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1 Preamble

1.1 About this package

This package is for people who need to solve first order differential equations.
It is an introductory package and not an encyclopaedia. It covers relatively
easy types of equations and some basic numerical techniques. It doesn’t
contain a lot of theory. It isn’t really designed for pure mathematicians who
require a course discussing existence and uniqueness of solutions.

You will find that you need a background knowledge of differentiation and
integration in order to get the most out of this package. In particular, you
need to be able to differentiate using the product, quotient and function-of-
a-function rules. You also need to be able to carry out integrations by simple
substitutions, by parts, and using partial fractions. If you are a bit rusty,
don’t worry - but it would be sensible to do some revision either at the start
or as the need arises. Reasonable revision texts are given in the bibliography
(Section 13).

If you complete the whole package you should be able to

� recognise a first order differential equation,

� sketch the isoclines and direction field for a first order differential
equation,

� obtain an approximate numerical solution using Euler’s method,

� recognise separable and linear equations,

� solve separable equations by separating the variables,

� solve linear equations by computing an appropriate integrating fac-
tor,

� solve some other types of first order equations by reducing them to
either separable or linear form,

� understand how first order equations arise from one-parameter fam-
ilies of curves,

� explain how first order equations can be used to model birth/death
processes.

Depending on your own programme of study you may not need to cover
everything in this package. Your tutor will advise you what, if anything, can
be omitted.
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1.2 How to use this package

YouMUST do examples! Doing lots of examples for yourself is gen-
erally the most effective way of learning the contents of this package and
covering the objectives listed above. The introductory sections which cover
basic terminology, notation and background material may only need to be
scanned briefly. (How about investing in a highlighter pen?) But the re-
maining sections need to be tackled in a different manner:

� read the theory - make your own notes where appropriate,

� work through the worked examples - compare your solutions with the
ones in the notes,

� do similar examples yourself in a workbook.

The original printing of these notes leaves every other page blank. Use the
spare space for your own comments, notes and solutions. You will see certain
symbols appearing in the right hand margin from time to time:

⃝ denotes the end of a worked example,

2 denotes the end of a proof,

V denotes a reference to videos (see the next subsection for details),

EX highlights a point in the notes where you should try examples.

By the time you have reached a package like this one you will probably
have realised that learning mathematics rarely goes smoothly! When you get
stuck, use your accumulated wisdom and cunning to get around the problem.
You might try:

� re-reading the theory/worked examples,

� putting it down and coming back to it later,

� reading ahead to see if subsequent material sheds any light,

� talking to a fellow student,

� looking in a textbook (see the bibliography).

These notes are in fact only a part of a larger support provision. The notes
are intended to be the primary teaching resource but they are backed-up by
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� video lectures and examples,

� tutorials.

If you are fortunate you may find that the notes provide all the assistance
you need. However, many people find that watching someone work through
the theory and examples is extremely useful. This is where the videos come
in. You may also find that some particular point is impeding your progress
or causing you undue difficulty. If these notes and the videos do not help
then you should be able to get the issue resolved via the tutorial provision.

1.3 How to use the videos

The videos have been designed to cover the main points in the notes. They
don’t cover everything. The areas covered are indicated in the notes, usually
at the ends of sections and subsections. If you can easily follow the notes
then there is little point in viewing the videos. The videos do not introduce
any new material. If, however, there is some point in the notes where you
get stuck, then look at the appropriate point in the video. You may not
need to watch a whole video (most of them are about 30 minutes long). The
videos are broken up into sections prefaced with titles which can be read on
fast scan. In addition, a summary of the videos associated with this package
appears as an appendix to these notes.

Your tutor will tell you about the arrangements for viewing the videos.
Because of problems with theft of materials and equipment, there are likely
to be restrictions on viewing and loan facilities. The videos were designed to
be viewed individually or in very small groups (so that you can target the
parts which you need).

Viewing the videos, like reading the notes, is not just a spectator sport.
You should have a pen and paper handy and be prepared to use them. Stop
the video from time to time. Try the worked examples before watching
the solutions unfold on the screen. Make notes of any points you cannot
follow so that you can explain the difficulty in a subsequent tutorial session.
Remember the rewind button! Unlike a lecture you can get instant and 100
percent accurate replay of what was said.

You may find the videos useful for revision purposes towards the end of
your course. Again, you are likely to find that scanning the tape for the
highlights will prove more effective than dozing off for 30 minutes in front of
the television!
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1.4 How to use the tutorials

Your tutor will tell you about tutorial arrangements. These may be related
to assessment arrangements. If attendance at tutorials is compulsory then
make sure you know the details!

Leaving aside the assessment component which may vary from course
to course and from year to year, the tutorials provide you with individual
contact with a tutor. Use this time wisely - staff time is the most expensive
of all our resources.

You should come to tutorials in a prepared state. This means that
you should have read (re-read many times if necessary) the notes and the
worked examples. You should have tried appropriate examples for yourself.
If you have had difficulty with a particular section then you should watch
the corresponding video.

It will help your tutor enormously if you can make any queries as specific
as possible:

“I don’t understand example 7 in subsection 4.3”

is infinitely preferable to

“I had some trouble with section 4.”

Your tutor may, quite properly, refuse to help you if you haven’t tried to
help yourself. If he/she finds that you haven’t read the notes, tried examples
or looked at the videos then you may be told to do these things before any
individual help is offered. It seems to be the nature of things that the people
who are most conscientious about self-help are the ones most embarassed
about asking tutors questions. You can demonstrate that you have tried
self-help by referring to specific points.

1.5 Other forms of self-help

Your fellow students are an excellent form of self-help. Discuss problems
with one another and compare solutions. Just be careful that

1. any assesed coursework submitted by you is yours alone,

2. you yourself do really understand solutions worked out jointly with
colleagues.

Familiarize yourself with the layout and contents of these notes; scan
them before reading them more carefully. The contents page will help you
find your way about - use it.
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These notes also contain a bibliography. This references books which
cover specific points and more general textbooks which cover whole sections of
material, sometimes in greater depth and giving a slightly different approach.
Don’t be afraid of textbooks; bear in mind that they can’t usually be read like
novels. Go straight to the section of immediate interest and work outwards.
In addition to the texts mentioned in the bibliography, the University library
contains dozens of texts which cover the material in this package. You need
never be short of an alternative approach or more questions to try!

