomes

I =
1

ω

∫ π

0

sinue−su/ωdu
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Replacing sinu by ℑ(eiu) (where ℑ denotes the imaginary part) gives

I =
1

ω
.ℑ
(∫ π

0

e(i−s/ω)udu

)
=

1

ω
.ℑ
([

e(i−s/ω)u

(i− s/ω)

]π
0

)
=

1

ω
.ℑ
(
1− e(iπ−πs/ω)

s/ω − i

)
noting eiπ = −1 we obtain

I =
1

ω
.ℑ
(
1 + e−πs/ω

s/ω − i

)
=

1

ω
.ℑ
(
(1 + e−πs/ω)(s/ω + i)

s2/ω2 + 1

)
=

1

ω
.
(1 + e−πs/ω)

(s2/ω2 + 1)

=
ω

s2 + ω2
.(1 + e−πs/ω)

Hence

⃝f̄(s) =
ω

s2 + ω2
.
1 + e−πs/ω

1− e−πs/ω

Working with periodic functions often involves inverting expressions of
the forms

f̄(s).
1

1 + e−as
and f̄(s).

1

1− e−as

These (and similar) forms can be inverted by using the expansions

1

1 +X
= 1−X +X2 −X3 + · · · (for |X| < 1)

1

1−X
= 1 +X +X2 +X3 + · · · (for |X| < 1)

and then applying the second shift theorem.
Example 7.4 Determine

L−1

{
1

s− ω
.

e−as

1 + e−as

}
Solution Note firstly L−1{ 1

s− ω
} = eωt. Expanding

1

1 + e−as
= 1− e−as + e−2as − e−3as + · · ·
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Hence, multiplying by e−as,

e−as

1 + e−as
= e−as − e−2as + e−3as − e−4as + · · ·

From the second shift theorem

L−1

{
e−as

s− ω

}
= u(t− a)eω(t−a)

L−1

{
e−2as

s− ω

}
= u(t− 2a)eω(t−2a)

L−1

{
e−3as

s− ω

}
= u(t− 3a)eω(t−3a)

etc.

Hence

L−1

{
1

s− ω
.

e−as

1 + e−as

}
= L−1

{
e−as

s− ω
− e−2as

s− ω
+

e−3as

s− ω
− e−4as

s− ω
+ · · ·

}
= u(t− a)eω(t−a) − u(t− 2a)eω(t−2a)

+ u(t− 3a)eω(t−3a) − u(t− 4a)eω(t−4a) + · · ·

=
∞∑
r=1

u(t− ra)eω(t−ra)(−1)r−1

Note that although the final answer appears to be an infinite series, for any
particular value of t only a finite number of the u(t− ra) terms are non-zero.
[In fact u(t− ra) = 0 for all values of r > t

a
.] Thus the series is only a finite

series for any particular value of t. ⃝
We now look at some examples of differential equations involving the

types of periodic functions considered above
Example 7.5 Solve the differential equation

dy

dt
+ y = f(t)

given that y(0) = 0, where f(t) is the square wave of period 2 given by

f(t) =

{
1 if 0 ≤ t < 1
0 if 1 ≤ t < 2

Solution This function was discussed in an earlier example (Example 7.1)
where its Laplace transform was found to be

f̄(s) =
1

s
.

1

1 + e−s
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Taking the Laplace transform of the differential equation gives

sȳ − y0 + ȳ =
1

s
.

1

1 + e−s

But y0 = 0 so we obtain

(s+ 1)ȳ =
1

s
.

1

1 + e−s

Hence

ȳ =
1

s(s+ 1)
.

1

1 + e−s

Partial fractions give
1

s(s+ 1)
=

1

s
− 1

s+ 1

Hence

ȳ =
1

s
.

1

1 + e−s
− 1

s+ 1
.

1

1 + e−s

Inverting the first term on the right-hand side is easy: it gives the original
function f(t). To deal with the second term we note

L−1

{
1

s+ 1

}
= e−t

and
1

1 + e−s
= 1− e−s + e−2s − e−3s + · · ·

Hence

L−1

{
1

s+ 1
.

