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1 Preamble

1.1 About this package

This package is for people who need to be able to find the Fourier series of
certain types of functions. It doesn’t contain a lot of theory. It isn’t really
designed for pure mathematicians who would require a course discussing the
convergence of Fourier series in greater detail.

You will find that you need a background knowledge of differentiation,
integration and curve-sketching in order to get the most out of this package.
In particular, you need to be able to integrate by simple substitutions and
by parts. If you are a bit rusty, don’t worry - but it would be sensible to do
some revision either at the start or as the need arises. Reasonable revision
texts are given in the bibliography (Section 11).

If you complete the whole package you should be able to

� recognize odd, even and periodic functions,

� understand what is meant by the Fourier series of a function,

� understand what is meant by the Fourier coefficients of a function,

� obtain the Fourier coefficients of a function,

� obtain the Fourier series of period 2π of a function and obtain the
mth partial sum of this Fourier series,

� use the properties of odd or even functions to reduce the work in
finding Fourier coefficients,

� understand Dirichlet’s Theorem concerning the convergence of
Fourier series,

� determine whether a function satisfies the Dirichlet conditions,

� apply Dirichlet’s Theorem to sketching the graph of the function
to which a Fourier series converges,

� apply Dirichlet’s Theorem to summation of series,

� obtain the Fourier sine or cosine series of period 2π of a function,

� understand how to generalise the previous concepts to find the
Fourier series, sine or cosine series of period 2l of a function,
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Depending on your own programme of study you may not need to cover
everything in this package. Your tutor will advise you what, if anything, can
be omitted.

1.2 How to use this package

YouMUST do examples! Doing lots of examples for yourself is gen-
erally the most effective way of learning the contents of this package and
covering the objectives listed above. We recommend that you

� first read the theory - make your own notes where appropriate,

� then work through the worked examples - compare your solutions with
the ones in the notes,

� finally do similar examples yourself in a workbook.

The original printing of these notes leaves every other page blank. Use the
spare space for your own comments, notes and solutions. You will see certain
symbols appearing in the right hand margin from time to time:

⃝ denotes the end of a worked example,

2 denotes the end of a proof,

V denotes a reference to videos (see below for details),

EX highlights a point in the notes where you should try examples.

By the time you have reached a package like this one you will probably
have realised that learning mathematics rarely goes smoothly! When you get
stuck, use your accumulated wisdom and cunning to get around the problem.
You might try:

� re-reading the theory/worked examples,

� putting it down and coming back to it later,

� reading ahead to see if subsequent material sheds any light,

� talking to a fellow student,

� looking in a textbook (see the bibliography),

� watching the appropriate video (see the video summaries),

� raising the problem at a tutorial.
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1.3 Videos, tutorials and self-help

The videos cover the main points in the notes. The areas covered are indi-
cated in the notes, usually at the ends of sections and subsections. To resolve
a particular difficulty you may not need to watch a whole video (they are
each about 30 - 40 minutes long). They are broken up into sections prefaced
with titles which can be read on fast scan. In addition, a summary of the
videos associated with this package appears as an appendix to these notes.

Your tutor will tell you about the arrangements for viewing the videos.
Try the worked examples before watching the solution unfold on the screen.
Make notes of any points you cannot follow so that you can explain the diffi-
culty in a subsequent tutorial session. If you are viewing a video individually,
remember the rewind button! Unlike a lecture you can get instant and 100
percent accurate replay of what was said.

Your tutor will tell you about tutorial arrangements. These may be re-
lated to assessment arrangements. If attendance at tutorials is compulsory
then make sure you know the details! The tutorials provide you with indi-
vidual contact with a tutor. Use this time wisely - staff time is the most
expensive of all our resources.

You should come to tutorials in a prepared state. This means
that you should have read the notes and the worked examples. You should
have tried appropriate examples for yourself. If you have had difficulty with
a particular section then you should watch the corresponding video. If your
tutor finds that you haven’t done these things then s/he may refuse to help
you. Your tutor will find it easier to assist you if you can make any queries
as specific as possible.

Your fellow students are an excellent form of self-help. Discuss problems
with one another and compare solutions. Just be careful that

1. any assessed coursework submitted by you is yours alone,

2. you yourself do really understand solutions worked out jointly with
colleagues.

Familiarize yourself with the layout and contents of these notes; scan
them before reading them more carefully. The contents page will help you
find your way about - use it. The bibliography will point you to textbooks
covering the same material as these notes.

When you graduate, your future employer will be just as interested in
your capacity for learning as in what you already know. If you can learn
mathematics from this package and from textbooks then you will not only
have learnt a particular mathematical topic, you will also (and more impor-
tantly) have learnt how to learn mathematics.
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2 Introduction

Given a suitable function f we can generate the Taylor Series for f about
the point a and, providing x is sufficiently close to a, we may write

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)(x− a)2

2!
+

f ′′′(a)(x− a)3

3!
+ · · ·

By letting a = 0 in this expression we obtain the Maclaurin Series of f

f(x) = f(0) + f ′(0)x+
f ′′(0)x2

2!
+ · · ·

In essence, this amounts to knowing that there are real constants A0, A1,
A2, . . . such that

f(x) = A0 + A1x+ A2x
2 + A3x

3 + · · ·

That is, we can write f(x) as a linear combination of the algebraic polyno-
mials

{1, x, x2, x3, . . .}
In fact, finite linear combinations of algebraic polynomials are often used
in order to approximate continuous functions. This is partly due to some
of the advantageous manipulative properties of algebraic polynomials: they
are easily integrated and differentiated, and shifts in co-ordinate system (i.e.
changing x to αx + β) when applied to an algebraic polynomial will still
result in an algebraic polynomial. However, most importantly, it is known
that any continuous function can be approximated arbitrarily closely on a
real interval [a, b] by a linear combination of algebraic polynomials. Thus, al-
gebraic polynomials have much to recommend them as a set of approximating
functions.

However, there are occasions when, due to the nature of the function we
wish to approximate, approximation by another set of functions would seem
more natural. In particular, if the function we wish to approximate exhibits
the repetitive wave forms associated with trigonometric functions then it
would seem reasonable to suppose that it might be easier to represent such
a function as a linear combination of the trigonometric functions

{1, cosx, sinx, cos 2x, sin 2x, . . .}.

Certain combinations of this type are known as Fourier series.
This package deals with developing the Fourier series of a suitable function

f . This series has the form

1

2
a0 +

∞∑
n=1

{an cosnx+ bn sinnx}
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where a0, a1, a2, . . . , b1, b2, . . . are all real constants whose definition depends
onf . Expressing the first term in the series as 1

2
a0 is a technical device which

enables us to provide one formula for all the an, n = 0, 1, 2, . . ..
We shall examine when the Fourier series of a suitable function is con-

vergent and see the advantage provided by a Fourier series as a means of
approximating suitable discontinuous functions. Our initial discussions will
concern functions that are defined for −π ≤ x < π. We will then extend
our results to deal with functions defined for 0 ≤ x ≤ π and eventually to
functions defined for −l ≤ x < l where l is any positive real number.