1.6 The hidden agenda!

If you can learn mathematics from this package and from textbooks then you
will not only have learnt a particular mathematical topic. You will also (and
more importantly) have learnt how to learn mathematics.
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2 Introduction

A differential equation is an equation connecting one or more derivatives of an
unknown function y = y(x). The equation may involve explicit references to

y and x themselves but must include at least one of the derivatives dy
dx
, d2y
dx2 , . . ..

The following are examples of differential equations:

1.
dy

dx
= x3

2. x2 d
2y

dx2
+ 3

dy

dx
+ y = sinx

3. sin(
d2y

dx2
) + cos(yx2) =

1

1 + y2

The principal objective will be to solve differential equations. This
means that we would like to obtain y in terms of x. In many cases it is
downright impossible to obtain a nice tidy formula for y. Sometimes, even
though such a formula may not exist, we can obtain an implicit formula.
[By an implicit formula we mean one involving x and y which cannot be
manipulated to a form where y is the subject of the formula - an example is
y + x = sin(xy).] For most equations which arise in practice it is possible to
obtain numerical solutions, i.e. for each given x we can obtain a numerical
approximation to the corresponding value of y.

Our three examples of differential equations given above all contain just
two variables x and y. Sometimes x will be referred to as the independent
variable and y as the dependent variable. You can tell which is which by
examining the derivatives:

dy

dx
:

{
y (on the top) is the dependent variable
x (on the bottom) is the independent variable

Differential equations like these are sometimes called ordinary differential
equations to distinguish them from partial differential equations which have
two or more independent variables as in:

∂2z

∂x2
+

∂2z

∂y2
= x2 + y2

You will be relieved to know that we won’t be considering partial differential
equations here. In fact, even the ordinary differential equations we shall look
at will be fairly simple - they will all be first-order equations.

(The video gives examples of differential equations.) V
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3 The order of a differential equation

A differential equation such as

(
d2y

dx2
)3 = sin((

dy

dx
)7 + y5)

is said to be of second-order since the highest order derivative which ap-
pears is the second derivative d2y

dx2

In general, an equation is described as nth order if the highest
order derivative which appears is the nth derivative.

Let us consider a very simple first order equation:

dy

dx
= x3

Integrating with respect to x we obtain

y =

∫
x3dx =

x4

4
+ c

where c is a constant. Thus the original equation has solution

y =
x4

4
+ c

In rough and ready terms, the appearance of the constant c in the solution
is tied up with the order of the equation:

first order ⇒ one integration ⇒ one constant.

For a second order equation we might reasonably expect to do two integra-
tions (to eliminate d2y

dx2 ) and consequently obtain a solution with two inde-
pendent arbitrary constants.

For equations which arise in practice it is normally the case that an nth
order equation will give rise to a solution containing n independent arbitrary
constants. Additional information (such as the values of y and dy

dx
when

x = 0) may enable us to evaluate these constants.
The equations that we shall consider in this module will be first order

equations and all of them (except the one just below!) will give rise to
solutions containing a single arbitrary constant.

To conclude this section we give an example of a badly-behaved differ-
ential equation which is first order but whose solution contains no arbitrary
constants:

(
dy

dx
)2 + y2 = 0
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The only solution of this (for real values of y) is y= 0. None of the equations
we consider below will behave like this.

(The video discusses the order of a differential equation and the number
of constants in a solution.) V

4 Solutions

The most general form of a first order differential equation is

G(x, y, y′) = 0 (where y′ denotes dy
dx
)

Here G is some function of three variables. We will only consider cases where
y′ can be expressed in terms of x and y. Consequently we take our general
form as

y′ = F (x, y)

where F is some function of two variables. An example is

dy

dx
= sin(x+ y)

There are results which guarantee the existence and the uniqueness of
solutions to the general form given above. These results prove that under
certain conditions on F (x, y), the equation has a solution y and that this
solution is unique (up to an arbitrary constant). An example of such a
result is Picard’s theorem (see the bibliography for references). In the cases
which we consider there will be few (if any) problems with existence and
uniqueness. However, just to show that it is easy to write down equations
with no solutions consider:

(
dy

dx
)2 + 1 = 0

This has no solution (for real values of y).
A further complication is the range of validity of a solution. An equation

such as:
dy

dx
=

√
x

is hardly likely to have a solution valid for x < 0 (because negative numbers
do not have real square roots). The solution

y =
2

3
x

3
2 + c
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obtained by integration is only valid for x > 0. When we speak of a solution
we mean a function that satisfies the differential equation for values of x lying
in some interval, not necessarily for all x.

Returning to an earlier example:

dy

dx
= x3

has (by integration) the solution

y =
x4

4
+ c

If we have some extra piece of information, then we may be able to evaluate
c. For example, if we were told that y(0) = 1 (by which we mean that y has
the value 1 when x has the value 0) then we can find c. To do this we simply
substitute x = 0, y = 1 into the solution. This gives

1 =
04

4
+ c

ie
1 = 0 + c

so
c = 1

Thus the only solution of this differential equation which satisfies y(0) = 1 is

y =
x4

4
+ 1

In order to clarify things we will, in future, refer to a solution which
contains an arbitrary constant as a general solution. Solutions obtained by
giving the constant a particular value (such as 1 in the case above) will be
called particular solutions (or particular integrals). In the example above,
the general solution is:

y =
x4

4
+ c

and a particular solution is

y =
x4

4
+ 1

It is perhaps worth remarking that two apparently different general solu-
tions can really represent the same solution. For example

y =
x4

4
+ 1 + d
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would be a general solution to our example. We would regard this as the
same general solution as that given earlier; we can translate from one to the
other by equating c and (1 + d):

c = 1 + d

All we are really doing here is changing the name of the constant from c
to 1 + d.

(The video discusses explicit, implicit and numerical solutions.) V

5 How they arise

Differential equations arise in modelling a wide variety of phenomena. Situ-
ations in which rates of change are related to the value of a variable will give
rise to such equations. As an example, consider bacteria growing in a culture
medium. If p denotes the population of bacteria at time t, then in the early
phase of growth the rate of population increase will be proportional to the
size of the population i.e.

dp

dt
is proportional to p

This gives a differential equation of the form

dp

dt
= kp

where k is a positive constant.
There are other, more complicated, birth/death processes which can be

modelled in this way. Further examples include chemical reactions, solubility,
radioactive decay, vibrations, heat transfer, fluid flow and economics. Some
of these are described in section 11 of these notes.