1

1 + e−s

}
= L−1

{
1

s+ 1
− e−s

s+ 1
+

e−2s

s+ 1
− e−3s

s+ 1
+ · · ·

}
= e−t − u(t− 1)e−(t−1) + u(t− 2)e−(t−2)

− u(t− 3)e−(t−3) + · · ·

using the second shift theorem. Finally we obtain

y(t) = f(t)− e−t + u(t− 1)e−(t−1) − u(t− 2)e−(t−2) + u(t− 3)e−(t−3) + · · ·

Although the sum on the right-hand side appears to be an infinite series, for
any particular value of t all but a finite number of the terms are zero. ⃝
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Example 7.6 Solve the differential equation

d2y

dt2
+ 4y = | sin t|

given that y(0) = y′(0) = 0.
Solution The function | sin t| is the full-wave rectification of the sine wave
sin t. Again from an earlier example (Example 7.3) the transform of this is
given by

1

s2 + 1
.
1 + e−πs

1− e−πs

Taking the transform of the differential equation we obtain

s2ȳ − sy0 − y′0 + 4ȳ =
1

s2 + 1
.
1 + e−πs

1− e−πs

Substituting y0 = y′0 = 0 this reduces to

(s2 + 4)ȳ =
1

s2 + 1
.
1 + e−πs

1− e−πs

and so

ȳ =
1

(s2 + 4)(s2 + 1)
.
1 + e−πs

1− e−πs

Using partial fractions

1

(s2 + 4)(s2 + 1)
=

1

3

[
1

s2 + 1
− 1

s2 + 4

]
Hence

ȳ =
1

3
.

1

s2 + 1
.
1 + e−πs

1− e−πs
− 1

3
.

1

s2 + 4
.
1 + e−πs

1− e−πs

The first term on the right-hand side is just one third of the transform of
| sin t| and so is easily inverted. To deal with the second, note that

L−1

{
2

s2 + 4

}
= sin 2t

Also
1

1− e−πs
= 1 + e−πs + e−2πs + e−3πs + · · ·

so

1 + e−πs

1− e−πs
= (1 + e−πs)(1 + e−πs + e−2πs + e−3πs + · · · )

= 1 + e−πs + e−2πs + e−3πs + · · ·
+ e−πs + e−2πs + e−3πs + · · ·

= 1 + 2e−πs + 2e−2πs + 2e−3πs + · · ·
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Hence

L−1

{
1

s2 + 4
.
1 + e−πs

1− e−πs

}
= L−1

{
1

s2 + 4
+

2

s2 + 4
e−πs +

2

s2 + 4
e−2πs + · · ·

}
=

1

2
sin 2t+ u(t− π) sin 2(t− π)

+ u(t− 2π) sin 2(t− 2π) + · · ·

Because of the periodicity of sin 2t, we have that sin 2(t − rπ) = sin 2t for
r = 1, 2, 3, . . .. We can therefore write the previous expression as

1

2
sin 2t+ u(t− π) sin 2t+ u(t− 2π) sin 2t+ · · ·

= sin 2t[
1

2
+ u(t− π) + u(t− 2π) + · · · ]

Finally, we obtain

y(t) =
1

3
| sin t| − 1

3
sin 2t[

1

2
+ u(t− π) + u(t− 2π) + · · · ]

Again here the apparently infinite sum on the right-hand side is in fact finite
for any particular value of t. ⃝

(You should now try obtaining the Laplace transforms of some easy peri-
odic functions using the theorem at the start of this section. You should then
try solving some differential equations which involve such periodic functions.)

EX
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8 Transforms and integrals

(This section is not covered in the videos.)