Fourier series are of enormous practical help. They are of fundamental
importance in constructing solutions of certain types of ordinary and par-
tial differential equations. As an example, a second order inhomogeneous
differential equation with constant coefficients of the form

Ay′′ +By′ + Cy = g(x)

can be solved easily when g(x) = a cosnx+ b sinnx. However, in other cases,
g(x) may still be a function which displays a repetitive wave form but for
which this differential equation is difficult to solve. Suppose we could repre-
sent g(x) by a Fourier series. Then since the equation is linear the solution
could be obtained by summing the solutions of

Ay′′ +By′ + Cy = an cosnx+ bn sinnx

for all values of n. In many practical situations the contributions to the
solution from small values of n are the most important.

(The video introduces the concept of approximation of a function by its Fourier
series) V
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3 Some preliminaries

In developing the definition of the Fourier Series of a function we shall be
making use of the properties of odd, even and periodic functions.

3.1 Odd and even functions.

Definition 3.1 An even function is a function such that

f(x) = f(−x), for all x in the domain of f .

Geometrically this means that the graph of f is symmetrical about the y
axis.

Figure 1: x2 is an even function.

Definition 3.2 An odd function is a function such that

f(x) = −f(−x), for all x in the domain of f .

Geometrically this means that the graph of f for x < 0 may be obtained by
rotating the graph of f for x > 0 through 180◦ about the origin.
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Figure 2: sin x is an odd function.

The reason for the titles “odd” and “even” is that odd powers of x form
odd functions whilst even powers form even functions. Note also that the
standard power series of the odd function sinx contains only odd powers of x.
Likewise the expansion of the even function cos x contains only even powers
of x. This is typical of even and odd functions and their MacLaurin Series.
A function is not necessarily even or odd. By considering the graph of ex we
can tell that this function is neither even nor odd.

Here y(a) ̸= −y(−a),
and y(a) ̸= y(−a) if a ̸= 0.

Figure 3: ex is a function that is neither even nor odd.
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3.2 Properties of odd and even functions.

Theorem 3.1. The sum, difference, product and quotient of two even func-
tions are even.

Proof Let f and g be two even functions; so, for x in both the domain of f
and the domain of g, f(x) = f(−x) and g(x) = g(−x). Then,

(f + g)(x) = f(x) + g(x) = f(−x) + g(−x) = (f + g)(−x),

(f − g)(x) = f(x)− g(x) = f(−x)− g(−x) = (f − g)(−x),

(f.g)(x) = f(x).g(x) = f(−x).g(−x) = (f.g)(−x),

and, providing g(x) ̸= 0,(
f

g

)
(x) =

f(x)

g(x)
=

f(−x)

g(−x)
=

(
f

g

)
(−x).

2

Theorem 3.2. The sum and difference of two odd functions are odd. The
product and quotient of two odd functions are even.

Proof Let f and g be two odd functions; so, for x in both the domain of f
and the domain of g, f(x) = −f(−x) and g(x) = −g(−x). Then,

(f + g)(x) = f(x) + g(x) = −f(−x) + {−g(−x)}
= −{f(−x) + g(−x)} = −(f + g)(−x),

(f − g)(x) = f(x)− g(x) = −f(−x)− {−g(−x)} = −(f − g)(−x),

(f.g)(x) = f(x).g(x) = {−f(−x)}.{−g(−x)} = (f.g)(−x),
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and, providing g(x) ̸= 0,(
f

g

)
(x) =

f(x)

g(x)
=

−f(−x)

−g(−x)
=

(
f

g

)
(−x).

2

Theorem 3.3. The product and quotient of an odd function and an even
function are odd.

Proof Let f be an odd function and g be an even function; so, for x in both
the domain of f and the domain of g, f(x) = −f(−x) and g(x) = g(−x).
Then,

(f.g)(x) = f(x).g(x) = {−f(−x)}.g(−x) = −(f.g)(−x),

and, providing g(x) ̸= 0,(
f

g

)
(x) =

f(x)

g(x)
=

−f(−x)

g(−x)
= −

(
f

g

)
(−x).

2

You should note that the sum and difference of an odd function and an
even function are not necessarily odd or even.

Example 3.1 Let functions f and g be defined by

f(x) = x2 + 1, g(x) = x,

for all x in ℜ, then f is an even function and g is an odd function. However,
their sum is neither odd nor even; consider

(f + g)(3) = f(3) + g(3) = 13,

whereas
(f + g)(−3) = f(−3) + g(−3) = 7

and
(f − g)(3) = f(3)− g(3) = 7,
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whereas
(f − g)(−3) = f(−3)− g(−3) = 13. ⃝

We shall find the following result particularly useful when dealing with
Fourier Series

Theorem 3.4. If f is an odd function,∫ a

−a

f(x)dx = 0.

If f is an even function,∫ a

−a

f(x)dx = 2

∫ a

0

f(x)dx.

Proof : We can assume a > 0. Consideration of the graphs of odd and even
functions illustrates these results (see figure 4).

Figure 4: Theorem 3.4 illustrated using the even function x2 and the odd
function x.
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If f is an odd function, then f(x) = −f(−x) and∫ a

−a

f(x)dx =

∫ 0

−a

f(x)dx+

∫ a

0

f(x)dx

(now, employing the substitution x = −t

in the first integral)

= −
∫ 0

a

f(−t)dt+

∫ a

0

f(x)dx

=

∫ 0

a

−f(−t)dt+

∫ a

0

f(x)dx

=

∫ 0

a

f(t)dt+

∫ a

0

f(x)dx (since −f(−t) = f(t))

= −
∫ a

0

f(t)dt+

∫ a

0

f(x)dx = 0.

A similar technique may be used to prove the second result. 2

Notice that by combining the above properties we can yield results con-
cerning integrals of sums, differences, products and quotients of even and
odd functions. For instance, referring to Theorems 3.3 and 3.4 we know that
if f is an odd function and g is an even function then∫ a

−a

f(x).g(x)dx = 0, for a > 0.

(The video discusses odd and even functions and examines their properties.) V

3.3 Periodic functions

Definition 3.3 A function is said to be periodic if f(x+ p) = f(x), for all
x, where p is a constant. The constant p is known as a period of f and f
is sometimes referred to as a p-periodic function. The smallest positive
value of p for which the condition is satisfied is called the primitive period
of f (or more loosely the period of f).

The diagram overleaf (figure 5) illustrates a function with primitive period
2. Of course, any integer multiple of 2 is also a period of this function.

12



Figure 5: An example of a 2-periodic function.

The functions sin x, cosx and tanx are all examples of 2π-periodic func-
tions. The function tanx is also π-periodic.

(This function repeats itself after every interval of length 2π.)

Figure 6: The function cosx is 2π-periodic.
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y = tanx

(This function repeats itself after every interval of length π.)

Figure 7: The function tanx is π-periodic.

If f and g are both p-periodic then their sum is also p-periodic. For,

(f + g)(x) = f(x) + g(x) = f(x+ p) + g(x+ p) = (f + g)(x+ p).

In a similar fashion we can show that their difference, product and quotient
are also p-periodic.