First order differential equations can be interpreted geometrically as rep-
resenting families of curves. We shall see this in the next section.

(The video discusses briefly the modelling of bacterial growth.) V
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6 One-parameter families of curves

6.1 The one-parameter family y = ax2

The equations
y = x2, y = 2x2, y = −x2, y = −2x2

all represent parabolas with vertices at the origin. They are sketched below
in figure 1.

Figure 1: A one-parameter family of parabolas.

More generally, for each1 value of the number a, the equation y = ax2

represents a parabola. We say that y = ax2 gives a one-parameter family of
curves; the number a is the parameter.

1Well, a = 0 is a bit peculiar!
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Such a family gives rise to a differential equation. This is obtained by
eliminating the parameter between the original equation and the equation
obtained from it by differentiating with respect to x. In this case

y = ax2

gives
dy

dx
= 2ax

and dividing these two equations to eliminate a gives

dy

dx
=

2y

x

This differential equation is in fact equivalent to the original y = ax2. Indeed,
we can obtain both the graph (showing the parabolas) and the original y =
ax2 equation from the differential equation. The next subsection shows how
to get the graph, and the section on separable equations (section 8) shows
how to solve the differential equation and obtain y = ax2.

(The video covers the example given above.) V
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6.2 Direction Fields

Given a first order differential equation of the form

dy

dx
= F (x, y)

we can draw a diagram to represent the equation. Imagine that you had
solved this equation and that you were asked for the gradient of your solu-
tion at the point (x0, y0). Since F (x, y) purports to be the gradient (i.e. dy

dx
)

of the solution, all you would need to do would be to insert the values x0

and y0 into F (x, y). Thus F (x0, y0) gives the gradient of the solution at the
point (x0, y0). We can represent this fact on a diagram by drawing a small
line segment centred on (x0, y0) with gradient F (x0, y0). (Figure 2.)

Figure 2: The gradient of the solution at (x0, y0) is F (x0, y0).

If we carry out this procedure at every point on the diagram then what
results is called the direction field of the differential equation. Naturally
we cannot really draw a line segment at every point (the diagram would get
rather cluttered) so in practice we take a representative sample. We then
obtain a diagram covered in short line segments. We can see this happening
if we return to our example

dy

dx
=

2y

x
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Using this example consider, for instance, the point (1,1). Here the value
of 2y/x is 2. Therefore, at the point (1,1) we draw a small line segment with
gradient 2. (Figure 3.)

Figure 3: A line segment with gradient 2 at the point (1.1).

Repeating this at a representative sample of points yields the following
diagram. (Figure 4.)
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Figure 4: The direction field for dy
dx

= 2y/x.
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If you look carefully at this latest diagram and join up neighbouring line
segments in the “obvious” way then the original parabolas described in the
previous subsection will be seen to re-emerge. The diagram below illustrates
this process. (Figure 5.)

Figure 5: The direction field gives the solution curves.

(The video dicusses the construction of the direction field for the differen-
tial equation y′ = 2y/x and obtaining the solution curves from the direction
field.) V
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6.3 The general situation and further examples

If a is a parameter then the family of curves described by an equation such
as

y = f(a, x) (1)

is referred to as a one-parameter family. Differentiation with respect to x
gives

dy

dx
= f ′(a, x) (2)

Eliminating the parameter a between (1) and (2) gives a first-order differen-
tial equation which, in many cases, is equivalent to the original equation in
the sense that the curves (i.e. the solutions of the differential equation) can
be obtained from the direction field and that it may be possible to obtain
(1) from this differential equation.

When we are given a differential equation of the form

dy

dx
= F (x, y) (3)

we can normally sketch the direction field and, by joining up neighbouring
line segments, we can obtain a graphical representation of the curves which
represent solutions to this differential equation.
Example 6.1 Sketch the direction field for the differential equation

dy

dx
= sin(xy)

and hence obtain graphical representation of the solutions for −2 ≤ x ≤ 2
and −2 ≤ y ≤ 2.
Solution At each point (x, y) the gradient of any solution is sin(xy). There-
fore, at a representative sample of points (x, y) satisfying −2 ≤ x ≤ 2 and
−2 ≤ y ≤ 2 we draw small line segments with gradient sin(xy). The diagram
below gives the resulting direction field. (Figure 6.)
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Figure 6: The direction field.

If we now join up neighbouring line segments we obtain the following dia-
gram which represents some solutions of the differential equation. (Figure 7.)

Figure 7: The solution curves.

⃝

(The video deals with the example y′ = sin(xy).) V
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6.4 Isoclines

When plotting a direction field by hand it is often useful to first plot the
isoclines. Literally, an isocline is a line of equal gradient.

For a differential equation of the form

dy

dx
= F (x, y)

the isoclines are the curves given by the equation

F (x, y) = c

for different values of c.
Once the isoclines have been obtained and drawn, it is easy to sketch the

direction field. Along the isocline F (x, y) = c we simply sketch line segments
all having the uniform gradient c.

Returning to the example of

dy

dx
=

2y

x

the isoclines are the lines
2y

x
= c

or, in this case,

y = (
c

2
)x

The diagram below (figure 8) shows these isoclines. Along each one of these
isoclines line segments with gradient c have been drawn. For example, in the
case of c = 2, the isocline is y = x and along this line the line segments all
have gradient 2.
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Figure 8: Isoclines and direction field for y′ = 2y/x.

Example 6.2 Draw the isoclines for the differential equation

dy

dx
= x2 + y2

Hence plot the direction field. Using the direction field, sketch the solution
y = y(x) to the differential equation which satisfies the requirement y(0) = 1.
Solution The isoclines are curves of the form

x2 + y2 = c

i.e. circles of radius
√
c centred at (0,0). The diagram below shows the iso-

clines corresponding to c = 1
4
, 1
2
, 1, 2, 4 with the direction field superimposed.

Along each circle x2+ y2 = c line segments with gradient c have been drawn.
By inspection, the solution y = y(x) which satisfies y(0) = 1 has been drawn
using the direction field as a guide. (Figure 9.)
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Figure 9: Isoclines, direction field, and solution satisfying y(0) = 1 for
the equation y′ = x2 + y2.