8.1 Convolution

The convolution of two functions f(t), g(t) (defined for t ≥ 0) is the function
of t ∫ t

0

f(u)g(t− u)du

(defined for t ≥ 0).
This function is denoted by f ⋆ g so that

(f ⋆ g)(t) =

∫ t

0

f(u)g(t− u)du

It is easy to show that the convolution operator ⋆ has a number of features
reminiscent of multiplication:

f ⋆ g = g ⋆ f

f ⋆ (g1 + g2) = f ⋆ g1 + f ⋆ g2

(f ⋆ g) ⋆ h = f ⋆ (g ⋆ h)

Example 8.1 If f(t) = t, g(t) = et, determine (f ⋆ g)(t).
Solution

(f ⋆ g)(t) =

∫ t

0

uet−udu

= et
∫ t

0

ue−udu

= et
[
−ue−u +

∫
e−udu

]t
0

= et
[
−te−t − e−t + 1

]
= −t− 1 + et

Hence (f ⋆ g)(t) = et − t− 1 ⃝

It turns out that the Laplace transform of (f ⋆ g)(s) is just the product
f̄(s)ḡ(s). The proof requires a knowledge of double integrals. You should
omit the proof if you are unfamiliar with this topic.
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Theorem 8.1. (The convolution theorem)

(f ⋆ g)(s) = f̄(s)ḡ(s)

Proof

(f ⋆ g)(s) =

∫ ∞

0

(∫ t

0

f(u)g(t− u)du

)
e−stdt

=

∫ ∞

0

∫ t

0

e−stf(u)g(t− u)dudt

This integral is a double integral over the region shown below (figure 12).

Figure 12: The region of integration.

Changing the order of integration gives

(f ⋆ g)(s) =

∫ ∞

0

∫ ∞

u

e−stf(u)g(t− u)dtdu

=

∫ ∞

0

(
f(u)e−su

∫ ∞

u

e−s(t−u)g(t− u)dt

)
du

=

∫ ∞

0

(
f(u)e−su

∫ ∞

0

e−svg(v)dv

)
du

where there has been a change of variable to v = t− u in the inner integral.
But ∫ ∞

0

e−svg(v)dv = ḡ(s)
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Hence

(f ⋆ g)(s) =

∫ ∞

0

f(u)e−suḡ(s)du

= ḡ(s)

∫ ∞

0

f(u)e−sudu

= ḡ(s)f̄(s)

and this completes the proof. 2

Whether or not you have the knowledge of multiple integrals to follow
the proof, the result of the theorem should make it clear why ⋆ is likely to
have properties similar to multiplication.

The convolution theorem can be useful in finding inverse transforms.
Example 8.2 Use the convolution theorem to find the inverse transform of
1/[s2(s− 1)].
Solution Firstly 1/s2 is the inverse transform of t. Secondly 1/(s− 1) is the
inverse transform of et. Hence 1/[s2(s − 1)] is the inverse transform of the
convolution of t and et. From the previous example this function is et− t−1,
i.e.

⃝L−1

{
1

s2(s− 1)

}
= et − t− 1

8.2 The transform of an integral

Theorem 8.2.

L

{∫ t

0

f(u)du

}
=

f̄(s)

s

Proof Apply the convolution theorem with g(t) ≡ 1. This gives

L {f ⋆ g} (s) = f̄(s)ḡ(s)

i.e. L

{∫ t

0

f(u)du

}
= f̄(s).

1

s
. 2

Of course the result can be reapplied to give transforms of iterated inte-
grals. For example

L

{∫ t

0

(∫ u

0

f(v)dv

)
du

}
=

f̄(s)

s2

Example 8.3 Given that the transform of t is 1/s2, the result gives

L

{∫ t

0

udu

}
=

1

s3

i.e. L

{
t2

2

}
=

1

s3
. ⃝
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8.3 Solution of integral and integral-differential equa-
tions

A differential equation is an equation relating derivatives of an unknown
function y. An integral equation is an equation relating integrals of an un-
known function y. More complicated equations may involve both derivatives
and integrals; these are called integral-differential equations.