(The video discusses periodic functions and examines their properties.) V
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4 Fourier series of period 2π

As a preliminary we shall consider some integrals which we will require in
the course of our discussion.

Theorem 4.1. Suppose that m and n are positive integers, then

1.

∫ π

−π

sinmx cosnxdx = 0.

2.

∫ π

−π

sinmx sinnxdx =

{
0 if m ̸= n,
π if m = n.

3.

∫ π

−π

cosmx cosnxdx =

{
0 if m ̸= n,
π if m = n.

Proof

1. Since sinmx is an odd function and cosnx is an even function then
referring to Theorems 3.3 and 3.4 yields the result.

2. If m ̸= n then using the trig identity

sinA sinB =
1

2
{cos(A−B)− cos(A+B)},

gives∫ π

−π

sinmx sinnxdx =
1

2

∫ π

−π

{cos(mx− nx)− cos(mx+ nx)}dx

=
1

2

[
sin(m− n)x

m− n
− sin(m+ n)x

m+ n

]π
−π

= 0,

since sin kπ = 0 for any integer k. Note that the denominator (m− n)
in the first fraction in square brackets means that we can’t use this
formula when m = n.

If m = n then∫ π

−π

sinmx sinnxdx =

∫ π

−π

sin2mxdx =
1

2

∫ π

−π

(1− cos 2mx)dx

=
1

2

[
x− sin 2mx

2m

]π
−π

=
1

2
{(π − 0)− (−π − 0)} = π.
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3. If m ̸= n then using the trig identity

cosA cosB =
1

2
{cos(A−B) + cos(A+B)},

gives∫ π

−π

cosmx cosnxdx =
1

2

∫ π

−π

{cos(mx− nx) + cos(mx+ nx)}dx

=
1

2

[
sin(m− n)x

m− n
+

sin(m+ n)x

m+ n

]π
−π

= 0,

since sin kπ = 0 for any integer k. As before, the denominator (m− n)
in the first fraction in square brackets means that we can’t use this
formula when m = n.

If m = n then∫ π

−π

cosmx cosnxdx =

∫ π

−π

cos2mxdx =
1

2

∫ π

−π

(1 + cos 2mx)dx

=
1

2

[
x+

sin 2mx

2m

]π
−π

=
1

2
{(π + 0)− (−π + 0)} = π.

2
As was discussed in section 2, we would like to be able to express a

function f defined for −π ≤ x < π, as a trigonometric series of the form

1

2
a0 +

∞∑
n=1

{an cosnx+ bn sinnx} (1)

where a0, a1, . . . , b1, b2, . . . are real constants. These constants are known
as the Fourier coefficients of f and the series in (1) is called the Fourier
series of f.

Since each of the functions 1, cosx, sinx, cos 2x, sin 2x, . . . is 2π-periodic
then, if the Fourier series of f converges, its sum will be 2π-periodic.

You may wonder why we don’t try to expand f just using sine functions
as in

∞∑
n=1

cn sinnx (2)
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The answer is that the collection {sinx, sin 2x, sin 3x, . . .} contains only odd
functions and so anything of the form (2) will be an odd function. Since
most functions aren’t odd, most functions can’t be expanded just using sine
functions. For similar reasons we can’t just use cosine functions.

You may also wonder why the series starts with the n = 1 term and
not n = 0. Well, the cosine term when n = 0 contains cos 0x = cos 0 = 1
and this is the reason for the constant term 1

2
a0 which sits in the front of

the summation sign. This doesn’t explain the 1
2
but you’ll see the reason

for that shortly. What about the n = 0 sine term? This would contain
sin 0x = sin 0 = 0 so there isn’t a lot of point in recording a term which is
guaranteed to be zero.

Of course none of this proves that you can expand f in the form given by
(1). Is the collection {1, cosx, sinx, cos 2x, sin 2x, . . .} good enough? (The
technical word is “complete”). In fact it is for all “reasonable” f but the
proof is well beyond the scope of these notes.

(The video covers the proof of Theorem 4.1.) V
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4.1 Finding the Fourier coefficients

For the time being we shall suppose that f is a suitable function of period
2π and that it has a representation as

f(x) =
1

2
a0 +

∞∑
n=1

{an cosnx+ bn sinnx} (3)

Now, assuming we can integrate the series on the right hand side term-
by-term, we can integrate (3) between −π and π to obtain∫ π

−π

f(x)dx =
a0
2

∫ π

−π

1dx+
∞∑
n=1

{
an

∫ π

−π

cosnxdx+ bn

∫ π

−π

sinnxdx

}
.

Since ∫ π

−π

cosnxdx = 0 and

∫ π

−π

sinnxdx = 0, n = 1, 2, . . .

we have

∫ π

−π

f(x)dx =
a0
2

∫ π

−π

1dx = a0.π

So

a0 =
1

π

∫ π

−π

f(x)dx.

Thus we have determined the value of a0. To find the values of the remaining
an, n = 1, 2, . . . we multiply both sides of (3) by cosmx, where m is a fixed
positive integer, so

f(x) cosmx =
a0
2
cosmx+

∞∑
n=1

{an cosmx cosnx+ bn cosmx sinnx}

and again integrate term-by-term, giving∫ π

−π

f(x) cosmxdx =
a0
2

∫ π

−π

cosmxdx

+
∞∑
n=1

{
an

∫ π

−π

cosmx cosnxdx+ bn

∫ π

−π

cosmx sinnxdx

}
18



We saw earlier that∫ π

−π

cosmx cosnxdx =

{
0 if m ̸= n,
π if m = n.

and

∫ π

−π

sinmx cosnxdx = 0, n = m and n ̸= m

Also, since
∫ π

−π
cosmxdx = 0 for m = 1, 2, . . ., this means that the only non-

zero term on the right-hand side of the equation occurs when n = m in the
summation. The equation reduces to∫ π

−π

f(x) cosmxdx = am

∫ π

−π

cosmx cosmxdx = amπ.

Hence,

am =
1

π

∫ π

−π

f(x) cosmxdx m = 1, 2, . . .

Finally, to yield the values of bn, n = 1, 2, . . . we apply a similar technique by
multiplying (3) by sinmx and integrating term-by-term. This gives

∫ π

−π

f(x) sinmxdx =
a0
2

∫ π

−π

sinmxdx

+
∞∑
n=1

{
an

∫ π

−π

sinmx cosnxdx+ bn

∫ π

−π

sinmx sinnxdx

}
Since∫ π

−π

sinmxdx = 0 and

∫ π

−π

sinmx cosnxdx = 0 n,m = 1, 2, . . .

and

∫ π

−π

sinmx sinnxdx =

{
0 if m ̸= n,
π if m = n,

then the only non-zero term in the right hand side of the equation occurs
when n = m in the summation. The equation reduces to∫ π

−π

f(x) sinmxdx = bm

∫ π

−π

sinmx sinmxdx = bmπ.
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So,

bm =
1

π

∫ π

−π

f(x) sinmxdx m = 1, 2, . . .