⃝
As we have seen in the above examples the method of direction fields

enables us to gain some insight into the solution of a differential equation of
the form

dy

dx
= F (x, y)

We can sketch the solution curves and so get a rough numerical approx-
imation to the solution y = y(x) satisfying a particular condition of the
form y(x0) = y0, where x0 and y0 are given values. It is also clear that for
“reasonable” functions F (x, y) the equation

dy

dx
= F (x, y)

will indeed have some solutions. In the next section we look at one very
elementary numerical method for obtaining an approximate solution. The
method is based on joining-up the line segments of the direction field in the
“obvious” way.
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(The video covers the example y′ = x2 + y2 described above. V
You should now try some examples involving:

� obtaining first order differential equations from one parameter families
of curves,

� obtaining the isoclines and direction field for given first order differen-
tial equations,

� using the isoclines to sketch solution curves.) EX
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7 Euler’s Numerical Method

The method enables us to obtain a numerical solution to a differential equa-
tion

y′ = F (x, y)

given an initial condition: y = y0 when x = x0.
The solution is obtained in a progressive fashion. Let us consider the

first step. The gradient of the solution curve at (x0, y0) will be F (x0, y0).
If we move to a neighbouring point on the solution curve with x-coordinate
x1 = x0 + h then we can estimate its y-coordinate, y1, from the following
sketch.

Figure 10: Estimating y1.

If h is small then a good approximation to y1 is the quantity y0 + k. But

tan θ =
k

h

and tan θ is the gradient of the solution curve at (x0, y0) . Thus

F (x0, y0) =
k

h

and so
k = hF (x0, y0)

Therefore, approximately,

y1 = y0 + hF (x0, y0)
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If we now repeat the procedure, moving from (x1, y1) to (x2, y2) along the
solution curve where x2 = x1 + h = x0 + 2h, we obtain the approximation

y2 = y1 + hF (x1, y1)

In general, if xn = x0 + nh we find that the corresponding y-coordinate on
the solution curve which passes through (x0, y0) is given (approximately) by

yn = yn−1 + hF (xn−1, yn−1) (n ≥ 1)

Example 7.1 Obtain a numerical solution to the differential equation

dy

dx
= x2 + y2

subject to the initial condition that y(0) = 1. Use a step length h = 0.1 and
tabulate the values of y for x between 0 and 1.
Solution Put x0 = 0, y0 = y(x0) = y(0) = 1, and h = 0.1. Then with
h = 0.1,

y1 ≈ y0 + h(x2
0 + y20) = 1 + 0.1(02 + 12) = 1.1

Similarly with x1 = x0 + h = 0.1,

y2 ≈ y1 + h(x2
1 + y21) ≈ 1.1 + 0.1((0.1)2 + (1.1)2) = 1.222

Likewise with x2 = x0 + 2h = 0.2,

y3 ≈ y2 + h(x2
2 + y22) ≈ 1.222 + 0.1((0.2)2 + (1.222)2) ≈ 1.375 (to 3dp)

Proceeding in this way we obtain the table

x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
y 1 1.1 1.222 1.375

You might try completing the table. ⃝
Of course solutions obtained in this way are only approximations. You

will see from the diagram that if the solution curve has large curvature then
the error introduced at each stage (the difference between y1 and (y0 + k))
might be significant. Clearly the error will tend to grow at each step. More
advanced methods try to overcome these problems and to provide some esti-
mate of the error. References to such methods are given in the bibliography.

(The video covers the general theory and the example y′ = x2+y2, y(0) = 1
given above. V

You should now try some examples involving the use of Euler’s method to
obtain numerical solutions to first order differential equations.) EX

26



8 Separable equations

It may happen that in the equation

dy

dx
= F (x, y)

we can express F (x, y) as the product of two functions f(x) and g(y), the
former involving only x and the latter involving only y. The equation can
then be written as

dy

dx
= f(x)g(y) (4)

To solve this we gather together all the y - terms on one side and all the x -
terms on the other (“separating the variables”) thus

dy

g(y)
= f(x)dx (5)

we then integrate: ∫
dy

g(y)
=

∫
f(x)dx+ c (6)

There are a few points to note.

1. Firstly, strictly speaking, (5) is illegal because we have broken-up the
composite symbol dy

dx
. However (6) can be obtained directly from (4)

by dividing by g(y) and then integrating both sides with respect to x.
My advice is to go from (4) to (5) to (6) without undue concern.

2. Secondly, we only need one constant in (6). It is true that we have done
two integrations. If we introduce a separate constant for each then (6)
might appear as ∫

dy

g(y)
+ a =

∫
f(x)dx+ b

which can be re-written as∫
dy

g(y)
=

∫
f(x)dx+ c

where c = b− a.

3. Thirdly, we are rather assuming that g(y) ̸= 0. You need to keep an
eye on this. Clearly you might not get a correct answer at points where
g(y) = 0.

4. Fourthly, the method will work if either f or g are constants.
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Example 8.1 Solve
dy

dx
= ex+y

Solution Write the differential equation as

dy

dx
= exey

Separating the variables gives

dy

ey
= exdx

and so ∫
e−ydy =

∫
exdx+ c

Therefore
−e−y = ex + c

hence
e−y = −ex − c

and so
−y = loge(−ex − c)

i.e.
y = −loge(−ex − c)

Plainly the solution is only going to be valid if c is chosen so that −ex−c > 0
(why?). Note also that the constant c is not just tagged onto the end. It
would be incorrect to write

y = −loge(−ex) + constant

The constant has to be introduced as soon as the integration is performed. ⃝
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Example 8.2 Solve
y′ + x3y2 = y2 sinx

given that y(0) = 1.
Solution First we find the general solution and then we evaluate the constant
using the fact that y = 1 when x = 0. We write the equations as

dy

dx
= y2 sinx− x3y2

i.e.
dy

dx
= y2(sinx− x3)

Thus the equation is separable. Separating the variables gives

dy

y2
= (sinx− x3)dx

Hence ∫
dy

y2
=

∫
(sinx− x3)dx+ c

i.e.

−y−1 = − cosx− x4

4
+ c

The condition y(0) = 1 gives

−1−1 = − cos 0− 04

4
+ c

i.e.
−1 = −1 + c

Hence c = 0. Therefore we have

−y−1 = − cosx− x4

4

i.e.

y =
1

cosx+ x4

4

A couple of comments are in order.