Just as it is possible to solve certain differential equations by use of
Laplace transforms, so it may be possible to solve integral and integral-
differential equations using this technique. The two theorems above (theo-
rem 8.1 (the convolution theorem) and theorem 8.2) are generally useful.
Example 8.4 Solve the integral equation

y(t) = e2t +

∫ t

0

et−uy(u)du

Solution We recognise the integral as the convolution of et and y(t); its
transform is therefore ȳ(s)/(s− 1). Taking the transform of the equation we
obtain

ȳ(s) =
1

s− 2
+

ȳ(s)

s− 1

Grouping the ȳ terms this gives

ȳ(s)

(
1− 1

s− 1

)
=

1

s− 2

so

ȳ(s)

(
s− 2

s− 1

)
=

1

s− 2

Hence

ȳ(s) =
s− 1

(s− 2)2
=

s− 2

(s− 2)2
+

1

(s− 2)2
=

1

s− 2
+

1

(s− 2)2

Therefore, inversion gives

⃝
y(t) = e2t + te2t = (t+ 1)e2t

Example 8.5 Solve the integral-differential equation

dy

dt
= 1 + cos t−

∫ t

0

y(u)du

given that y(0) = 0.
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Solution Taking Laplace transforms we have

sȳ − y0 =
1

s
+

s

s2 + 1
− 1

s
ȳ

Putting y0 = 0, multiplying by s, and grouping the ȳ terms gives

(s2 + 1)ȳ = 1 +
s2

s2 + 1

therefore

ȳ =
1

s2 + 1
+

s2

(s2 + 1)2

To make use of the transform tables we re-write s2 as (s2 − 1) + 1 in the
numerator of the second term on the right-hand side. This gives

ȳ =
1

s2 + 1
+

s2 − 1

(s2 + 1)2
+

1

(s2 + 1)2

Hence

y(t) = sin t+ t cos t+
1

2
(sin t− t cos t)

and this reduces to

⃝y(t) =
3

2
sin t+

t

2
cos t

(You should now try some examples involving the convolution theorem
and transforms of integrals. You should then try examples of an integral and
an integral- differential equation.) EX
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9 Summary

When you have completed this package, you should be able to do the things
listed below:

1. understand and reproduce the definition of the Laplace transform,

2. obtain Laplace transforms of easy functions directly from the defini-
tion,

3. obtain the Laplace transforms of first and second derivatives,

4. invert transforms using tables in conjunction with algebraic manipu-
lations such as partial fractions and completing the square,

5. use Laplace transforms to solve first and second order linear differential
equations with appropriate initial conditions,

6. use Laplace transforms to solve simultaneous differential equations,

7. deal with discontinuous input functions expressible in terms of the unit
step function and use the second shift theorem to obtain trans-
forms and their inverses,

8. deal with problems involving the unit impulse “function” δ(t),

9. deal with problems involving periodic input functions such as square
waves and sawtooths,

10. solve integral and integral-differential equations using Laplace
transforms.

10 Bibliography

For textbooks covering the basic prerequisites for this package (differentia-
tion, integration and partial fractions) see, for example, one of the following
(although there are dozens of other suitable textbooks many of which are in
the University library).

Stroud, K. A. Engineering Mathematics (third edition), Macmillan, 1992.

Jeffrey, A. Mathematics for Engineers and Scientists, Van Nostrand, 1989.

Thomas, G. B. and Finney, R. L. Calculus and Analytic Geometry,
Addison-Wesley, 1988.
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Larson, R. E., Hostetler, R. P. and Edwards, B. H. Calculus, D. C.
Heath and Company, 1990.

Gilbert, J. Guide to Mathematical Methods, Macmillan, 1991.

Anton, H. Calculus with Analytic Geometry, Wiley, 1992.

There are many textbooks which cover Laplace transforms. Of the books
listed above that by Jeffrey gives a very elementary treatment. There is a
second volume by Stroud which gives a reasonable treatment:

Stroud, K. A. Further Engineering Mathematics (second edition),
Macmillan, 1992.

The books listed below are devoted exclusively to the subject of differen-
tial equations and they give more detail.

Sanchez, D. A., Allen, R. C. and Kyner, W. T. Differential
Equations (second edition), Addison-Wesley, 1988.