In the original expression for the series (3) the constants had the
form {an}∞n=0 and {bn}∞n=1 whereas we have derived formulae for am and bm.
Of course, this is simply because m is a dummy variable; we could just as
well write the above expressions replacing all occurences of m by n. So, to
summarise, the Fourier coefficients of f are given by

an =
1

π

∫ π

−π

f(x) cosnxdx n = 0, 1, 2, . . .

bn =
1

π

∫ π

−π

f(x) sinnxdx n = 1, 2, . . .

Notice that it has been possible to incorporate the definition for a0 into
the definition for the other an since, when n = 0,

1

π

∫ π

−π

f(x) cosnxdx =
1

π

∫ π

−π

f(x) cos 0dx =
1

π

∫ π

−π

f(x)dx = a0

This was the reason for the 1
2
in front of the a0 term in (1). If a0 was not

scaled by 1
2
in (1) then our previous work would have derived the constant

term in the series as a0 =
1

2π

∫ π

−π

f(x)dx which would not have fitted into

the general formula we have derived for the other {an}∞n=1.
In fact, for any suitable function f we define the Fourier series of f to

be

1

2
a0 +

∞∑
n=1

{an cosnx+ bn sinnx}

where

an =
1

π

∫ π

−π

f(x) cosnxdx n = 0, 1, 2, . . .

bn =
1

π

∫ π

−π

f(x) sinnxdx n = 1, 2, . . .

Notice that only information concerning f in [−π, π] is used to derive {an}∞0
and {bn}∞1 . Hence, if f is not 2π-periodic then we would not expect the
series to be a good candidate to represent f outside [−π, π].

20



If we truncate the summation at n = m, giving

1

2
a0 +

m∑
n=1

{an cosnx+ bn sinnx},

we obtain the mth partial sum of the Fourier series of f. For instance,
the 3rd partial sum of the Fourier series of f is

1

2
a0 +

3∑
n=1

{an cosnx+ bn sinnx}

= a0 + a1 cosx+ b1 sinx+ a2 cos 2x+ b2 sin 2x+ a3 cos 3x+ b3 sin 3x.

The term an cosnx+ bn sinnx is called the nth harmonic.
Remember that in developing the Fourier series for f our approach was

to assume that f could be expressed as such a series and to use this assump-
tion in order to determine the Fourier coefficients of f . As yet we have not
considered the questions of convergence of the series and whether or when it
might be reasonable to regard the Fourier series of a function as being equiv-
alent to that function. In fact, there is a wide class of 2π-periodic functions
for which the Fourier series of a function in the class will converge, in some
sense, to the function itself. We will return to a discussion of convergence
later on. First of all we will determine the Fourier series of various functions.

(The video covers the development of the formulae for the Fourier coeffi-
cients.) V

21



5 Finding the Fourier series of a function

In this section we will find the Fourier series of some particular functions.
Some, but not all, of the functions will be 2π-periodic. Of course, as men-
tioned previously, in all cases the resulting Fourier series will be 2π-periodic.
We will look at graphs of the functions and some of their Fourier series par-
tial sums in order to obtain some feel for the nature of the approximation
being provided by the partial sums.

Example 5.1 Let f(x) be defined by

f(x) =

{
0 if x < 0
x if x ≥ 0

Determine the Fourier series of f(x).

Solution

Figure 8: The graph of f(x).

The Fourier series of f(x) is
1

2
a0 +

∞∑
n=1

{an cosnx+ bn sinnx}, where

a0 =
1

π

∫ π

−π

f(x)dx =
1

π

∫ π

0

xdx =
π

2
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For n = 1, 2, . . . ,

an =
1

π

∫ π

−π

f(x) cosnxdx =
1

π

∫ π

0

x cosnxdx

=
1

π

{[x
n
sinnx

]π
0
−
∫ π

0

1

n
sinnxdx

}
=

1

π
.
1

n2
[cosnx]π0 =

1

πn2
{cosnπ − 1}

Using the fact that cosnπ = (−1)n, this gives

an =
1

πn2
{(−1)n − 1}

We also have

bn =
1

π

∫ π

−π

f(x) sinnxdx =
1

π

∫ π

0

x sinnxdx

=
1

π

{[
−x

n
cosnx

]π
0
+

∫ π

0

1

n
cosnxdx

}

Now, there is no need to “do” the integral

∫ π

0

1

n
cosnxdx since it will clearly

contain sinnx which is zero for x = 0 and x = π. (You should be on the
lookout to save work in such ways.) Noting this, we have here

bn =
1

π

[
−x

n
cosnx

]π
0
=

1

π

(
−π

n
cosnπ

)
=

(−1)n+1

n
.

Hence the Fourier series of f(x) is

⃝
π

4
+

∞∑
n=1

{
1

πn2
{(−1)n − 1} cosnx+

(−1)n+1

n
sinnx

}
A point worth noting is that we calculated a0 separately from a1, a2, . . . ;

this is generally necessary because the integral does not really contain a
trigonometric function (on account of cos 0x = 1). The diagram overleaf
(figure 9) illustrates the previous example. It shows the graphs of f(x) and
the 4th and 12th partial sums of the Fourier series of f(x).
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Figure 9: f(x) and the fourth and twelfth partial sums of its Fourier series.

Remember that we find the mth partial sum of the Fourier series of f(x)
by truncating the summation at the n = m term. For instance, the 4th partial
sum of this Fourier series is

π

4
+

4∑
n=1

{
1

πn2
{(−1)n − 1} cosnx+

(−1)n+1

n
sinnx

}

=
π

4
+

1

π

(
−2 cosx− 2

9
cos 3x

)
+ sinx− 1

2
sin 2x+

1

3
sin 3x− 1

4
sin 4x

The Fourier series of f(x), and all its partial sums, are 2π-periodic. Thus
we couldn’t expect our partial sums to provide good approximations to f(x)
outside (−π, π). The 12th partial sum approximates f(x) better than the 4th

partial sum between −π and π. As long as the function we are approximating
is reasonably well-behaved (we’ll explain what we mean by this later in the
notes) then we would expect to obtain better approximations to our functions
as we increase the number of terms in the partial sums.
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We’ve mentioned that the partial sums are 2π-periodic. So we can only
hope to provide a good approximation to a function along the whole x-axis
if the function is itself 2π-periodic. Let’s consider such a function. Let g(x)
be the 2π-periodic function defined for −π ≤ x < π by

g(x) =

{
0 if − π ≤ x < 0
x if 0 ≤ x < π

Figure 10: The graph of g(x).

Notice that for −π ≤ x < π the function g(x) and the previous function
f(x) are identical. Since the definition of the Fourier coefficients only uses
the definition of the function in (−π, π) the Fourier coefficients, and hence
the Fourier series, of f(x) and g(x) are the same. For, the Fourier coefficients
of g(x) are:

an =
1

π

∫ π

−π

g(x) cosnxdx =
1

π

∫ π

−π

f(x) cosnxdx

bn =
1

π

∫ π

−π

g(x) sinnxdx =
1

π

∫ π

−π

f(x) sinnxdx

The diagram overleaf (figure 11) shows the graph of g(x) and its 4th and12th

partial sums.
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Figure 11: g(x) and the fourth and twelfth partial sums of its Fourier series.