1. Firstly, when we separated the variables we rather assumed y ̸= 0. The
solution just obtained never takes the value zero but y = 0 is a solution
of the differential equation (by y = 0 here we mean y to be zero for all
x). Of course y = 0 does not satisfy the condition y(0) = 1.
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2. Secondly, the solution obtained will not be valid whenever (cos x+
x4

4
)

is zero. ⃝

In order to determine whether an equation is separable or not, you should
firstly manipulate it into a form where the derivative appears on its own on
the left hand side whilst the right hand side contains only x, y and constant
terms. This puts the equation into the form

dy

dx
= F (x, y)

If the right hand side now only contains x or only contains y or is a constant
then the job is complete and the equation is separable. If, as is more likely,
the right hand side contains both x and y then the next task is to factorise
it. If this can be done in such a way that one of the factors contains all
the x terms and the other factor contains all the y terms then the equation
is separable. If it is impossible to separate the variables in this way then
the equation is not separable. Note that most first order equations are not
separable, i.e. they cannot be expressed in the form

dy

dx
= f(x)g(y)

Example 8.3 The differential equation

(sin y)2
dy

dx
+ cosx cos y = cos(x+ y)

can be rewritten as

dy

dx
=

cos(x+ y)− cosx cos y

(sin y)2

Using the identity

cos(x+ y) = cos x cos y − sinx sin y

we obtain
dy

dx
= −sinx sin y

(sin y)2
= −sinx

sin y
= (− sinx)(

1

sin y
)

This is of the form
dy

dx
= f(x)g(y)

and so the equation is separable. ⃝
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Example 8.4 The differential equation

y′ − x2 = y2

can be rewritten as
y′ = x2 + y2

The right hand side is not factorisable and so the equation is not separable.
(In fact even if you use complex factors and write x2 + y2 = (x+ iy)(x− iy),
the equation is non-separable because the two factors do not separate x from
y.) ⃝

(The video deals with the general technique of separation of variables and
covers the example y′ = ex+y described above. There is a section on how to
recognize separable equations at the end of the third video, after we have dealt
with linear equations. V

You should now try solving some separable equations.) EX

9 Linear Equations

The first order differential equation

dy

dx
= F (x, y)

is said to be linear if it can be written in the form

dy

dx
+ P (x)y = Q(x) (7)

where P (x), Q(x) are functions of x alone (or are constants). This form of
the equation is called the linear form because it is linear in y (this means
that it does not involve y2, y3, loge(

dy
dx
), ey, sin( dy

dx
), etc.,etc.; only y on its own

and in dy
dx
).

The method of solution is based on the observation that the differential
equation

d

dx
(R(x)y) = S(x) (8)

has an easy solution, namely

R(x)y =

∫
S(x)dx+ c
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i.e.

y =

∫
S(x)dx+ c

R(x)
(9)

The left-hand side of (8) can be expanded by the product rule to give

R(x)
dy

dx
+R′(x)y

where R′ denotes the derivative of R. Thus (8) can be written as

R(x)
dy

dx
+R′(x)y = S(x)

or even as
dy

dx
+

R′(x)

R(x)
y =

S(x)

R(x)
(10)

provided R(x) is non-zero. We reiterate: equation (10) is merely a re-write
of equation (8); it has the same easy solution given by (9).

If we now compare (10) with the standard linear form (7):

dy

dx
+

R′(x)

R(x)
y =

S(x)

R(x)
(10)

dy

dx
+ P (x)y = Q(x) (7)

we see they are the same provided that

R′(x)

R(x)
= P (x) (11)

and
S(x)

R(x)
= Q(x) (12)

Thus the standard linear form (7) will have the easy solution given
by (9) provided we choose R(x) and S(x) to satisfy equations (11)
and (12).
Of these two equations (11) is the more complicated. We can write it as

1

R

dR

dx
= P (x)

This equation is separable:

dR

R
= P (x)dx
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and so ∫
dR

R
=

∫
P (x)dx+ k

i.e.

logeR =

∫
P (x)dx+ k

i.e.
R = e

∫
P (x)dx+k

We only require a particular solution (any one will do) so, for convenience
we set k = 0 and obtain

R(x) = e
∫
P (x)dx (13)

S(x) is then obtained easily from (12):

S(x) = Q(x)R(x)

i.e.
S(x) = Q(x)e

∫
P (x)dx (14)

Round about this stage students normally get lost so a summary may
help.

Summary To solve dy
dx

+ P (x)y = Q(x)

Step 1 Calculate R(x) = e
∫
P (x)dx

(R(x) is called the integrating factor)
Step 2 Multiply the given differential equation by R(x). The

left-hand side can then be written as

d

dx
(R(x)y)

so the equation can be expressed as

d

dx
(R(x)y) = Q(x)R(x)

Solving this by integration we obtain

R(x)y =

∫
Q(x)R(x)dx+ c

Note that the format y′+P (x)y = Q(x) is important. Thus the equation
y′ − xy = x3 has P (x) = −x, not P (x) = x. If you do make a mistake with
the sign like this then your resulting ’solution’ will generally be far removed
from the correct solution.
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Example 9.1 Solve
y′ + xy = e−x2/2

Solution Here P (x) = x, so the integrating factor is

R(x) = e
∫
xdx = ex

2/2

Multiplying the given differential equation by this factor gives

d

dx
(ex

2/2y) = e−x2/2ex
2/2 = e0 = 1

Integrating we obtain

ex
2/2y =

∫
1dx = x+ c

Hence

⃝y =
x+ c

ex2/2
= (x+ c)e−x2/2

Example 9.2 Solve

(cosx)
dy

dx
+ (sinx)y = x(cosx)2

Solution Firstly we divide by cosx to get the equation into standard form:

dy

dx
+

sinx

cosx
y = x cosx (15)

The integrating factor is

R(x) = e
∫

sin x
cos x

dx

= e
∫
tanxdx

= e−loge cosx

=
1

eloge cosx

=
1

cosx

Multiplying (15) by this factor enables us to write the equation as

d

dx
(

1

cosx
y) =

x cosx

cosx
= x

Hence, integrating we obtain

y

cosx
=

∫
xdx+ c =

x2

2
+ c
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Therefore

y = (
x2

2
+ c) cosx

Before leaving this example we remark that the inclusion of a constant in
the formula for R(x) would have no effect, i.e. if we used