Zill, D. G. A first course in Differential Equations with Applications
(fourth edition), Prindle, Weber, Schmidt - Kent Publishing Company,
1989.

Boyce, W. E. and DiPrima, R. C. Elementary Differential Equations
and Boundary Value Problems (fifth edition), Wiley, 1992.

Of the three books listed, you would probably find the volume by Boyce et
al. to be too advanced for general use. All three volumes cover a much wider
range of topics than this package - for example first and second order ordinary
differential equations, partial differential equations and Fourier series. In
addition to these three books there are very many other textbooks covering
Laplace transforms and, again, many of these are in the University library.
Your tutor should be able to advise you which textbooks are suitable for your
own needs, but you need never be short of an alternative approach or more
questions to try!

11 Appendix - Video Summaries

There are four videos associated with the topic of Laplace transforms. The
presenter is Mike Grannell from the Department of Mathematics and Statis-
tics at the University of Central Lancashire. We recommend that you read
the preamble to these notes which makes some suggestions about how you
should approach viewing the videos.
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Video title: Laplace transforms (part 1). (24 minutes)

Prerequisite: you will need to be familiar with basic integration and dif-
ferentiation.

Summary

1. Definition and notation

The integral definition, the range of values of the parameter s, improper
integrals, various notations including L{y}, ȳ, and Y for the transform
of y(t). The limit lim

x→∞
xne−ax = 0 for a > 0.

2. Examples

1. L{1} =
1

s
(s > 0)

2. L{t} =
1

s2
(s > 0)

3. L{eat} =
1

s− a
(s > a)

3. Use of tables

4. Fundamental properties

(a) Linearity
L{af + bg} = aL{f}+ bL{g}

where a, b are constants and f, g are functions of t.

(b) Transforms of derivatives

L{f ′} = sf̄ − f(0)

L{f ′′} = s2f̄ − sf(0)− f ′(0)
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Video title: Laplace transforms (part 2). (33 minutes)

Prerequisite: you will need to be familiar with basic integration, differen-
tiation and partial fractions, and to have covered the material in the first
video.

Summary

1. Inverse transforms

Existence and uniqueness

Use of tables

Examples

1. L−1

{
3s− 2

s2 + 6s+ 25

}
(completing the square)

2. L−1

{
2

s(s+ 1)(s2 + 1)

}
(partial fractions)

2. Solution of differential equations

Description of the method.

Example y′′ + 9y = cos 3t given that y(0) = 1 and y′(0) = −1.

Solution of systems of differential equations -the example

dx

dt
= 2x+ y,

dy

dt
= 3x+ 4y

given that x(0) = 1 and y(0) = 0.
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Video title: Laplace transforms (part 3). (29 minutes)

Prerequisite: you will need to be familiar with basic integration, differenti-
ation and partial fractions, and to have covered the material in the first two
videos.

Summary

1. The unit step function

Definition of the Heaviside unit step function u(t) and its translate
u(t− a).

2. Piecewise continuous functions

The graph of f(t)u(t− a)

Example Expressing the function

g(t) =


3 if t < 2
−3 if 2 < t < 4
e−t if t > 4

in terms of the unit step function.

3. The Laplace transform of u(t− a) (a ≥ 0)

L{u(t− a)} =
e−as

s

4. The second shift theorem

L{g(t)u(t− a)} = e−asL{g(t+ a)} and the alternative version

L{f(t− a)u(t− a)} = e−asL{f(t)}

Examples

1. L{t2u(t− 3)}
2. L{e3tu(t− 2)}

3. L−1

{
e−2s

s2 + 1

}
4. L−1

{
e−3s

(s+ 2)2

}
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Video title: Laplace transforms (part 4). (28 minutes)

Prerequisite: you will need to be familiar with basic integration, differen-
tiation and partial fractions, and to have covered the material in the first
three videos.