The diagram illustrates the 2π-periodic nature of the partial sums. Of
course, our function g is discontinuous at x = nπ, for odd values of n. Since
the partial sums are finite linear combinations of continuous functions then
each partial sum is continuous. So we can hardly expect any of the partial
sums to mimic the behaviour of g at its points of discontinuity.

However, for a reasonably well-behaved function it is possible to predict
the behaviour of its Fourier series at a discontinuity. Before we discuss this
further, we will look at some more examples of finding Fourier series. Our
next example involves an odd function. We’ll see how the work involved in
finding its Fourier series is substantially reduced by using the properties of
even and odd functions.

Example 5.2 Let f(x) be defined by

f(x) = x for all real x

Determine the Fourier series of f(x).

Solution The Fourier series of f(x) is
1

2
a0+

∞∑
n=1

{an cosnx+bn sinnx}, where

for n = 0, 1, 2, . . . ,

an =
1

π

∫ π

−π

f(x) cosnxdx =
1

π

∫ π

−π

x cosnxdx = 0

because x cosnx, the product of the odd function x and the even function
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Figure 12: The graph of f(x).

cosnx, is an odd function. The other constants are given by

bn =
1

π

∫ π

−π

f(x) sinnxdx =
1

π

∫ π

−π

x sinnxdx

=
2

π

∫ π

0

x sinnxdx (since x sinnx is an even function)

=
2

π

{[
−x

n
cosnx

]π
0
+

∫ π

0

1

n
cosnxdx

}
=

2

π

{
−π

n
(−1)n + 0

}
=

2

n
(−1)n+1

Thus the Fourier series of f(x) is

⃝
2

∞∑
n=1

(−1)n+1

n
sinnx

It should come as no surprise that the series contains only sine terms.
This is because x is an odd function and its series will not contain even
functions. The diagram overleaf (figure 13) shows the graph of f(x) and its
4th and 12th partial sums.

Again, due to the 2π-periodic nature of the partial sums, we don’t expect
them to approximate f(x) well outside (−π, π). Increasing the number of
terms in the partial sum appears to provide a better approximation to f(x)
in (−π, π).

We’ll now find the Fourier series of an even function. Again, the use of
the properties of odd and even functions will enable us to reduce the work
involved in finding the Fourier coefficients.
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Figure 13: f(x) and the fourth and twelfth partial sums of its Fourier series.

Example 5.3 Let f(x) be defined by

f(x) = x2 for all real x

Determine the Fourier series of f(x).

Figure 14: The graph of f(x).

Solution The Fourier series of f(x) is
1

2
a0+

∞∑
n=1

{an cosnx+bn sinnx}, where

a0 =
1

π

∫ π

−π

f(x)dx =
1

π

∫ π

−π

x2dx =
1

π

[
x3

3

]π
−π

=
2π2

3
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For n = 1, 2, . . . ,

an =
1

π

∫ π

−π

f(x) cosnxdx =
1

π

∫ π

−π

x2 cosnxdx

=
2

π

∫ π

0

x2 cosnxdx (since x2 cosnx is an even function)

=
2

π

{[
x2

n
sinnx

]π
0

−
∫ π

0

2x

n
sinnxdx

}
=

2

π

{
0− 2

n

∫ π

0

x sinnxdx

}
= − 4

πn

{[
−x

n
cosnx

]π
0
−
∫ π

0

−cosnx

n
dx

}
= − 4

πn

{
−π

n
(−1)n +

[
sinnx

n2

]π
0

}
=

4

n2
(−1)n

and

bn =
1

π

∫ π

−π

x2 sinnxdx = 0

since x2 sinnx is an odd function. Thus the Fourier series of f(x) is

π2

3
+ 4

∞∑
n=1

(−1)n

n2
cosnx

Note that the series contains only even terms because x2 is an even function.
The diagram below (figure 15) shows the graphs of f and its 4th partial sum.

Figure 15: f(x) and the fourth partial sum of its Fourier series.

⃝
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In the earlier examples above we touched on issues concerning the con-
vergence of Fourier series. In the following section we state conditions under
which convergence is assured and deal with the behaviour of a Fourier series
at certain types of discontinuity. We will not present any proofs.

(The video covers all the above examples of finding the Fourier series of a
function. V
At this point you should try several examples of finding the Fourier series of
functions). EX
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6 Convergence of Fourier series

6.1 Boundedness

Before presenting the main result we require the following definition.

Definition 6.1 A function f is bounded if there is some positive number
M such that |f(x)| ≤ M for all x in the domain of f .

This means that f is bounded if we can find a positive value M such
that, if we draw lines parallel to the x-axis at height M above the axis and
at distance M below the axis, then the graph of f(x) lies entirely between
the two lines.

Example 6.1 The functions sinx and cos x are both examples of bounded
functions:

| sinx|, | cosx| ≤ 1 for all x.

cosx sinx

Figure 16: sin x and cos x are bounded.
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Example 6.2 The function f(x) = x is not a bounded function. For any
positive number M it is always the case that f(M + 1) > M .

Figure 17: The function x is unbounded.

Example 6.3 The 2π-periodic function, defined for−π ≤ x < π by f(x) = x,
is a bounded function. The magnitude of this function is no greater than π for
−π ≤ x < π and, since the function is 2π-periodic, it follows that |f(x)| ≤ π
for every value of x.

Figure 18: The 2π-periodic function defined as x for −π ≤ x < π is bounded.

6.2 Dirichlet’s Theorem

We can now provide conditions for convergence of a Fourier series. Notice
that although so far we have dealt only with 2π-periodic functions, the the-
orem allows for the possibility of determining the Fourier series of a periodic
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function of period other than 2π. We shall return to this matter later in the
notes.

Theorem 6.1. (Dirichlet’s Theorem)
Let f be a suitable function whose Fourier series has been obtained. If

f is a bounded, periodic function which in any one period has at most a
finite number of points of discontinuity and a finite number of local maxima
and minima, then the Fourier series of f converges to f(x) at all points x at
which f is continuous, and converges to the average of the right and left-hand
limits of f(x) at each point x at which f is discontinuous.

The conditions on f specified in the theorem are known as “Dirichlet
conditions”; the boundedness of f severely restricts the types of disconti-
nuity which are possible, so much so that such a function will always have
left and right-hand limits at each point. The proof of this fact and of the
theorem itself is well beyond the scope of these notes. However, in the light
of the result we can re-examine the functions whose Fourier series we found
previously and draw some definite conclusions concerning convergence.

First of all we will consider the 2π-periodic function defined by

f(x) = x2, − π ≤ x < π

This function is bounded, 2π-periodic, has no discontinuities and has one lo-
cal maximum and one local minimum in [−π, π). Thus, according to Dirich-
let’s Theorem, the Fourier series of f converges to f(x), for all x.

We’ll see how Dirichlet’s Theorem applies to a function with discontinu-
ities by considering the 2π-periodic function defined by

g(x) =

{
0 if − π ≤ x < 0
x if 0 ≤ x < π
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Figure 19: The graph of g(x).