R(x) = e
∫
P (x)dx+k

we could write this as
R(x) = e

∫
P (x)dx.ek

Since both sides of the standard from are multiplied by this quantity we can
cancel the numerical factor ek. This will happen to any integrating factor
and so you need never bother with the constant of integration in the formula
for R(x). ⃝

In order to determine whether or not an equation is linear you must
compare it with the standard form

dy

dx
+ P (x)y = Q(x)

Note that dy
dx

appears (on its own) on the extreme left. The other term on
the left hand side contains all the remaining references to y and it consists of
y times a function of x (or y times a constant). The right hand side contains
no y terms.
Example 9.3 As we saw towards the end of the previous section, the differ-
ential equation

(sin y)2
dy

dx
+ cosx cos y = cos(x+ y)

can be manipulated into the form

dy

dx
= −sinx

sin y

Getting all the y terms onto the left hand side gives

dy

dx
+

sinx

sin y
= 0

This is non-linear because y appears as
1

sin y
and not simply as y. ⃝
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Example 9.4 The differential equation

y′ − x2 = y2

can be rewritten as
y′ − y2 = x2

Again this is non-linear because the second term on the left hand side contains
a factor y2 rather than just y. ⃝
Example 9.5 The differential equation

yy′ − xy = y2 sinx

can be divided by y and rearranged to give

y′ − y sinx = x

(provided you are willing to discard the solution y = 0). Comparing this
with

y′ + P (x)y = Q(x)

we see that the (rewritten) equation is linear. Indeed P (x) = − sinx (note
the minus sign!) and Q(x) = x. ⃝
Example 9.6 The differential equation

y′ = (x+ 1)(y + 1)

can be written as
y′ − (x+ 1)y = x+ 1

This is in the standard form with P (x) = −(x+1) and Q(x) = x+1, and so
is linear. In fact the equation is also separable - look at the original form. ⃝

To conclude this section we observe that most first order equations are
not linear, i.e. they cannot be written in the form

dy

dx
+ P (x)y = Q(x)

Coupling this with what we said in an earlier section, most first order equa-
tions are neither separable nor linear. A few equations are both separable
and linear and in these cases it is up to you which method you use to solve
them. In the next section we look at some equations which are neither sepa-
rable nor linear but which can be reduced to one or other of these forms by
suitable substitutions.
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(The video covers the general theory of linear equations and the example
(cosx)y′ + (sinx)y = x(cosx)2 given above. The final video section describes
how to recognize separable and linear equations and covers the four examples
immediately preceding this note. V

You should now try some examples of linear equations. In addition, you
should make sure that you can correctly identify separable and linear equa-
tions.) EX

10 Other types of equation

(The videos do not cover this section.)
We look at some equations which are neither separable nor linear but

which can be reduced to one or other of these forms by means of a suitable
substitution.

10.1 Homogeneous Equations

A differential equation
dy

dx
= F (x, y)

is said to be homogeneous2 if F (x, y) can be expressed in terms of the ratio
y/x. That is to say, we can write the equation as

dy

dx
= G(

y

x
)

where G is some function.
Example 10.1 If

F (x, y) =
x2 + y2

2x2

then we can express F (x, y) as

F (x, y) =
1 + ( y

x
)2

2

If we put v = y/x and G(v) = (1 + v2)/2 then F (x, y) = G(y/x) and so the
differential equation

dy

dx
=

x2 + y2

2x2

2Unfortunately the same word is also used for a different property -see the notes on
second order differential equations.
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is homogeneous. We can write it as

dy

dx
=

1 + ( y
x
)2

2

⃝
Of course, most equations are not homogeneous - for example there is no

way of expressing sin(x + y) in terms of y/x. (You should be convinced by
the fact that sin(1 + 1) ̸= sin(2 + 2) even though 1/1=2/2). Therefore the
equation

dy

dx
= sin(x+ y)

is not homogeneous.
To solve a homogeneous equation

dy

dx
= G(

y

x
) (16)

we substitute v = y/x so that y = vx. Differentiating this by the product
rule gives

dy

dx
= v + x

dv

dx
(17)

Substituting this and v = y/x into (16) then produces

v + x
dv

dx
= G(v)

i.e.
dv

dx
=

1

x
(G(v)− v) (18)

This latter equation is separable. We can solve it for v, and then obtain y
from the equation y = vx.
Example 10.2 Solve

dy

dx
=

x2 + y2

2x2

Solution We express the equation as

dy

dx
=

1 + ( y
x
)2

2

We substitute v = y/x so that y = vx and hence

dy

dx
= v + x

dv

dx
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The equation can then be expressed as

v + x
dv

dx
=

1 + v2

2

i.e.

dv

dx
=

1

x

[
1 + v2

2
− v

]
=

1

x

[
1− 2v + v2

2

]
=

(1− v)2

2x

Separating the variables gives

2
dv

(1− v)2
=

dx

x

and so

2

∫
dv

(1− v)2
=

∫
dx

x
+ c

Integrating we obtain
2

1− v
= logex+ c

Therefore
1− v

2
=

1

logex+ c

hence

v = 1− 2

logex+ c

Finally, y = vx gives

⃝y = x

[
1− 2

logex+ c

]
(You should now try some examples involving homogeneous equations.) EX
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10.2 Nearly-homogeneous equations (1st type)
(Sometimes called linear fractional equations).