Summary

1. Solution of differential equations involving the unit step func-
tion

The example y′′ + y = f(t) given that y(0) = 1, y′(0), where

f(t) =


0 if t < 1
4 if 1 < t < 2
0 if t > 2

2. The unit impulse“function”

On location in the student union: the unit impulse “function” (Dirac

delta “function”) and its physical interpretation.

3. Mathematical treatment

δϵ(t) =

{ 1

ϵ
if 0 < t < ϵ

0 otherwise

δϵ(t− a) =

{ 1

ϵ
if a < t < a+ ϵ

0 otherwise

Graphs of these functions, areas under the graphs and behaviour as

ϵ tends to 0.

4. Integrals and the unit impulse “function”

If f is continuous and a > 0∫ ∞

0

δ(t− a)f(t)dt = f(a)

Simple consequences including∫ ∞

0

δ(t− a)dt = 1

L{δ(t− a)} = e−as
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5. Solution of differential equations involving the unit impulse
“function”

The example y′′ + 2y′ + y = δ(t− a) given that y(0) = 0, y′(0) = 1.
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12 Appendix - Table of Laplace transforms

If f is a function of t then its Laplace transform, L{f(t)} is the function of
s given by

f̄(s) =

∫ ∞

0

e−stf(t)dt

Function f(t) Laplace transform f̄(s)

1
1

s

t
1

s2

tn
n!

sn+1

e−αt 1

s+ α

sinωt
ω

s2 + ω2

cosωt
s

s2 + ω2

sinhαt
α

s2 − α2

coshαt
s

s2 − α2

tne−αt n!

(s+ α)n+1

e−αt sinωt
ω

(s+ α)2 + ω2

e−αt cosωt
s+ α

(s+ α)2 + ω2

Continued on next page
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Function f(t) Laplace transform f̄(s)

e−αt sinhωt
ω

(s+ α)2 − ω2

e−αt coshωt
s+ α

(s+ α)2 − ω2

t sinωt
2ωs

(s2 + ω2)2

t cosωt
s2 − ω2

(s2 + ω2)2

1
2ω3 (sinωt− ωt cosωt)

1

(s2 + ω2)2

te−αt sinωt
2ω(s+ α)

((s+ α)2 + ω2)2

te−αt cosωt
(s+ α)2 − ω2

((s+ α)2 + ω2)2

Unit step function, step at 0:

u(t) =

{
1 if t > 0
0 if t < 0

1

s
Unit step function, step at a, (a > 0) :

u(t− a) =

{
1 if t > a
0 if t < a

e−as

s
Unit impulse or delta function,
impulse at 0: δ(t) 1
Unit impulse or delta function,
impulse at a, (a > 0) : δ(t− a) e−as

Second shift theorem:
a) u(t− a)g(t) a) e−asL{g(t+ a)}
b) u(t− a)f(t− a) b) e−asL{f(t)}
Continued on next page
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Function f(t) Laplace transform f̄(s)
Periodic functions:
if f has period p (i.e. f(t+ p) = f(t)

for all t) then . . . f̄(s) =
1

1− e−sp

∫ p

0

e−stf(t)dt

Full-wave rectification of the sine
wave sinωt, i.e. f(t) = | sinωt|,

(period = π/ω):

(
ω

s2 + ω2

)(
1 + e−πs/ω

1− e−πs/ω

)
Sawtooth wave:

f(t) = t/a if 0 < t < a, period = a.
1

as2
− e−as

s(1− e−as)
Squarewave (type 1), period 2a:

f(t) =

{
1 if 0 ≤ t < a
0 if a ≤ t < 2a

(
1

s

)(
1

1 + e−as

)
Squarewave (type 2), period 2a:

f(t) =

{
1 if 0 ≤ t < a
−1 if a ≤ t < 2a

(
1

s

)(
1− e−as

1 + e−as

)
Note also the formulae for the Laplace transforms of first and

second derivatives:

L{dy
dt

} = sȳ − y0

L{d
2y

dt2
} = s2ȳ − sy0 − y′0

where ȳ denotes the transform of the function y, y0 = y(0) and y′0 = y′(0).
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