This function is bounded, 2π-periodic, has no local maxima or local min-
ima and has discontinuities at x = (2n + 1)π, for each integer n. According
to Dirichlet’s Theorem, the Fourier series of g converges to

g(x) for x ̸= (2n+ 1)π
π

2
for x = (2n+ 1)π

for each integer n. Note the distinction between g(x) and its Fourier series
at the points of discontinuity. The Fourier series of g has the graph shown
below (figure 20).

If we look at a picture of g and some of its partial sums we can see how the
convergence of the Fourier series of g at the discontinuities starts to manifest
itself (figure 21).

Figure 20: The graph of the Fourier series of g(x).

It is beyond the scope of this discussion to provide the background to the
derivation of the Dirichlet conditions or the proof of the theorem. However,
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Figure 21: g(x) and the fourth and twelfth partial sums of its Fourier series.

it is important to realise that you should check that the conditions are sat-
isfied by a function before you assume convergence of its Fourier series. For
instance, an example does exist of a 2π-periodic function, which does not
satisfy all the Dirichlet conditions, whose Fourier series diverges at a point.

Note that if f satisfies the Dirichlet conditions then, if we alter its value
at a single point, the modified function will continue to satisfy the Dirichlet
conditions and the Fourier series is unaltered. For this reason it is irrelevant
whether we require a 2π-periodic function to be defined for −π ≤ x < π, or
for −π < x < π, or for −π ≤ x ≤ π, etc.

(The video covers the definition of bounded functions, Dirichlet’s Theorem
and its application. V
At this point you should try examples concerning bounded functions and the
convergence of the Fourier series of a function). EX
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6.3 Summation of series using Fourier series

Certain arithmetic series may be summed by substituting an appropriate
value of x into a convergent Fourier series. For instance, we showed that the
Fourier series of the 2π-periodic function defined by

g(x) =

{
0 if − π ≤ x < 0
x if 0 ≤ x < π

is
π

4
+

∞∑
n=1

{
1

πn2
{(−1)n − 1} cosnx+

(−1)n+1

n
sinnx

}
When x = π, g is discontinuous and its Fourier series converges to

π

2
. Thus

π

2
=

π

4
+

∞∑
n=1

{
1

πn2
{(−1)n − 1} cosnπ +

(−1)n+1

n
sinnπ

}
=

π

4
+

∞∑
n=1

{
1

πn2
{(−1)n − 1}(−1)n

}
=

π

4
+

2

π

{
1 +

1

32
+

1

52
+

1

72
+ . . .

}
From which we can conclude that

π2

8
= 1 +

1

32
+

1

52
+

1

72
+ . . .

(The video covers the above example of summation of a series. V
At this point you should try examples concerning summation of series). EX
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7 Fourier series for even and odd functions

Suppose f is an even function. Then bn, the coefficient of sinnx in the Fourier
series of f(x), is

bn =
1

π

∫ π

−π

f(x) sinnxdx = 0, n = 1, 2, 3, . . . ,

since the integrand is an odd function. Thus the Fourier series of an even
function f(x) has the form

a0
2

+
∞∑
n=1

an cosnx

where

an =
1

π

∫ π

−π

f(x) cosnxdx =
2

π

∫ π

0

f(x) cosnxdx

since f(x) cosnx is an even function.
The 2π-periodic function, defined for −π ≤ x < π by f(x) = x2 illustrates

this situation. Its Fourier series, which we derived in section 5, has the form

a0
2

+
∞∑
n=1

an cosnx

where

a0 =
2

π

∫ π

0

x2dx =
2π2

3

and for n ≥ 1,

an =
2

π

∫ π

0

x2 cosnxdx =
4(−1)n

n2

Similarly, if f is an odd function then an, the coefficient of cosnx in the
Fourier series of f , is

an =
1

π

∫ π

−π

f(x) cosnxdx = 0, n = 0, 1, 2, . . . ,

since the integrand is an odd function. Thus the Fourier series of an odd
function f has the form

∞∑
n=1

bn sinnx

where

bn =
1

π

∫ π

−π

f(x) sinnxdx =
2

π

∫ π

0

f(x) sinnxdx
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since f(x) sinnx is an even function. So considerable work can be saved in
evaluating Fourier series if you notice that f is either even or odd before
calculating coefficients.

(The video covers Fourier Series of odd and even functions. V
At this point you should try examples of finding the Fourier series of odd and
even functions). EX
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8 Fourier sine and cosine series

Suppose that f is a suitable function which is defined in [0, π] and that
we wish to find a trigonometric series expansion for f . By extending the
definition of f , so that it is defined over [−π, π], it is possible to generate
the Fourier series for f . Clearly, how we choose to define f over [−π, π] will
affect the form of the series generated from f . In particular, extending f to
be an even function in [−π, π] will mean that f can be expanded in a cosine
series; and extending f as an odd function in [−π, π] will result in a sine
series expansion for f .

8.1 Fourier cosine series

Given a function f defined in [0, π] we can extend f to become an even
function, g say, by letting

g(x) =

{
f(x) for 0 ≤ x ≤ π
f(−x) for − π ≤ x < 0

Since g is an even function its Fourier series has the form

a0
2

+
∞∑
n=1

an cosnx.

The coefficients are given by

an =
2

π

∫ π

0

g(x) cosnxdx =
2

π

∫ π

0

f(x) cosnxdx

for n = 0, 1, 2, . . .. Since f(x) = g(x) for 0 ≤ x ≤ π then f has the Fourier
cosine series on the interval [0, π]:

a0
2

+
∞∑
n=1

an cosnx

where

an =
2

π

∫ π

0

f(x) cosnxdx, n = 0, 1, 2, . . .

Providing g satisfies the Dirichlet conditions then this cosine series will con-
verge as specified by Dirichlet’s theorem.
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Example 8.1 Let f be defined for 0 ≤ x ≤ π by f(x) = x + 2. Find its
Fourier cosine series on the interval [0, π]

Solution To find the Fourier cosine series of f we extend f to an even
function. The previous discussion gives the Fourier cosine series of f as

a0
2

+
∞∑
n=1

an cosnx (4)

where

a0 =
2

π

∫ π

0

f(x)dx =
2

π

∫ π

0

(x+ 2)dx

=
2

π

[
x2

2
+ 2x

]π
0

=
2

π

{
π2

2
+ 2π

}
= π + 4

and, for n = 1, 2, . . .,

an =
2

π

∫ π

0

f(x) cosnxdx =
2

π

∫ π

0

(x+ 2) cosnxdx

=
2

π

{[
(x+ 2)

n
sinnx

]π
0

− 1

n

∫ π

0

sinnxdx

}
=

2

πn2
[cosnx]π0 =

2

πn2
{(−1)n − 1} =

{
0 for even n

− 4
πn2 for odd n

We can include this information in formula (4). Notice that every odd
integer n can be expressed as 2m + 1, where m = 1

2
(n − 1). If we replace

every odd value of n in (4) by 2m+ 1 and sum over m from 0 to ∞, instead
of n from 1 to ∞, then all the terms which corresponded to odd values of
n in the original formula are retained but those which corresponded to the
even values of n disappear. For the odd values of n we have

an = − 4

πn2
= − 4

π(2m+ 1)2
.