These are equations which can be expressed in the form

dy

dx
= H

(
ax+ by + c

ex+ fy + g

)
(19)

where a, b, c, e, f, g are constants; c and g are not both zero and af ̸= be; H
is some function of one variable. Note that if c and g were both zero then
we could write

dy

dx
= H

(
a+ b y

x

e+ f y
x

)
(20)

and the equation would be homogeneous. It is the presence of c and g which
prevent the homogeneity. We will make substitutions that effectively remove
the c and the g and convert (19) to something closely resembling (20)

Firstly we solve the algebraic simultaneous linear equations

ax+ by + c = 0

ex+ fy + d = 0

for the variables x and y. The condition af ̸= be ensures that these equations
have a unique solution. Suppose that this solution is x = α and y = β. That
is,

aα + bβ + c = 0 (21)

eα + fβ + g = 0 (22)

We now return to the differential equation and substitute X = x − α and

Y = y − β. Then
dX

dx
= 1,

dY

dy
= 1 and so

dy

dx
=

dY

dX
. We obtain

dY

dX
= H

(
ax+ by + c

ex+ fy + g

)
= H

(
a(X + α) + b(Y + β) + c

e(X + α) + f(Y + β) + g

)
= H

(
aX + bY + (aα + bβ + c)

eX + fY + (eα + fβ + g)

)
= H

(
aX + bY

eX + fY

)
because by (21) and (22) the (. . . ) terms are both zero. Finally we obtain

dY

dX
= H

(
a+ b Y

X

e+ f Y
X

)
(23)
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which is, as promised, very similar to (20). This equation is homogeneous;
we solve it by substituting v = Y/X. Having solved (23) we replace X by
x− α and Y by y − β and hence obtain the solution to (19).
Example 10.3 Solve

dy

dx
=

x+ 2y − 5

2x− y

Solution Firstly we solve the simultaneous equations

x+ 2y − 5 = 0

2x− y = 0

These have solution x = 1 and y = 2. We now substitute X = x − 1 and
Y = y − 2 in the differential equation. This gives

dY

dX
=

X + 2Y

2X − Y
=

1 + 2 Y
X

2− Y
X

Substituting v = Y/X gives Y = vX and so

dY

dX
= v +X

dv

dX

Hence

v +X
dv

dX
=

1 + 2v

2− v

i.e.

X
dv

dX
=

1 + 2v − 2v + v2

2− v
=

1 + v2

2− v

Separating the variables gives

2− v

1 + v2
dv =

dX

X

and so ∫ (
2

1 + v2
− v

1 + v2

)
dv =

∫
dX

X
+ k

Therefore

2 arctan v − 1

2
loge(1 + v2) = logeX + k

Replacing v by Y/X, Y by (y − 2) and X by (x− 1) then gives

2 arctan(
y − 2

x− 1
)− 1

2
loge(1 + (

y − 2

x− 1
)2) = loge(x− 1) + k
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This can be simplified slightly using properties of the loge function:

2 arctan(
y − 2

x− 1
)− 1

2
loge((x−1)2+(y−2)2)+

1

2
loge((x−1)2) = loge(x−1)+k

which gives

2 arctan(
y − 2

x− 1
)− 1

2
loge((x− 1)2 + (y − 2)2) = k

because

⃝
1

2
loge((x− 1)2) = loge(x− 1)

(You should now try one or two equations of the above type.) EX

10.3 Nearly-homogeneous equations (2nd Type)

These are equations which can be expressed in the form

dy

dx
= H(

ax+ by + c

ex+ fy + g
)

where a, b, c, e, f, g are constants; c and g are not both zero and af = be; H
is some function of one variable.

As before, if c and g are both zero then the equation would be homoge-
neous. However, the condition af = be ensures that the quantities

(ax+ by) and (ex+ fy)

are constant multiples of one another. If we substitute z = ax+ by then the
equation can be reduced to separable form (this applies whether or not c and
g are both zero).
Example 10.4 Solve

dy

dx
=

2x+ 3y + 6

4x+ 6y + 3

Solution Put z = 2x+ 3y. Then

dz

dx
= 2 + 3

dy

dx

and so
dy

dx
=

1

3
(
dz

dx
− 2)

Hence the differential equation may be written as

1

3
(
dz

dx
− 2) =

z + 6

2z + 3
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Therefore
dz

dx
=

3z + 18 + 4z + 6

2z + 3
=

7z + 24

2z + 3

Separating the variables gives

2z + 3

7z + 24
dz = dx

and so ∫
2z + 3

7z + 24
dz =

∫
dx+ k

To perform the left-hand integral we divide:
2

7
7z + 24 2z + 3

−(2z +
48

7
)

(3− 48

7
)

Since 3− 48
7
= −27

7
, the remainder is −27

7
. Hence

2z + 3

7z + 24
=

2

7
− 27

7
.

1

7z + 24

Therefore ∫
2z + 3

7z + 24
dz =

2

7
z − 27

7
.
1

7
.loge(7z + 24)

Hence
2

7
z − 27

49
loge(7z + 24) = x+ k

Replacing z by 2x+ 3y gives

⃝2

7
(2x+ 3y)− 27

49
loge(14x+ 21y + 24) = x+ k

(You should now try one or two equations of the above type.) EX

10.4 Bernoulli’s Equation

The general form of Bernoulli’s equation is

dy

dx
+ P (x)y = Q(x)yn (24)

where P (x), Q(x) are functions of x alone (or are constants) and n ̸= 0 or 1.
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If we consider (24) with n = 0 we see that the equation is then linear. If
we consider it with n = 1 then by algebraic manipulation we can convert it
to both the standard separable and linear forms. The real interest is what
happens when n ̸= 0 or 1.

We can solve Bernoulli’s equation (24) with the substitution

z = y1−n

Differentiation gives
dz

dx
= (1− n)y−n dy

dx
and so

dy

dx
=

1

1− n
yn

dz

dx

If we substitute this into (24) we get

1

1− n
yn

dz

dx
+ P (x)y = Q(x)yn

and dividing by yn then produces

1

1− n

dz

dx
+ P (x)y1−n = Q(x)

from which, with y1−n replaced by z, we get

dz

dx
+ (1− n)P (x)z = (1− n)Q(x)

This is a linear equation which can be solved for z by the integrating factor
method. Having obtained a solution for z we can replace z by y1−n and
obtain an expression for y.
Example 10.5 Solve

dy

dx
+

y

x
= xy2

given that y = 1 when x = 1.
Solution Here n = 2 in the Bernoulli general form. We put z = y1−2 = y−1.
Rather than go through the general working above it is easier to convert this
to y = 1/z. Then differentiation gives

dy

dx
= − 1

z2
dz

dx

and the differential equation becomes

− 1

z2
dz

dx
+

1

xz
=

x

z2
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i.e.
dz

dx
− z

x
= −x

This is a first order linear equation (in z) with integrating factor

R(x) = e
∫
− 1

x
dx = e−logex =

1

elogex
=

1

x

The differential equation can therefore be expressed as

d

dx
(
1

x
z) = −x

x
= −1

Integrating, we obtain

z

x
=

∫
−1dx = −x+ c

Therefore z = x(c− x), and so y−1 = x(c− x), i.e.

y =
1

x(c− x)

In this problem we have the extra information to determine c, namely that
y = 1 when x = 1. This gives

1 =
1

c− 1

and so c = 2. Finally therefore

⃝
y =

1

x(2− x)

(You should now try one or two equations of the above type.) EX
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11 Differential Equations as Mathematical

Models

(See section 5 for reference to the videos.) V
Our models are all concerned with birth/death processes.

11.1 Exponential Growth

Imagine a population (such as bacteria) growing in a favourable environment
(such as a culture medium with plentiful food supplies). We ignore the
possibility of death and concentrate on the initial phase of growth. Let p
denote the population size at time t. We expect the rate of growth to be
proportional to the population size, i.e.

dp

dt
= kp (k > 0, a constant)

This differential equation is both separable and linear. Whichever way you
solve it, the solution can be expressed as

p = Aekt

Here A represents the population at time t = 0. (See figure 11.)

Figure 11: Exponential growth.
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11.2 Restricted growth

This describes a late phase of growth (still without death) in a restricted
environment. The population approaches an upper limit P beyond which it
cannot grow due to insufficient resources for reproduction. We expect the
rate of growth to be proportional to (P − population size), i.e.

dp

dt
= k(P − p) (k > 0, a constant)

This differential equation is also both separable and linear. It has solution

p = P − Ae−kt

where P − A represents the population at time t = 0. (See figure 12.)

Figure 12: Restricted growth.

11.3 Logistic Equation

This starts from the assumption that the rate of increase of population is the
difference between the birth rate (b) and the death rate (d), i.e.

dp

dt
= b− d

To proceed further we examine the fertility rate f = b/p and the mortality
rate m = d/p. As the population p increases we might expect f (the number
of births per head) to decline due to competition for resources and m (the
number of deaths per head) to increase (for similar reasons). The simplest
form for declining f is

f = A−Bp (A,B > 0, constants)
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Likewise the simplest form for increasing m is

m = C +Dp (C,D > 0, constants)

These give

b = fp = (A−Bp)p, d = mp = (C +Dp)p

and so

dp

dt
= p [(A− C)− (D +B)p]

= p [α− βp]

where α = A−C and β = D+B are constants. Separation of variables and
partial fractions give the solution to this equation as

p =

α
β

Ee−αt + 1

where E is a constant determined by reference to the population at time
t = 0. (See figure 13.)

Figure 13: Solution of the logistic equation.

For simple experiments (e.g. growth of yeast in a culture medium) and
for suitable choice of the constants α, β this solution is in good agreement
with the experimental data.

(At the end of this section, check that you can solve the three differential
equations we obtained as mathematical models.)
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12 Summary

When you have completed this package, you should be able to do the things
listed below:

1. recognise a first order differential equation,

2. sketch the isoclines and direction field for a first order differential
equation,

3. obtain an approximate numerical solution using Euler’s method,

4. recognise separable and linear equations,

5. solve separable equations by separating the variables,

6. solve linear equations by computing an appropriate integrating fac-
tor,

7. solve some other types of first order equations by reducing them to
either separable or linear form,

8. understand how first order equations arise from one-parameter fam-
ilies of curves,

9. explain how first order equations can be used to model birth/death
processes.
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There are many textbooks which cover first order differential equations.
Indeed, some of the books listed above give an elementary treatment. Those
listed below are devoted exclusively to the subject of differential equations
and they give a great deal more detail.

Sanchez, D. A., Allen, R. C. and Kyner, W. T. Differential
Equations (second edition), Addison-Wesley, 1988.

Zill, D. G. A first course in Differential Equations with Applications
(fourth edition), Prindle, Weber, Schmidt - Kent Publishing Company,
1989.

Boyce, W. E. and DiPrima, R. C. Elementary Differential Equations
and Boundary Value Problems (fifth edition), Wiley, 1992.

Picard’s theorem mentioned in section 4 of these notes is proved in ap-
pendix 1 of the book by Sanchez et al. and in chapter 2 of the book by
Boyce et al. Zill does not offer a proof. All three volumes give details of
other, better, numerical techniques than Euler’s method. Of the three books
listed, you would probably find the volume by Boyce et al. to be too ad-
vanced for general use. All three volumes cover a much wider range of topics
than this package - for example second order differential equations, Laplace
Transforms, partial differential equations and Fourier series. In addition to
these three books there are very many other textbooks covering first order
equations and, again, many of these are in the University library. You need
never be short of an alternative approach or more questions to try!
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14 Appendix - Video Summaries

There are three videos associated with the topic of first order differential
equations. The presenter is Mike Grannell from the Department of Math-
ematics at the University of Central Lancashire. We suggest that you read
the subsection about the videos in the preamble to these notes. This makes
some suggestions about how you should approach viewing the videos.

Video title: First Order Differential Equations (part 1).
(33 minutes)
Summary

1. Examples of differential equations.

2. What is meant by a solution

Explicit, implicit and numerical solutions.

3. The order of a differential equation

The number of constants in a solution.

4. How differential equations arise

Growth of bacteria.

5. One-parameter families of curves

The family y = ax2, the corresponding differential equation y′ = 2y/x.

6. Direction Fields

General method. The particular case of the differential equation y′ =
2y/x. Obtaining the solution curves from the direction field. A further
example: y′ = sin(xy). Existence of solutions.

7. Isoclines

General method. The particular case of the differential equation y′ =
x2 + y2.
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Video title: First Order Differential Equations (part 2).
(22 minutes)
Summary

1. Euler’s numerical method

General theory. The particular case of the differential equation y′ =
x2 + y2, y(0) = 1.

2. Separable equations

General theory. The example y′ = ex+y.

Video title: First Order Differential Equations (part 3).
(25 minutes)
Summary

1. Linear Equations

The standard form
dy

dx
+ P (x)y = Q(x). Integrating factors. The

example (cosx)y′ + (sinx)y = x(cosx)2.

2. Determining which equations are separable and which are lin-
ear

The examples

(sin y)2y′ + cosx cos y = cos(x+ y)

y′ − x2 = y2

yy′ − xy = y2 sinx

y′ = (x+ 1)(y + 1)
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