This means we can express the Fourier series of f as

π

2
+ 2− 4

π

∞∑
m=0

cos(2m+ 1)x

(2m+ 1)2
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The Fourier cosine series of f is

π

2
+ 2− 4

π

{
cosx+

cos 3x

32
+

cos 5x

52
+ . . .

}
Below (figure 22) is a graph of the function to which this series converges.
Notice that this graph coincides with that of y = x+ 2 on the interval [0, π]
but not elsewhere. ⃝

Figure 22: The function f(x) = x+ 2 and its cosine series on [0, π].

8.2 Fourier sine series

Given a function f defined for [0, π] we can extend f to become an odd
function, g say, by letting

g(x) =

{
f(x) for 0 ≤ x ≤ π

−f(−x) for − π ≤ x < 0

Since g is an odd function its Fourier series has the form

∞∑
n=1

bn sinnx.
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The coefficients are given by

bn =
2

π

∫ π

0

g(x) sinnxdx =
2

π

∫ π

0

f(x) sinnxdx

for n = 1, 2, . . .. Since f(x) = g(x) for x satisfying 0 ≤ x ≤ π then f has the
Fourier sine series on the interval [0, π]:

∞∑
n=1

bn sinnx

where

bn =
2

π

∫ π

0

f(x) sinnxdx, n = 1, 2, . . .

Providing g satisfies the Dirichlet conditions then this sine series will converge
as specified by Dirichlet’s theorem.

For comparison purposes we will find the Fourier sine series of the function
whose Fourier cosine series was determined in the previous example.

Example 8.2 Let f be defined for 0 ≤ x ≤ π by f(x) = x + 2. Find its
Fourier sine series on the interval [0, π]

Solution To find the Fourier sine series of f we extend f to an odd function.
The previous discussion gives the Fourier sine series of f as

∞∑
n=1

bn sinnx

where, for n = 1, 2, . . .,

bn =
2

π

∫ π

0

f(x) sinnxdx =
2

π

∫ π

0

(x+ 2) sinnxdx

=
2

π

{[
−(x+ 2)

n
cosnx

]π
0

+
1

n

∫ π

0

cosnxdx

}
= − 2

nπ
{(π + 2)(−1)n − 2}+ 0

=
2

nπ
{2− (π + 2)(−1)n} =

{
− 2

n
for even n

2(4+π)
nπ

for odd n
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The Fourier sine series of f is

=
2

π

∞∑
n=1

1

n
{2− (π + 2)(−1)n} sinnx

=
2(4 + π)

π

{
sinx+

sin 3x

3
+

sin 5x

5
+ . . .

}
− 2

{
sin 2x

2
+

sin 4x

4
+

sin 6x

6
+ . . .

}
Below (figure 23) is a graph of the function to which this series converges.
This graph coincides with that of y = x + 2 on the interval (0, π) but not
elsewhere. Note the behaviour of the series at x = ±π,±2π, . . ., where it
converges to the value zero. ⃝

Figure 23: The function f(x) = x+ 2 and its sine series on [0, π].
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(The video discusses Fourier cosine and sine series and covers the above
examples. V
At this point you should try examples of finding the Fourier cosine and sine
series of various functions.) EX
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9 Fourier series of period 2l

(This section is not covered on the videos.)

In this section we extend the ideas discussed so far to apply to finding
Fourier series which are 2l-periodic, l > 0. This would mean that any suitable
periodic function which satisfies the Dirichlet conditions could be represented
by its Fourier series of period 2l (with the usual rules governing convergence
at its discontinuities).

9.1 Fourier series for functions defined over −l ≤ x < l

Suppose f is a suitable function defined over −l ≤ x < l and that we wish to
find the Fourier series of f . In order to do so we use a transformation which
enables us to treat f in terms of a function g defined over [−π, π), and hence
apply the previous theory. We let

t =
π.x

l
,

then, when −l ≤ x < l we have −π ≤ t < π, and

f(x) = f

(
l.t

π

)
= g(t), say.

Now g is defined in −π ≤ t < π and hence has Fourier series

1

2
a0 +

∞∑
n=1

{an cosnt+ bn sinnt}

where

an =
1

π

∫ π

−π

g(t) cosntdt n = 0, 1, 2, . . .

and

bn =
1

π

∫ π

−π

g(t) sinntdt n = 1, 2, . . .

Substituting back for t as
π.x

l
, and noting that

dt

dx
=

π

l
, then this means

that the Fourier series of f is

1

2
a0 +

∞∑
n=1

{an cos
(nπx

l

)
+ bn sin

(nπx
l

)
},
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where

an =
1

π

∫ l

−l

f(x) cos
(nπx

l

)
.
π

l
dx

=
1

l

∫ l

−l

f(x) cos
(nπx

l

)
dx n = 0, 1, 2, . . .

and

bn =
1

π

∫ l

−l

f(x) sin
(nπx

l

)
.
π

l
dx

=
1

l

∫ l

−l

f(x) sin
(nπx

l

)
dx n = 1, 2, . . .

Example 9.1 Determine the Fourier series of period 4 for the 4-periodic
function f defined for −2 ≤ x < 2 by

f(x) =

{
0 if − 2 ≤ x < 0
1 if 0 ≤ x < 2

Solution The required Fourier series has the form

1

2
a0 +

∞∑
n=1

{an cos
(nπx

l

)
+ bn sin

(nπx
l

)
},

where

a0 =
1

2

∫ 2

−2

f(x)dx =
1

2

∫ 2

0

1dx = 1.

For n = 1, 2, . . . ,

an =
1

2

∫ 2

−2

f(x) cos
(nπx

2

)
dx =

1

2

∫ 2

0

1. cos
(nπx

2

)
dx

=
1

2
.
2

nπ

[
sin

(nπx
2

)]2
0
= 0.

For n = 1, 2, . . . ,

bn =
1

2

∫ 2

−2

f(x) sin
(nπx

2

)
dx =

1

2

∫ 2

0

1. sin
(nπx

2

)
dx

=
1

2
.

(
−2

nπ

)[
cos

(nπx
2

)]2
0
=

−1

nπ
{cosnπ − cos 0}

=
1

nπ
{1− (−1)n}.
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Thus the Fourier series of f of period 4 is

1

2
+

∞∑
n=1

1

nπ
{1− (−1)n} sin

(nπx
2

)
. (5)

Notice that
1

nπ
{1− (−1)n} =

{
0 if n is even,
2
nπ

if n is odd.

We can include this information in formula (5). Notice that every odd
integer n can be expressed as 2m+1, where m = 1

2
(n−1). If we replace every

odd value of n in (5) by 2m + 1 and sum over m from 0 to ∞, instead of n
from 1 to ∞, then all the terms which corresponded to odd values of n in the
original formula are retained but those which corresponded to the even values

of n disappear. For the odd values of n we have bn =
2

nπ
=

2

(2m+ 1)π
. This

means we can express the Fourier series of f as

1

2
+

∞∑
m=0

2

(2m+ 1)π
sin

(
(2m+ 1)πx

2

)
.

Notice that f satisfies the Dirichlet conditions since f is bounded, 4-
periodic, has a finite number of discontinuities and no local maxima or min-
ima in [−2, 2]. The discontinuities of f occur at x = 2n, for any integer n.

For all such points the average of the right and left hand limits of f(x) is
1

2
.

Applying Dirichlet’s Theorem we know that the Fourier series of f converges
to

f(x) for x ̸= 2n
1
2

for x = 2n

for each integer n. Note the distinction between f(x) and its Fourier series
at the points of discontinuity. The Fourier series of f has the graph shown
below (figure 24).
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Figure 24: The Fourier series of f(x).

⃝
(At this point you should try an example of finding the Fourier series of

a 2l-periodic function). EX

9.2 Fourier sine and cosine series for functions defined
over 0 ≤ x ≤ l

For a suitable function defined in 0 ≤ x ≤ l we may use the same transfor-

mation, t =
π.x

l
, that was applied to functions defined in −l ≤ x < l. Then

when 0 ≤ x ≤ l we have 0 ≤ t ≤ π, and

f(x) = f

(
l.t

π

)
= g(t), say.

Since g is defined over 0 ≤ t < π then we may use the techniques of
section 8 to find both its Fourier sine series and its Fourier cosine series.

The Fourier cosine series of g is

1

2
a0 +

∞∑
n=1

an cosnt

where

an =
2

π

∫ π

0

g(t) cosntdt n = 0, 1, 2, . . .

which means that the Fourier cosine series of f is

1

2
a0 +

∞∑
n=1

an cos
(nπx

l

)
,
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where

an =
2

π

∫ l

0

f(x) cos
(nπx

l

)
.
π

l
dx

=
2

l

∫ l

0

f(x) cos
(nπx

l

)
dx n = 0, 1, 2, . . .

The Fourier sine series of g is

∞∑
n=1

bn sinnt

where

bn =
2

π

∫ π

0

g(t) sinntdt n = 1, 2, . . .

which means that the Fourier cosine series of f is

∞∑
n=1

bn sin
(nπx

l

)
,

where

bn =
2

π

∫ l

0

f(x) sin
(nπx

l

)
.
π

l
dx

=
2

l

∫ l

0

f(x) sin
(nπx

l

)
dx n = 1, 2, . . .

(At this point you should try examples of finding Fourier cosine and sine
series of a 2l-periodic function). EX
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10 Summary

When you have completed this package you should be able to do the things
listed below.

1. recognize odd, even and periodic functions,

2. understand what is meant by the Fourier series of a function,

3. understand what is meant by the Fourier coefficients of a function,

4. obtain the Fourier coefficients of a function,

5. obtain the Fourier series of period 2π of a function and obtain the
mth partial sum of this Fourier series,

6. use the properties of odd or even functions to reduce the work in
finding Fourier coefficients,

7. understand Dirichlet’s Theorem concerning the convergence of
Fourier series,

8. determine whether a function satisfies the Dirichlet conditions,

9. apply Dirichlet’s Theorem to sketching the graph of the function
to which a Fourier series converges,

10. apply Dirichlet’s Theorem to summation of series,

11. obtain the Fourier sine or cosine series of period 2π of a function,

12. understand how to generalise the previous concepts to find the
Fourier series, sine or cosine series of period 2l of a function,
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12 Appendix - Video Summaries

There are three videos associated with the topic Fourier Series. The presen-
ters are Julie Halton and Mike Grannell from the Department of Mathematics
and Statistics at the University of Central Lancashire. We recommend that
you read the preamble to these notes which makes some suggestions about
how you should approach viewing the videos.

Video title: Fourier Series (part 1). (33 minutes)

Summary

1. Review of the idea of approximation of a function.

2. Introduction to the idea of approximation at x of a suitable function f
by a series of trigonometric functions of the form

1

2
a0 +

∞∑
n=1

{an cosnx+ bn sinnx},

known as the Fourier series of the function.

3. Odd and even functions: definition and examples of odd and even
functions. Properties of odd and even functions.

4. Periodic functions: definition and examples of periodic functions.
Properties of periodic functions.

5. Some useful preliminaries: the results

�

∫ π

−π

sinmx cosnxdx = 0.

�

∫ π

−π

sinmx sinnxdx =

{
0 if m ̸= n,
π if m = n.

�

∫ π

−π

cosmx cosnxdx =

{
0 if m ̸= n,
π if m = n.

, for integers m and n.

6. Finding the Fourier series and the Fourier coefficients of a suitable
function f : derivation of the Fourier series at x of a suitable function
f as

1

2
a0 +

∞∑
n=1

{an cosnx+ bn sinnx}
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where

an =
1

π

∫ π

−π

f(x) cosnxdx n = 0, 1, 2, . . .

bn =
1

π

∫ π

−π

f(x) sinnxdx n = 1, 2, . . .

7. Definition of the mth partial sum of the Fourier series of f .

Video title: Fourier Series (part 2). (33 minutes)

Summary

1. Recap of the definition of the Fourier series and the Fourier coefficients
of a suitable function f .

2. Derivation of the Fourier series of the function

f(x) =

{
0 if x < 0
x if x ≥ 0

Derivation of the 4th partial sum of the Fourier series of f .

Comparison of the graphs of f and the graphs of the 4th and 12th partial
sums of the Fourier series of f .

Derivation of the Fourier series of the 2π-periodic function g defined
for −π ≤ x < π by

g(x) =

{
0 if − π ≤ x < 0
x if 0 ≤ x < π

Relationship between the Fourier coefficients of g and those of the func-
tion f .

Comparison of the graphs of g and the graphs of the 4th and 12th partial
sums of the Fourier series of g.

3. Derivation of the Fourier series of the function

f(x) = x for all real x

The consequences of f being an odd function on the form of the Fourier
series of f .

Comparison of the graphs of f and the graphs of the 4th and 12th partial
sums of the Fourier series of f .
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4. Derivation of the Fourier series of the function

f(x) = x2 for all real x

The consequences of f being an even function on the form of the Fourier
series of f .

Comparison of the graphs of f and the graph of the 4th partial sum of
the Fourier series of f .

Video title: Fourier Series (part 3). (33 minutes)

Summary

1. Bounded functions: definition and examples of bounded functions.

2. Dirichlet’s Theorem concerning the convergence of Fourier series:
statement of the theorem and examples of its application in sketching
the Fourier series of a function.

3. Summation of series using Dirichlet’s Theorem.

4. Recap of the properties of Fourier series of odd or even functions.

5. Definition of the Fourier sine series and the Fourier cosine series
of a suitable function f defined for 0 ≤ x ≤ π.

Derivation of the Fourier sine series and the Fourier cosine series of the
function f defined for 0 ≤ x ≤ π by

f(x) = x+ 2.

Comparison of the graph of f and the graphs of its Fourier sine series
and its Fourier cosine series.
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